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Abstract

Epidermal Growth Factor Receptor (EGFR) signaling, and EGFR mutations play key roles in 

cancer pathogenesis, particularly in the development of drug resistance. For the ~20% of all non-

small cell lung cancer (NSCLC) patients that harbor an activating mutation, EGFR tyrosine kinase 

inhibitors (TKIs) provide initial clinical responses. However, long-term efficacy is not possible 

due to acquired drug resistance. Despite a gradually increasing knowledge of the mechanisms 

underpinning the development of resistance in tumors, there has been very little success in 

overcoming it and it is probable that many additional mechanisms are still unknown. Herein, 

publicly available RNASeq (RNA sequencing) datasets comparing lung cancer cell lines treated 

with EGFR TKIs until resistance developed with their corresponding parental cells and protein 

array data from our own EGFR TKI treated xenograft tumors, were analyzed for differential gene 

expression, with the intent to investigate the potential mechanisms of drug resistance to EGFR 

TKIs. Pathway analysis, as well as structural disorder analysis of proteins in these pathways, 

revealed several key proteins, including DUSP1, DUSP6, GAB2, and FOS, that could be targeted 

using novel combination therapies to overcome EGFR TKI resistance in lung cancer.
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Lung cancer is by far the deadliest type of cancer in both men and women. The five-year survival 

rate for patients with lung cancer is one of the lowest of any cancer at 21%. Lung cancer 

treatment has historically relied on the use of nonspecific, toxic drugs to treat patient’s tumors, 

however recent trends have favored the development of less toxic, targeted agents. Despite this 

advancement, the use of these drugs has only been associated with a 1.5-year average increase 

in survival. This is because no treatment developed thus far is immune to the development of 

resistance. There is a great unmet need to develop novel treatments specifically to overcome drug 

resistance and prevent patient relapse.

Graphical Abstract:

Keywords

EGFR TKI Resistance; Lung Cancer; Bioinformatics

Introduction:

Non-small Cell Lung Cancer:

The five-year survival rate for patients with lung cancer is one of the lowest of any cancer 

at 22%, while the overall five-year survival for cancer patients is 68%.[1] One of the main 

reasons lung cancer remains so deadly is that it is often diagnosed in the later stages of 

the disease.[1] Other cancers that are often diagnosed at later stages, such as, liver (20%), 

esophagus (20%), and pancreas (11%) have equally low 5-year survival rates.[1] However, 

lung cancer has a higher prevalence and causes a greater number of deaths than all three 

of these cancer combined.[1] Even when lung cancer is diagnosed at an early stage and 

patients are able to receive surgical resection, around 55% of these patients will experience 

postoperative recurrence of the tumor within 5 years.[2, 3]

Non-small cell lung cancer (NSCLC) accounts for about 80–85% of all lung cancer cases.

[4] NSCLC patients are usually initially treated with platinum based chemotherapeutic 

regimen that all too often fail to cure the disease.[5, 6] The major reason for this outcome 

is the development of drug resistance.[5] Cancer treatment has historically relied on the 
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use of these nonspecific, toxic drugs to treat patient’s tumors, however recent trends in 

oncology have favored the development of less toxic, molecularly targeted agents.[7, 8] 

Despite this advancement, the use of these drugs has only been associated with a 1.5-year 

average increase in survival.[9] This is because no treatment developed thus far is immune 

to the development of resistance. There is a great unmet need to develop novel treatments 

specifically to overcome drug resistance and prevent cancer recurrence. Through their ability 

to target multiple pathways or multiple elements of the same pathway simultaneously, 

combination therapies may prevent any single new mutation that arises from conferring drug 

resistance.[5, 10]

Epidermal Growth Factor Receptor:

EGFR is commonly mutated and/or overexpressed in different types of human cancers, 

including glioblastoma, brain, lung, breast, and ovarian cancer.[11] EGFR mutations 

and genetic rearrangements can cause sustained activation of downstream signaling via 

altered receptor endocytosis and trafficking, disrupted receptor ubiquitination and lysosomal 

degradation, or ligand-independent receptor activation.[11] Tumors from patients with 

NSCLC can be screened for the presence of EGFR activating mutations, which commonly 

occur in exon 19 as an in frame deletion or exon 21 as a point mutation (L858R).[12] 

About 20% of all NSCLC patients are expected to harbor an EGFR activating mutation.

[12] Clinically relevant EGFR activating mutations include, deletions in exon 19 that 

cause elimination of the amino acid motif, LREA, and point mutations in exon 21 that 

substitute arginine for leucine at position 858 (L858R).[13] These two mutations account 

for about 85% of EGFR mutations in the NSCLC and make EGFR constitutively active and 

oncogenic.[13]

EGFR Tyrosine Kinase Inhibitors:

EGFR inhibitors have been shown to provide clinical benefits over chemotherapy for lung 

cancer patients with EGFR activating mutations.[14] The number of lung cancer patients 

who harbor an EGFR mutation and are expected to respond to EGFR targeted therapy is 

around 14–20%.[15, 16] Monoclonal antibodies targeting EGFR were the first anti-EGFR 

therapies used in the clinic.[17, 18] Anti-EGFR antibodies bind to the ligand binding 

regions of EGFR with high affinity and compete with the normal ligands to block EGFR 

activation, inducing receptor internalization and downregulation, and can recruit effector 

cells of the immune system that induce a cytotoxic immune response.[17, 18] Examples 

of clinically approved anti-EGFR antibodies include, Cetuximab, a chimeric mouse/human 

IgG1 antibody, Panitumumab, a humanized IgG2 mAb and, Nimotuzumab, a humanized 

IgG1 antibody.[17, 18] Small molecule anti-EGFR agents, EGFR TKIs, are reversibly or 

irreversibly directed to bind to the catalytic domain of EGFR.[17, 18] First generation 

(gefitinib,[19] erlotinib,[20] and lapatinib[21]), second generation (afatinib[22]), and most 

recently third-generation (osimertinib[23]) drugs are clinically approved to treat NSCLC 

patients.[24] Small molecule EGFR TKIs work by binding to and blocking the ATP-binding 

site on EGFR preventing tyrosine kinase activity and downstream signaling.[17, 18]

Drug resistance has, in nearly all cases, stifled treatment for EGFR mutated NSCLC.[12, 

24] In most cases, patients treated using first or second generation TKIs become completely 
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resistant in around 9–13 months.[12, 24] Recently, third-generation EGFR inhibitors, such 

as osimertinib, have emerged as potential therapeutics to block the growth of EGFR mutants 

that do not respond to previous generation EGFR TKIs.[12, 24] However, these have also 

proven to be susceptible to the development of drug resistance.[12, 24] Each succeeding 

generation was developed to combat resistance issues of the previous generations. Target 

alteration, increased ligand production, increased downstream pathway activation, and 

alternative pathway activation have all been proposed as mechanisms of resistance to 

EGFR TKIs[12, 24]. The common EGFR mutations that confer primary resistance to 

EGFR TKIs include, exon 19 mutations L747S/D761Y, exon 20 T790M, and the exon 21 

mutation T854A.[25] Non-EGFR mutation dependent mechanisms of primary resistance 

include, deletion of tumor suppressor gene PTEN (Phosphatase and tensin homolog), 

PIK3CA (Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) mutations, 

activation of the NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) 

pathway, polymorphisms of pro-apoptotic protein BIM (Bcl-2-like protein 11), increased 

expression of HGF (Hepatocyte Growth Factor), increased MET (c-Met proto-oncogene 

protein)-mediated activation, KRAS (KRAS Proto-Oncogene) mutations, BRAF (B-Raf 

Proto-Oncogene) mutations, and ALK (Anaplastic lymphoma kinase) translocation.[25] 

About 50% of NSCLC patients treated with EGFR TKIs will develop resistance due 

to the T790M mutation, which causes resistance to EGFR-TKIs is by increasing the 

affinity to ATP (Adenosine triphosphate) over the EGFR TKIs, which are competing with 

ATP for binding.[25] EGFR TKIs are the standard of care for patients harboring EGFR-

sensitizing mutations, but as it stands today, the majority of patients given these treatments 

go on to develop resistance. Despite an increased understanding of complicated EGFR 

TKI resistance, platinum-based chemotherapy is the only approved regimen for patients 

experiencing disease progression on Osimertinib to date.[26]

Numerous cellular pathways have been implicated in EGFR TKI resistance, and this has 

led to the idea that combination drug therapies targeting both EGFR and also particular 

resistance pathways would be a promising strategy to overcome EGFR TKI resistance.[27, 

28] For example, MET signaling is activated in H1975 cells that express the T790M 

EGFR mutation suggesting that combination treatment with a MET inhibitor and EGFR 

TKI may represent a strategy to overcome T790M mediated EGFR TKI resistance.[29] 

The upregulation of Hh (Hedgehog) signaling was reported to contribute to EGFR-TKI 

resistance and blockade of Hh signaling sensitized EGFR TKI resistant cells to EGFR 

TKI therapy.[30] A combination treatment with a MEK1/2 inhibitor and lapatinib was 

able to overcome EGFR TKI resistance through the inhibition of ERK (Extracellular signal-

regulated kinases) and the upregulation of BIM.[31] Also, a STAT3 (Signal transducer and 

activator of transcription 3) inhibitor along with an EGFR TKI was shown to significantly 

enhance anti-tumor effects of EGFR TKI treatment.[32] Further, since NF-kB activation acts 

as a survival mechanism upregulated by EGFR TKI treatment, it has been suggested that 

NF-kB inhibition along with EGFR TKI treatment could overcome this resistance response.

[33] Moreover, lapatinib resistance can be mediated through a p110a protein upregulation 

and/or mutation-induced PI3K activation and based on this a combination targeted therapy 

with a p110a-specific PI3K inhibitor was shown to overcome lapatinib resistance.[34] These 
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studies serve to highlight the potential of combination therapies to overcome the vast 

number of resistance mechanisms cells can undergo after EGFR TKI treatment.

Many different cell line models have been developed to study EGFR TKI resistance in 

lung cancer.[35–40] In one study, KE Ware et, al. established gefitinib resistant lung 

cancer cell lines through a chronic adaptation model, in which the cells were exposed to 

step-wise increasing concentrations of gefitinib until they could routinely be cultured in 

a concentration of 3μM.[40] This led the authors to discover that these cells undergo an 

induction of FGFR1 (Fibroblast growth factor receptor 1) -FGF2 (Fibroblast growth factor 

2) autocrine signaling pathway, which is enough to confer resistance to gefitinib and drive 

cancerous growth in presence of the drug. In another study, Kyung-A Song et. al. created 

gefitinib tolerant lung cancer cell lines by exposing the cells to 50nM gefitinib for 6 days 

and then withdrawing the drug for the next 3 days.[39] Using this model, the authors show 

that the gefitinib tolerant cells upregulate expression the anti-apoptotic protein, MCL-1 

(Induced myeloid leukemia cell differentiation protein). This allows the cells to survive 

the short-term apoptotic pressure of gefitinib and allows them time to acquire a secondary 

resistance mechanism that will allow them to grow in presence of the gefitinib. Matias 

Casas-Selves et. al. used a loss-of-function, whole genome shRNA screen, to identify the 

canonical Wnt (Proto-Oncogene Wnt-1) pathway, particularly the poly-ADP-ribosylating 

enzymes tankyrase 1 and 2 that positively regulate canonical Wnt signaling, as crucial to 

cell survival during initial exposure to gefitinib.[41] This model exposed the cells to gefitinib 

for 2 days at concentrations that would normally inhibit expansion by ~70%, followed by 4 

days without gefitinib. In one last example, Aaron N Hata et. al. created gefitinib tolerant, 

intermediate resistant, and late resistant cell pools, which allowed them to study the distinct 

evolutionary paths that can lead the cells to becoming resistant to gefitinib.[36] The authors 

found that EGFRT790M-positive clones could arise from the selection of pre-existing clones 

or from initially EGFRT790M-negative drug-tolerant cells. The authors hypothesized that the 

initial mechanisms that promote survival of the drug-tolerant cells may be enough to prevent 

apoptosis but may not fully recapitulate the oncogenic signaling provided by EGFR, so these 

cells provide a reservoir of cells from which genetic mechanisms of acquired resistance can 

evolve.

We reasoned that a better understanding of the mechanisms responsible for initial cell 

survival after exposure to EGFR TKIs may help identify treatments that are able to avoid 

or reverse development of drug resistance in the clinic. Specifically, we sought to identify 

additional resistance pathways and mechanisms beyond the well-studied mechanisms of 

resistance to EGFR TKIs such as mutations in the EGFR receptor (T790M, C797S), 

activation of EGFR downstream proteins (MEK, AKT, PI3K), activation of alternative 

tyrosine kinase pathways [HER2, MET, AXL (AXL Receptor Tyrosine Kinase)], and 

activation of growth factor receptors [FGFR (Fibroblast growth factor receptor), IGF1R 

(Insulin Like Growth Factor 1 Receptor)].[42] To this end, we compared ten publicly 

available RNASeq datasets of lung cancer cell lines treated with EGFR TKIs until resistance 

developed and their corresponding parental cells. These datasets were then analyzed 

for differential gene expression and a comparison analysis was performed to determine 

similarities between the datasets. To further explore potential mechanisms of EGFR TKI 

resistance, a list of genes that were significantly changed in a majority of the datasets 
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was combined with protein array data obtained from a xenograft mouse tumor model 

of EGFR TKI resistance to form a master list. Pathway analysis was then used to plot 

known interactions between these genes and EGFR. Lastly, structural disorder analysis was 

performed on each of these genes to explore potential roles of intrinsic disorder in the 

predicted EGFR interaction network. The genes and pathways identified herein warrant 

further validation and biological experimentation because they have the potential to lead to 

new therapies to overcome drug resistance.

Results:

Dataset Collection and Differential Gene Expression Analysis:

With the intent to investigate the development of drug resistance to EGFR TKIs, ten 

publicly available RNA-Sequencing datasets were downloaded from the National Center 

for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database.[43] 

All of these datasets contain data comparing cell lines treated with EGFR TKIs and their 

corresponding untreated or parental cells.[35, 36, 38–40] The EGFR TKI resistant cell lines 

in each dataset were obtained via different protocols, as each protocol was developed and 

verified by the researchers that obtained the original RNASeq data (Table 1).

After the FASTA files for each dataset were downloaded, they were analyzed for the 

differential gene expression using tools available on Galaxy, an open-source, free of charge, 

web-based platform (Figure 1).[44] Table 1 list the number of significantly expressed DEGs 

found for each dataset (p < 0.05). Table 2 shows the list of differentially expressed genes 

(DEGs) that are commonly up or down regulated in 7 or more of the 10 RNASeq datasets.

IPA Analysis:

Ingenuity Pathway Analysis (IPA) (Qiagen) was used to identify pathways that could 

affected by the DEGs.[45] To determine the most significantly affected pathways, we sorted 

them according to their average Z scores. Z score are statistical measures of the match 

between the expected relationship direction and the observed gene expression, between 

datasets. However, IPA comparison analysis of the canonical pathways predicted to be most 

affected by the differently expressed genes in each dataset showed very little consensus 

between all of the datasets (Figure 2). This is most likely because all of these EGFR TKI 

resistant models were produced using different methods, treatment times, and EGFR TKIs, 

along with the different lung cancer cell lines (Table 1). However, most of the datasets 

agreed in a few pathways. One such pathway was oxidative phosphorylation. A strong 

decrease in oxidative phosphorylation was seen in 7 out of 10 of the EGFR TKI resistant cell 

lines (Figure 2). IPA also identified cholesterol synthesis as strongly downregulated pathway 

in 7 out of 10 of the datasets (Figure 2). Downstream EGFR signaling molecules, such as 

PI3K/AKT and phospholipases were predicted to be upregulated in a majority of the datasets 

(Figure 2). The variability in genetic changes leading to EGFR TKI resistance seen here 

serves to highlight the many different pathways and genetic endpoints that can cause lung 

cancer cells to become resistant to EGFR TKIs.

Howell et al. Page 6

J Biomol Struct Dyn. Author manuscript; available in PMC 2024 November 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



To move forward, we decided to take a closer look at the oxidative phosphorylation 

(OxPhos) pathway, as well as the phospholipase signaling. To the best of our knowledge, 

these two pathways are not very well studied in the context of resistance to EGFR 

TKI therapy. Genes comprising the oxidative phosphorylation pathway were strongly 

downregulated in 7 out of 10 of the datasets (Figure 2). Further analyses indicated that 

in the different EGFR TKI resistant cell lines different genes of this pathway contributed to 

the downregulation. Out of the 82 genes listed in the IPA database under canonical OxPhos 

in our comparison analysis, only 10 showed up as significantly differently expressed in 4 

or more of the datasets (Figure 3A). We next took all 82 of the OxPhos genes in IPA and 

used the software to plot all known interactions between these genes and EGFR. Eleven of 

these genes have known interactions with EGFR and of these, ATP5F1A (ATP Synthase 

F1 Subunit Alpha) was significantly downregulated in 6 of the 10 EGFR TKI resistant 

cell lines and to our knowledge has no previously known role in EGFR TKI resistance 

(Figure 3B). Similarly, genes comprising cellular phospholipases were strongly upregulated 

in 7 out of 10 of the datasets (Figure 2). Further analyses indicated that in the different 

EGFR TKI resistant cell lines different genes with phospholipase activity contributed to this 

upregulation (Figure 4A). We next took all 47 phospholipase genes in the IPA database and 

used the software to plot all known interactions between these genes and EGFR. Nine of 

these genes have known interactions with EGFR, but to our knowledge have no known role 

in resistance to EGFR TKI therapy (Figure 4B).

Comparison With an In Vivo Xenograft Tumor Model of EGFR TKI Resistance:

To validate the findings of our meta-analysis of EGFR TKI resistance datasets, we used 

our previously published in vivo xenograft tumor model of EGFR TKI resistance.[46] 

We performed an analysis of protein expression and phosphorylation using the Phospho-

Explorer Antibody Array (Full Moon Biosystems) on the control vs. lapatinib treated 

tumor samples. This array is used for broad-scope protein phosphorylation profiling and 

consists of 1318 antibodies related to multiple signaling pathways and biological processes.

[47] When comparing protein expression in control vs lapatinib treated tumors we found 

a significant downregulation of some known TKI resistance markers such as, VEGFR2 

(Vascular endothelial growth factor receptor 2), ABL1 (ABL Proto-Oncogene 1), SRC 

(Proto-oncogene tyrosine-protein kinase Src), MYC (Figure 5).[42] This could be due to the 

lapatinib treated tumors still being in the early stages of resistance development. We did find 

upregulation of MEK1, a signaling protein downstream of multiple growth factor receptors 

including EGFR (Figure 5). MEK1 is a well-known marker of resistance to EGFR TKIs.[42] 

To the best of our knowledge, the rest of the significantly differential expressed proteins we 

found using this array have little or no known connection to EGFR TKI resistance (Figure 

5).

We further explored EGFR TKI resistance by combining our own tumor dataset with the 

publicly available data, we produced a master list containing significantly changed genes 

that are commonly up or down regulated in 6 or more of the RNASeq datasets and added the 

significantly changed proteins from the PhosphoExplorer array. We then plotted all known 

interactions between the list and EGFR (Figure 6A). Known pathways in IPA for cellular 

signaling/ metabolic processes were then overlaid on this plot and we kept only genes or 
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proteins that directly interacted with our pathways of interest (Figure 6B). Using this data, 

we can observe how these proteins interact and connect to known mechanisms of EGR 

TKI resistance, such as STAT3, ERK/MAPK, and NF-kB signaling.[42] We also show how 

these commonly differentially expressed genes/proteins interact with our candidate pathways 

(oxidative metabolic processes and phospholipases) while also tracing them back to the 

EGFR signaling pathway (Figure 6B).

To further validate this data we checked expression of the DUSP1 (dual specificity 

phosphatase 1) and DUSP6 (dual specificity phosphatase 6) genes in our previously 

published EGFR TKI tolerant cell line model.[46] These genes were found to be upregulated 

and downregulated respectively in the EGFR TKI resistant cells compared to parental cells, 

in six or more of the RNASeq datasets and show interactions with EGFR signaling and our 

candidate pathways (Figure 6B). In our EGFR TKI tolerant cell line model, we found that 

DUSP1 was upregulated 1.5-fold compared to parental cells and DUSP6 was downregulated 

almost 2-fold compared to parental cells (Figure 6C). We next looked at expression of these 

two genes after treatment with our previously published combination therapy of lapatinib 

and ketoconazole.[46] Interestingly, we found that expression of these genes is completely 

reversed in EGFR TKI tolerant cells after treatment with the combination therapy. DUSP1 

expression is downregulated below parental cell expression and DUSP6 expression is 

upregulated above parental cell expression in the EGFR TKI tolerant cells after treatment 

with the combination therapy (Figure 6C). We also produced a gene map showing genes that 

were commonly up or down regulated in six or more datasets but have no known interactions 

with the EGFR pathway in the IPA database (Figure 7). Several of these targets may prove 

useful when designing new therapies to overcome EGFR TKI resistance in lung cancer, 

however further validation is needed.

Intrinsic Disorder Analysis:

Lastly, we analyzed the structural disorder predisposition of each gene on our master list of 

commonly significantly changed genes, using a set of disorder predictors from the PONDR 

family and the IUPred computational platform.[48, 49] The different computational tools 

use different attributes and models for to calculate a disorder predisposition score for every 

amino acid residue in a query protein. The per-residue disorder predisposition scores are 

on a scale from 0 to 1, where values of 0 indicate fully ordered residues, values of 1 

indicate fully disordered residues, and values ≥ 0.5 are considered disordered residues. For 

each protein in this study, the mean disorder predisposition profile generated by averaging 

the outputs of individual predictors was used to evaluate the mean predisposition for 

intrinsic disorder as predicted percent of disordered residues (PPIDmean). These values 

were then plotted against the PONDR® FIT-based percent of predicted disordered residues, 

PPIDPONDR-FIT. Our analysis revealed that the PPIDmean values ranged from 1.32% to 

97.37% with a mean of 26.26% (Figure 8A). Based on their PPIDmean ranged values, 

proteins were classified as mostly ordered (< 10%), moderately disordered (between 10% 

and 30%) and highly disordered (≥ 30%). This analysis showed that according to these 

criteria, the analyzed dataset of 359 proteins contained 30.6%, 37.6%, and 31.8% of highly 

disordered, moderately disordered and mostly ordered protein, respectively.
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Binary disorder predictors, charge-hydropathy (CH) plot and the cumulative distribution 

function (CDF) plot, are computational tools that classify proteins as wholly ordered or 

wholly disordered.[48, 49] This allows for classification of proteins based on their position 

within the CH-CDF plot as ordered (proteins predicted to be ordered by both binary 

predictors), putative native “molten globules” or hybrid proteins (proteins determined to be 

ordered/compact by CH, but disordered by CDF), putative native coils and native pre-molten 

globules (proteins predicted to be disordered by both methods), and proteins predicted to be 

disordered by CH-plot, but ordered by CDF (native coils and native pre-molten globules) or 

proteins with compact globular conformations (native molten globules and ordered proteins). 

Figure 8B presents the results of this analysis and shows that 32% of them are highly 

disordered, 39.7%have a molten globular or hybrid structure, and 28.2% are mostly ordered. 

Among the EGFR interacting proteins, F2R (Coagulation Factor II Thrombin Receptor), 

DUSP1, FSTL1 (Follistatin Like 1), EIF5A (Eukaryotic Translation Initiation Factor 5A), 

DUSP6, BIRC3 (Baculoviral IAP Repeat Containing 3), and FGFR1, and are predicted to be 

moderately disordered, possessing PPIDmean of 9.6%, 11.7%, 12.6%, 13.6%, 17.3%, 17.5%, 

and 24.5%, respectively (Figure 9A–G). On the other hand, ADRA1B (Adrenoceptor Alpha 

1B), BMPR2 (Bone Morphogenetic Protein Receptor Type 2), ERRFI1 (ERBB Receptor 

Feedback Inhibitor 1), GAB2 (Growth Factor Receptor Bound Protein 2-Associated Protein 

2), FOS (Fos Proto-Oncogene, AP-1 Transcription Factor Subunit), GATA6 (GATA Binding 

Protein 6), and EGR1, with their corresponding PPIDmean values of 34.2%, 43,5%, 58.0%, 

61.7%, 67.6%, 71.4% and 85.6%, are highly disordered (Figure 9H–N). These intrinsically 

disordered proteins could play key roles in cellular signaling leading to EGFR TKI 

resistance.

Discussion:

In this study, we have compared publicly available RNASeq datasets for lung cancer cell 

lines treated with EGFR TKIs and protein array data from our EGFR TKI-treated xenograft 

tumors, performed pathway analyses, structural disorder analysis of these pathways to 

dissect the potential molecular mechanisms of drug resistance using the EGFR signaling, 

and EGFR mutations.

IPA Analysis:

After treatment with EGFR TKIs, the progression of tumor heterogeneity and acquisition 

of resistance via both genetic and non-genetic mechanisms may depend on the specific 

EGFR TKI being used.[50] Highly heterogeneous mechanisms mediate resistance to even 

state-of-the-art third-generation EGFR-TKIs, as such fourth generation EGFR TKIs are 

under development.[51] In this study, we aimed to use the RNASeq data from ten different 

EGFR TKI resistant models to attempt to find novel pathways leading to EGFR TKI 

resistance. By comparing data generated using multiple TKIs and models of varying genetic 

backgrounds we aimed to find common resistance mechanisms that would be more robust 

and universal than those that are only described in a single model.

A major finding of our analyses is that one pathway (oxidative phosphorylation) was 

downregulated in 7 of the 10 EGFR TKI resistant cell lines. Therefore, it may be possible 
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to target EGFR TKI resistance through this strong decrease in OxPhos. It was found 

that oxidative phosphorylation was downregulated in a group of NSCLC patients with 

mutated EGFR tumors that also had high mTORC2 (Mammalian target of rapamycin 

complex 2) activity, leading to a worse prognosis.[52] Novel mTORC2 inhibitors are 

currently under investigation as cancer treatments, but their translation to the clinic is 

hindered by off target effects and limited patient response.[53] In lung cancer cells, chronic 

gefitinib treatment promotes ROS (Reactive oxygen species), which then activates an EMT, 

leading to gefitinib resistance.[54] Erlotinib resistant lung cancer cells have mitochondrial 

dysfunction and rely more on glycolysis for survival than non-resistant cells, it has been 

shown that glucose deprivation can selectively decrease their viability.[55] However, not 

all the literature agrees. Inhibition of EGFR signaling induced an upregulation of oxidative 

phosphorylation in NSCLC cell lines.[56] A Glycolysis-to-OxPhos shift has been observed 

in erlotinib resistant EGFR mutant lung cancer cells that have undergone EMT (Epithelial–

mesenchymal transition).[57] Also, in EGFR-TKI-resistant NSCLC cells, OxPhos markers 

including mitochondria-driven ATP production, mitochondrial membrane potential, and 

maximal OxPhos capacity were observed to be increased.[58] Inhibition of oxidative 

phosphorylation in combination with osimertinib could delay or prevent the development of 

resistance to osimertinib, as osimertinib treatment was shown to induce a strict dependence 

on mitochondrial OxPhos in EGFR mutant lung cancer cell lines.[59] While OxPhos role 

in EGFR TKI resistance is pivotal, the reason for the discrepancy among the reports is 

unclear. This may be attributed to differences in mutation status and cellular context within 

the many different cell line models have been developed to study EGFR TKI resistance in 

lung cancer. These include chronic adaptation model, tolerance model, and loss of function 

model.[35–40] Our study has identified reactivation of oxidative phosphorylation, possibly 

by upregulation of ATP5F1A, as a potential therapeutic target to overcome EGFR TKI 

resistance.

Another major finding of our study is that we identified an increase in phospholipase 

expression and signaling as a potential therapeutic target. While the role phospholipases play 

in EGFR activation and downstream signaling has been well studied, their contribution 

to EGFR TKI resistance has not been defined.[60–64] In our study, we have found 

phospholipase gene expression to be upregulated in 7 of the 10 EGFR TKI resistant cell 

lines. It is possible that due to the essential roles’ phospholipases play in maintaining EGFR 

signaling that the upregulation seen in these EGFR TKI resistance cell lines serves to 

overcome EGFR inhibition by TKIs. More work needs to be done to determine the exact 

role that phospholipases are performing to contribute to TKI resistance.

Comparison With an In Vivo Xenograft Tumor Model of EGFR TKI Resistance:

To validate the findings of our meta-analysis of EGFR TKI resistance datasets, we used 

a xenograft tumor model of EGFR TKI resistance and performed a PhosphoExplorer 

array on the control vs. lapatinib treated tumor samples.[46, 47] We then combined this 

data with a master list containing significantly changed genes that are commonly up 

or down regulated in 6 or more of the RNASeq datasets. This allowed us to observe 

how these commonly differentially expressed genes/proteins interact with our candidate 

pathways and the EGFR signaling pathway. Using this phospho-protein expression data 
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and the RNASeq data we identified known mechanisms of EGR TKI resistance, such as 

STAT3, ERK/MAPK, and NF-kB signaling and explored their connections to our candidate 

processes of oxidative metabolism and phospholipases. For example, LYN (Lck/Yes-Related 

Novel Protein Tyrosine Kinase) and MYC are downregulated and MAP2K1 and EIF4EBP1 

(Eukaryotic Translation Initiation Factor 4E Binding Protein 1) are upregulated in our 

protein data. LYN is known to be essential to maintain mitochondrial integrity, which 

is required to support oxidative metabolism.[65] MYC is expected to be downregulated 

following TKI treatment because it is downstream of EGFR however; it is typically activated 

in cancer to promote glycolysis when oxidative metabolism is reduced.[66] This deficit in 

glycolytic signaling may be overcome by the increase observed in MAP2K1 which activates 

pro glycolytic transcription factors.[67] EIF4EBP1 is a target of the mTOR pathway which 

is known to promote aerobic glycolysis.[68] In this way, key protein changes observed in our 

tumor model are consistent with the cellular phenotype most observed in the RNAseq data 

(reduced OxPhos). This highlights the interplay between different mechanisms of EGFR 

TKI resistance, both known and predicted, and shows that in most cases resistance is not 

just conferred by one pathway or gene but in fact multiple pathways work synergistically to 

enhance cellular resistance to EGFR TKIs.

As further validation of this data, we checked the expression of DUSP1 and DUSP6 in 

our own model of EGFR TKI tolerance.[44] These genes were found to be commonly 

up and down regulated respectively in EGFR TKI resistant cells compared to parental 

cells, in six or more of the RNASeq datasets. Using IPA, we also found that these genes 

interact with the EGFR signaling pathway and our candidate pathways (OXPHOS and 

phospholipase signaling). The MAPKs, including ERK, JNK, and p38 are dephosphorylated 

by DUSP proteins, which are critical regulators of these pathways.[69] Genetic deletion and 

pharmacological inhibition of DUSP1 was shown to suppress tumor growth in a BCR-ABL 

fusion protein kinase–induced mouse model of chronic myeloid leukemia (CML), as well 

as in tumor cells modeling other types of kinase-driven leukemias.[70] This mirrors the 

data we have shown in this current study, as we have shown that DUSP1 was upregulated 

in our EGFR TKI tolerant cell line model compared to parental cells and expression was 

completely reversed in the EGFR TKI tolerant cells after treatment with our combination 

therapy of lapatinib and ketoconazole. In our previous study we found that the combination 

therapy was able to re-sensitize EGFR TKI tolerant cells to EGFR TKI therapy.[46] 

However, another study found that DUSP1 downregulation in NSCLC might be a novel 

mechanism of gefitinib-acquired resistance and DUSP1 expression correlated with gefitinib 

sensitivity in a clinical specimens.[69] RNA knockdown of DUSP6 in H441 lung cancer 

cells was shown to increase ERK activation, whereas overexpression of DUSP6 in H1975 

lung cancer cells was shown to reduce ERK activation and promote apoptosis.[71] In 

this same study, DUSP6 overexpression was also shown to synergize with EGFR TKIs in 

HCC827 cells. Again, this mirrors the data we have shown in this current study. In our 

EGFR TKI tolerant cell line model, we found that DUSP6 was downregulated compared 

to parental cells and expression was completely reversed in the EGFR TKI tolerant cells 

after treatment with our combination therapy of lapatinib and ketoconazole. Our previous 

report, along with this data shows that the DUSP proteins, especially DUSP1 and DUSP6, 
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may serve as potential therapeutic targets when designing therapies to overcome EGFR TKI 

resistance.

Next, we produced a gene map showing genes that were commonly up or down regulated 

in more than half of the datasets but have no experimentally validated known interactions 

with the EGFR pathway in the IPA database. Literature searches of the upregulated genes 

identified a few that may play a role in EGFR TKI resistance. In one study, SEMA3C 

(Semaphorin 3C) was found to drive activation of multiple RTKs, including EGFR, 

and SEMA3C expression levels increased in castration-resistant prostate cancer, where it 

functioned to promote cancer cell growth and resistance to androgen receptor pathway 

inhibition.[72] A tandem duplication at 7q34 leading to a fusion between KIAA1549 

and BRAF was found in 66% of pilocytic astrocytomas, and lead to constitutive BRAF 

kinase activity and was able to transform NIH3T3 cells.[73] In another study, a systems 

analysis of a model of EGFR-mutated NSCLC resistant to targeted therapy was performed 

using whole exome sequencing, global time-course discovery phospho-proteomics and 

computational modeling to identify resistance pathways and one of the nine phosphoproteins 

whose corresponding genes were directly mutated was found to be AHNAK2 (AHNAK 

Nucleoprotein 2).[74] Further experimentation is needed to confirm the possible roles these 

genes may play in the development of EGFR TKI resistance.

Intrinsic Disorder Analysis:

Lastly, we have performed intrinsic disorder analysis on each protein in our master 

list to investigate the possible role of intrinsic disorder in resistance to EGFR TKIs. 

Studies have shown the value of including protein structural information into analysis 

of protein networks.[75] The results of these studies point to a general involvement of 

intrinsically disordered proteins in numerous processes in the cell: transcriptional activation, 

cell-cycle regulation, membrane transport, molecular recognition and signaling.[76] Protein 

disorder may be involved directly in mediating interactions between highly connected 

proteins in signaling networks. Experimental evidence of disorder in signaling proteins and 

oncoproteins, such as FOS, DUSPs, and GAB2 suggest an increased amount of predicted 

disorder in these two protein datasets, which is proposed to relate to the signaling and 

regulatory functions of these proteins.[77] For example, the C-terminal activation domain 

of FOS is structurally disordered, giving the protein structural freedom which allows it to 

interact with multiple transcription factors. Another protein predicted to have a high level 

of intrinsic disorder is Gab2, which is involved in the amplification of signal transduction 

from growth factors, cytokines and antigen receptors and has been implicated in promoting 

tumor cell metastasis, migration and recurrence.[78] Through these interactions, the Gab2 

protein triggers various downstream signal effectors, including Met-ERK1/2 and IGF1R-

AKT, which has been implicated in the acquisition of EGFR TKI resistance.[79] The 

common occurrence of intrinsic disorder in cancer-associated and signaling proteins suggest 

that disorder information should be employed in the development of new strategies for the 

discovery of anti-cancer drugs.[77]
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Study Limitations:

There are several limitations to the methods used in this study that could have impeded our 

ability to find a truly universal resistance mechanism. First, there were significant variations 

in the duration of TKI treatment between studies, variations in the number of biological 

replicates resulting in limited statistical power, and variations in the methods used to collect 

the original sequencing data. Second, we analyzed abundant public data, but most of the 

EGFR TKI DR datasets are from the PC9 cells, which could skew the results towards 

this specific cell line. Third, since the RNASEQ studies were done in vitro, we decided 

to validate our findings in a xenograft model of EGFR TKI DR. However, our model 

uses lapatinib as the EGFR TKI and all of the RNASEQ studies, but one, used gefitinib 

as the EFGR TKI. Due to this, our model might not replicate some of gene expression 

changes observed within the RNASEQ experiments. However, it should only strengthen the 

conclusions found within this manuscript, as the point of this study is to determine potential 

mechanisms of EGFR TKI DR that are consistent between resistance to multiple EGFR 

TKIs.

Conclusion:

One of the main reasons that EGFR TKI resistance has proven so difficult to overcome 

is the molecular and genetic variability that can lead to EGFR TKI resistance. Using a 

set of bioinformatics analyses on available RNA-Sequencing and protein array datasets, 

we have identified several possible EGFR TKI resistance targets. Datasets were analyzed 

for differential gene expression, and then pathway analysis, as well as structural disorder 

analysis of key proteins in these pathways, was performed. Our results suggest several 

key proteins, including DUSP1, DUSP6, GAB2, and FOS, that may play roles in the 

development and maintenance of EGFR TKI resistance in lung cancer due to the high 

number of predicted interactions these proteins have with DEGs in EGFR TKI DR cell lines 

and known markers of EGFR TKI DR. By studying the cellular effects of acquired EGFR 

TKI resistance, as well as the mechanism through which this resistance is maintained, we 

can better understand how lung cancer cells become drug resistant to EGFR TKIs and help 

design more efficient combination treatment strategies that will stop the development of 

resistance.

Materials and Methods:

1. RNASEQ Dataset Acquisition and Differential Gene Expression Analysis:

The fasta files for each dataset were downloaded from the GEO database and analyzed 

for differential gene expression using tools available on Galaxy, an open-source, 

free of charge, web-based platform.[43, 44]. The main public Galaxy server (https://

usegalaxy.org), online since 2007, features a robust toolset for large-scale omics analyses, 

a large amount of public data for use, and analysis histories and workflows. A 

schematic of the workflow for RNA-SEQ data analyses is shown in Figure 1. Briefly, 

after uploading the data to Galaxy, the raw sequencing data was quality checked 

using FASTQC.[80] FastQC (Galaxy ID: toolshed.g2.bx.psu.edu/repos/devteam/fastqc/

fastqc/0.73+galaxy0; URL: https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/repos/
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devteam/fastqc/fastqc/0.73+galaxy0) performs quality control checks on raw sequence data 

by using a modular set of analyses to give the researcher a short impression of whether the 

data has any problems that could affect downstream analysis. Then low-quality transcripts, 

adaptor sequences, and PCR primers sequences were removed using Trimmomatic.

[81] Trimmomatic (Galaxy ID: toolshed.g2.bx.psu.edu/repos/pjbriggs/trimmomatic/

trimmomatic/0.38.0; URL: https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/repos/

pjbriggs/trimmomatic/trimmomatic/0.38.0) performs a selection of trimming steps 

designed specifically for illumina paired end and single ended data. The cleaned 

sequences were then aligned to the human genome using HISAT2.[82] HISAT2 

(Galaxy ID: toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.2.1+galaxy0; URL: https://

usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.2.1+galaxy0) is 

a spliced alignment program that allows for fast and sensitive alignment of 

reads to a reference genome. Count tables measuring gene expression were then 

created using featureCounts.[83] FeatureCounts (Galaxy ID: toolshed.g2.bx.psu.edu/

repos/iuc/featurecounts/featurecounts/2.0.1+galaxy2; URL: https://usegalaxy.org/root?

tool_id=toolshed.g2.bx.psu.edu/repos/iuc/featurecounts/featurecounts/2.0.1+galaxy2) is a 

read counting program that can be used to count both gDNA-seq and 

RNA-seq reads for genomic features. Differential gene expression was then 

calculated from the count tables using DESeq2.[84] Using a negative binomial 

distribution model, DESeq2 (Galaxy ID: toolshed.g2.bx.psu.edu/repos/iuc/deseq2/

deseq2/2.11.40.7+galaxy1; URL: https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/

repos/iuc/deseq2/deseq2/2.11.40.7+galaxy1) takes count data, estimates variance-mean 

dependence, and calculates differential expression. Gene fold changes represent drug 

resistant against parental, meaning the values correspond to up or down regulations of genes 

in drug resistant samples, and were considered significantly differentially expressed if the 

corrected p-value was <.05.

2. Cell culture

H1650 cells were purchased from the American type culture collection (ATCC) and 

passaged no more than 25 times. Cells were cultured in a humidified incubator at 37°C in 

a 5% CO2 atmosphere. Cells were cultured in tissue culture treated plates in the appropriate 

complete cell culture media [RPMI (GE Healthcare) containing 10% fetal bovine serum 

(FBS) (Atlanta Biologicals) and 1% penicillin/streptomycin (GE Healthcare)]. H1975 cells 

have stable expression of luciferase and green fluorescent protein (GFP), were purchased 

from Genecopoeia, and were grown according to the manufactures’ protocol. Drug tolerant 

H1975 cells were generated according to a previously published protocol.[46]

3. Phospho-Explorer Antibody Array

Total protein was extracted from tumors using RIPA buffer and protein concentration 

was determined using the Pierce Coomassie Protein Assay Kit (Thermo Fisher Scientific) 

according to the manufactures’ protocol. Tumor protein samples from each group were then 

equally pooled (N=3) and protein expression was determined using the Phospho-Explorer 

Antibody Array (Full Moon Biosystems, California USA) according to the manufactures’ 

protocol). Cy-3 developed array chips were scanned, and images were analyzed using 

ImageJ to determine relative normalized staining intensity for each antibody. β-actin was 
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used as a house keeping gene to quantify relative protein expression. Average relative 

fluorescent units ±SEM (N=2) were calculated for each protein. Statistical significance 

for each experiment was determined using two-way analysis of variance (ANOVA) and 

the Bonferroni post hoc test * = p<0.05, ** = p<0.01, *** = P<0.001. Calculations were 

performed and graphs produced using Prism 6.0 software (GraphPad, California USA). 

Graphs of results show the mean and error bars depict the average plus or minus the standard 

error of the mean.

4. Pathway Analysis

Ingenuity Pathway Analysis (IPA) (Qiagen) was used for analysis and interpretation of the 

acquired differential expressed genes lists from RNA sequencing.[45] A detailed description 

of this software is available at ingenuity.com. IPA was then used to identify pathways 

that could affected by the significantly differential expressed genes. IPA uses a database 

of prior biological knowledge to interpret gene-expression data and create predictions of 

the status of regulatory molecules that could explain the observed expression changes 

in datasets. Available tools include Upstream Regulator Analysis, Mechanistic Networks, 

Causal Network Analysis, and Downstream Effects Analysis.

To begin our analysis, a core analysis was performed on each dataset, and a comparison 

analysis was then run to compare the parental vs drug tolerant data obtained from each 

dataset. We then examined the datasets for the similarly affected canonical pathways 

responsible for the observed gene expression changes. To determine the most significantly 

affected pathways, we sorted them according to their average Z scores. Z score are 

statistical measures of the match between expected relationship direction and observed 

gene expression, between datasets. Heatmapper software was used to produce heat maps 

from the data obtained from IPA.[85] A detailed description of this software is available at 

heatmapper.ca.

We then used the My Pathway/Path Designer tools in IPA to plot all known interactions 

between the pathway of interest and EGFR. The sum of each genes fold change compared 

to control from each dataset was used to color the genes. To explore these pathways further 

we produced a master list containing significantly changed genes that are commonly up or 

down regulated in 6 or more of the RNASeq datasets and added the significantly changed 

proteins from the PhosphoExplorer array. We then used the My Pathway/Path Designer tools 

in IPA to plot all known interactions between this master list and EGFR. The data from the 

comparison analysis was used to color the genes based on up or down regulation. Data from 

the PhosphoExplorer array was used to color the proteins based on up or down regulation. 

Known pathways in IPA for cellular signaling/ metabolic processes were then overlaid on 

this plot and we kept only genes or proteins that directly interacted with our pathways of 

interest. Finally, we produced a gene map showing genes that were commonly up or down 

regulated in six or more datasets but have no experimentally validated known interactions 

with the EGFR pathway in the IPA database. A literature search was then performed on the 

upregulated genes to determine any roles these genes may play in resistance to EGFR TKIs.
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5. Quantitative Reverse Transcriptase PCR (qPCR)

Total cellular RNA was extracted from cell pellets using Trizol (Thermo Fisher Scientific) 

according to the manufactures’ protocol. RNA was quantified using the Nanodrop 

(Thermo Fisher Scientific). One microgram of RNA was then reverse transcribed using 

the Maxima cDNA Reverse Transcription Kit (Thermo Fisher Scientific) according to 

the manufactures’ protocol. qPCR performed on the cDNA was used to quantitate 

the relative expression levels of certain genes to β−2-Microglobulin or β-actin as a 

control. Real time analysis was performed using BlazeTaq SYBR Green qPCR Mix 

2.0 (Genecoepia), according to the manufactures’ protocol, in a Bio Rad CFX-384 

thermocycler using primers obtained from Integrated DNA Technologies (IDT) and 

RealTimerPrimers (RTP). β-Actin (IDT)- Forward: CAAACATGATCTGGGTCATCTTCT, 

Reverse: CAAACATGATCTGGGTCATCTTCT. β−2-Microglobulin (IDT)- Forward: 

TTCTGGCCTGGAGGCTATC, Reverse: TCAGGAAATTTGACTTTCCATTC. DUSP1 

(RTP)- Cat# VHPS-2768. DUSP6 (RTP)- Cat# VHPS-2780. The data was analyzed 

using ΔCt and ΔΔCt calculations and expression of all genes was normalized to β−2-

Microglobulin or β-actin expression as a housekeeping gene. Average fold change ±SEM, 

compared to control, was then calculated. Data analysis was performed using the CFX 

Maestro software (Bio-Rad).

6. Computational Characterization of Intrinsic Disorder

The master gene list was then analyzed by six per-residue predictors, such as PONDR® 

VLXT,[86] PONDR® FIT,[87] PONDR® VSL2,[88, 89] and PONDR® VL3,[90] available 

at http://www.pondr.com, and the IUPred computational platform that allows identification 

of either short or long regions of intrinsic disorder, IUPred-L and IUPred-S.[48, 49] The 

outputs of these tools are represented as real numbers between 1 (ideal prediction of 

disorder) and 0 (ideal prediction of order). A threshold of ≥0.5 was used to identify 

disordered residues and regions in query proteins. Mean disorder scores calculated by 

averaging the outputs of individual predictors together with the distribution of standard 

deviations are shown as well. For each query protein in this study, the predicted percentage 

of intrinsic disorder (PPID) was calculated based on the outputs of per-residue disorder 

predictors. Here, PPID in a query protein represents a percent of residues with disorder 

scores exceeding 0.5. Finally, the PPIDmean values calculated for each all proteins in this 

study were plotted against their PPIDPONDR-FIT values representing the PONDR® FIT-based 

percent of the predicted disordered residues.

Next, the outputs of two binary predictors, the charge-hydropathy (CH) plot[91, 92] and 

the cumulative distribution function (CDF) plot[92–94] were combined to conduct a CH-

CDF analysis.[94–97] In the CH-CDF plot, the x-axis separates proteins predicted by 

CH-plot to be intrinsically disordered (positive y values) or compact (negative y values), 

whereas the y-axis separates proteins predicted by CDF to be ordered (positive x values) 

or intrinsically disordered (negative x values). Proteins can be classified by their position 

within each quadrant of the resultant CH-CDF plot. Here, the lower-right quadrant (Q1) 

includes proteins predicted to be ordered by both CDF and CH, the lower-left quadrant 

(Q2) contains proteins predicted to be disordered by CDF but compact by CH-plot, the 

upper-left quadrant (Q3) contains proteins predicted to be disordered by both methods, and 
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the upper-right quadrant (Q4) contains proteins predicted to be disordered by CH-plot but 

ordered by CDF.

7. Animal Experiments

H1650 tumors were grown in mice and treated with vehicle or lapatinib using a previously 

published subcutaneous flank model.[46] Nu/Nu nude mice were purchased from Envigo. 

In brief, mice were injected subcutaneously on the flank with 3 million H1650 cells. Mice 

began treatment when tumors became palpable (2–3mm diameter). Mice were randomized 

and treated every day with vehicle control or 50mg/kg lapatinib until collection. Drugs 

were injected peritoneal. Drugs were dissolved in 0.1% Tween 20 with 5%DMSO in water. 

Tumors were collected when controls reached about 10mm X 10mm. Animals were housed 

in the University of South Florida comparative medicine facility at the Morsani College of 

Medicine and all protocols were reviewed and approved by the USF institutional animal care 

and use committee.

8. Statistics

Experiments have been repeated at least twice. The specific statistical test used for each 

experiment is described in the appropriate figure legend, * = p<0.05, ** = p<0.01, *** 

= P<0.001. Calculations were performed and graphs produced using Prism 6.0 software 

(GraphPad, California USA). Graphs of results show the mean and error bars depict the 

mean plus or minus the standard error of the mean.
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Abbreviations

ABL1 ABL Proto-Oncogene 1

ADRA1B Adrenoceptor Alpha 1B

AKT Serine-threonine protein kinase AKT1

ALK Anaplastic lymphoma kinase

ANOVA Analysis of variance

AHNAK2 AHNAK Nucleoprotein 2
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ATP Adenosine triphosphate

ATP5F1A ATP Synthase F1 Subunit Alpha

AXL AXL Receptor Tyrosine Kinase

BIM Bcl-2-like protein 11

BIRC3 Baculoviral IAP Repeat Containing 3

BMPR2 Bone Morphogenetic Protein Receptor Type 2

BRAF B-Raf Proto-Oncogene

DEGs Differentially Expressed Genes

DMSO Dimethyl sulfoxide

DUSP1 Dual specificity phosphatase 1

DUSP6 Dual specificity phosphatase 6

EGFR Epidermal growth factor Receptor

EIF5A Eukaryotic Translation Initiation Factor 5A

EIF4EBP1 Eukaryotic Translation Initiation Factor 4E Binding Protein 1

EMT Epithelial-mesenchymal transition

ERK Extracellular signal-regulated kinases

ERRFI1 ERBB Receptor Feedback Inhibitor 1

F2R Coagulation Factor II Thrombin Receptor

FBS Feta Bovine Serum

FGFR Fibroblast growth factor receptor

FGFR1 Fibroblast growth factor receptor 1

FGF2 Fibroblast growth factor 2

FOS Fos Proto-Oncogene, AP-1 Transcription Factor Subunit

FSTL1 Follistatin Like 1

GAB2 Growth Factor Receptor Bound Protein 2-Associated Protein 2

GATA6 GATA Binding Protein 6

GEO Gene Expression Omnibus database

HGF Hepatocyte Growth Factor

Hh Hedgehog
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HER2 Human Epidermal Growth Factor Receptor 2

HER3 Human Epidermal Growth Factor Receptor 3

HER4 Human Epidermal Growth Factor Receptor 4

IGF1R Insulin Like Growth Factor 2 Receptor

IPA Ingenuity Pathway Analysis

KRAS KRAS Proto-Oncogene

LYN Lck/Yes-Related Novel Protein Tyrosine Kinase

MAPK Mitogen-activated protein kinase

MAPK1 Mitogen-activated protein kinase 1

Mcl-1 Induced myeloid leukemia cell differentiation protein

MEK Mitogen-activated protein kinase kinase

MET c-Met proto-oncogene protein

mTOR Mammalian target of rapamycin

mTORC2 Mammalian target of rapamycin complex 2

Myc MYC Proto-Oncogene

NCBI National Center for Biotechnology Information

NF-κB Nuclear Factor kappa-light-chain-enhancer of activated B cells

NSCLC Non-small-cell lung carcinoma

OxPhos Oxidative phosphorylation

PI3K Phosphoinositide 3-kinase

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit 

alpha

PTEN Phosphatase and tensin homolog

RAF Rapidly Accelerated Fibrosarcoma kinase

RAS p21/Ras family small GTPase

RNASeq RNA sequencing

ROS Reactive oxygen species

SEMA3C Semaphorin 3C

SRC Proto-oncogene tyrosine-protein kinase Src
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STAT1 Signal transducer and activator of transcription 1

STAT3 Signal transducer and activator of transcription 3

TKI Tyrosine kinase inhibitor

VEGFR2 Vascular endothelial growth factor receptor 2

Wnt Proto-Oncogene Wnt-1
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Figure 1: Workflow for RNA-SEQ data analysis
Datasets were analyzed for differential gene expression using the indicated tools, which 

are available on Galaxy, an open-source web-based platform. The raw sequencing data was 

processed to remove any adaptor, PCR primers and low-quality transcripts using FASTQC 

and Trimmomatic. The samples were then aligned against human genome using HISAT2. 

Gene expression measurement was then performed from aligned reads using featureCounts. 

Differential gene expression was calculated using DESeq2.
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Figure 2: Comparison Analysis
IPA was used to identify the pathways that are affected by differentially expressed genes 

in each dataset. A comparison analysis was run to compare the obtained differential gene 

expression data from each dataset. Affected canonical pathways are sorted according to their 

average Z scores.
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Figure 3: Oxidative Phosphorylation
A) Expression levels of select genes involved in oxidative phosphorylation from each 

RNASeq dataset according to IPA. Fold change values were calculated against the control 

cells for each dataset. B) IPA generated network map showing known connections between 

genes involved in oxidative phosphorylation and those found in the RNASeq datasets with 

EGFR.
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Figure 4: Phospholipase Signaling
Expression levels of key phospholipases from each RNASeq dataset according to IPA. Fold 

change values were calculated against the control cells for each dataset. B) IPA generated 

network map showing known connections between phospholipases found in the RNASeq 

datasets with EGFR.
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Figure 5: Protein Array Analysis of a In Vivo Xenograft Tumor Model of EGFR TKI Resistance
Mice were inoculated with H1650 human lung cancer cells. Mice began treatment when 

tumors became palpable (2–3mm diameter) and were treated every day with vehicle control 

or 50mg/kg lapatinib. Protein was collected from H1650 tumors (N=5), samples were pooled 

equally, and the PhosphoExplorer antibody array was performed (Full Moon Biosystems). 

RFU for all significantly differently expressed proteins is shown (N=2). A 2-Way ANOVA 

and Bonferroni post hoc tests were used to determine significance. * = p<0.05, ** = p<0.01, 

*** = P<0.001.
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Figure 6: IPA Network Map of RNASeq and Protein Array Data
A) IPA generated network map showing known connections between the most common 

genes found in the RNASeq datasets and those found in the protein array with each 

other and EGFR. B) IPA generated network map showing known connections between 

the most common genes found in the RNASeq datasets and those found in the protein 

array with EGFR and known pathways in IPA for cellular signaling/ metabolic processes 

of interest. C) Gene expression in lapatinib and ketoconazole treated EGFR TKI tolerant 

cells compared to parental. H1975 cells were treated at seeding with 7.5μM lapatinib and/or 
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15μM ketoconazole for 72 hours. Average fold change ±SEM, compared to untreated, is 

shown (N=2). A 2-Way ANOVA and Uncorrected Fisher’s LSD post hoc tests were used to 

determine significance. * = p<0.05, ** = p<0.01.
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Figure 7: Differentially Expressed Genes Without Experimentally Validated Connections to the 
EGFR Pathway in the IPA Database
IPA generated gene map showing genes that were commonly up or down regulated in six 

or more datasets but have no known experimentally validated connections to the EGFR 

pathway in the IPA database.
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Figure 8: Global Intrinsic Disorder Analysis
A) Plot correlating the mean disorder propensity (MDP) and PONDR® FIT score for 

selected proteins based on the results of PONDR® FIT analyses. Dashed lines represent 

boundaries separating ordered (MDP < 10%, PONDR® FIT < 10%) and disordered proteins 

(MDP ≥ 30%, PONDR® FIT ≥ 30%). B) CH-CDF plot analysis of selected proteins. Q1 

(lower-right quadrant) – proteins predicted to be ordered by both predictors, Q2 (lower-left 

quadrant) – proteins predicted to be ordered by CH but disordered by CDF, Q3 (upper-left 

quadrant) – proteins predicted to be disordered by both predictors, and Q4 (upper-right 

quadrant) – proteins predicted to be disordered by CH and ordered by CDF.
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Figure 9: Intrinsic Disorder Analysis of Selected Proteins
Analysis of per-residue disorder distribution in selected proteins known to interact with 

EGFR. A. F2R (UniProt ID: P25116; PPID = 9.6%); B. DUSP1 (UniProt ID: P28562; 

PPID = 11.7%); C. FSTL1 (UniProt ID: Q12841; PPID = 12.6%); D. EIF5A (UniProt ID: 

P63241; PPID = 13.6%); E. DUSP6 (UniProt ID: Q16828; PPID = 17.3%); F. BIRC3 

(UniProt ID: Q13489; PPID = 17.5%); G. FGFR1 (UniProt ID: P11362; PPID = 24.5%); 

H. ADRA1B (UniProt ID: P35368; PPID = 34.2%); I. BMPR2 (UniProt ID: Q13873; 

PPID = 43.5%); J. ERRFI1 (UniProt ID: Q9UJM3; PPID = 58.0%); K. GAB2 (UniProt 

ID: Q9UQC2; PPID = 61.7%); L. FOS (UniProt ID: P01100; PPID = 67.6%); M. GATA6 

(UniProt ID: Q92908; PPID = 71.3%); N. EGR1 (UniProt ID: P18146; PPID = 85.8%). 

Disorder profiles were generated by DiSpi web crawler designed for the rapid prediction and 

comparison of protein disorder profiles. It aggregates the results from PONDR® VLXT (red 

lines),[86] PONDR® VL3 (green lines),[89] PONDR® VLS2B (blue lines),[90] PONDR® 

FIT (black lines),[87] IUPred2_Short (orange lines) and IUPred2_Long (pink lines).[98, 99] 

Mean disorder scores were calculated by averaging the outputs of individual predictors, 

and the corresponding distributions of standard deviations are shown by light gray shades. 

The outputs of the evaluation of the per-residue disorder propensity by these tools are 

represented as real numbers between 1 (ideal prediction of disorder) and 0 (ideal prediction 

of order). A threshold of ≥0.5 was used to identify disordered residues and regions in query 

proteins.
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Table 1:

EGFR TKI Resistant Datasets

Data Set 
138

Data Set 
235

Data Set 
340

Data Set 
440

Data Set 
539

Data Set 
636

Data Set 
736

Data Set 
836

Data Set 
936

Data Set 
1036

Accession GSE80802 GSE62118 GSE79688 GSE79688 GSE117610 GSE75602 GSE75602 GSE75602 GSE75602 GSE75602

CELLS 
LINE HCC4006 HCC827 HCC827 HCC4006 PC9 PC9 PC9 PC9 PC9 PC9

EGFR 
TKI Gefitinib Erlotinib Gefitinib Gefitinib Gefitinib Gefitinib Gefitinib Gefitinib Gefitinib Gefitinib

MAX [C] 100nM 2uM Up to 3uM Up to 3uM 50nM 1mM Not 
Specified

Not 
Specified

Not 
Specified

Not 
Specified

LENGTH 
OF TX 24 Hours 47 Days Not 

Specified
Not 

Specified 6 Days 24 Hours Not 
Specified

Not 
Specified 2 Weeks 2 Weeks

# of 
Samples 

(N)

Resistant 
(N=4)
Control 
(N=4)

Resistant 
(N=2)
Control 
(N=2)

Resistant 
(N=2)
Control 
(N=2)

Resistant 
(N=2)
Control 
(N=2)

Resistant 
(N=3)
Control 
(N=2)

Resistant 
(N=2)
Control 
(N=2)

Resistant 
(N=2)
Control 
(N=2)

Resistant 
(N=2)
Control 
(N=2)

Resistant 
(N=2)
Control 
(N=2)

Resistant 
(N=2)
Control 
(N=2)

# of 
DEGS

Up = 677
Down = 
868

Up = 
5,791
Down = 
6,161

Up = 689
Down = 
556

Up = 
4,859
Down = 
4,969

Up = 649
Down = 
1,233

Up = 
1,946
Down = 
2,477

Up = 
4,766
Down = 
4,646

Up = 850
Down = 
990

Up = 
1,501
Down = 
1,510

Up = 
2,217
Down = 
1,974

Raw RNA-SEQ datasets (.fasta files) were downloaded using the National Center for Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO) database. Data was originally obtained by authors of the referenced manuscripts. Each dataset contains .fasta files for control cells 
and EGFR TKI resistant cells. This table details available information about the EGFR TKI used to make the resistant cell line, length of EGFR 
TKI treatment used to confer resistance, and the max EGFR TKI concentration that resistant cells were exposed to in their growth media. DEGs – 
differentially expressed genes (p < 0.05); TX – treatment.
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Table 2:

Most Common DEGs

DEG Expression Pattern # Of Occurrences*

DHRS2 Down 9

DAB2 Up 8

DAPK1 Up 8

GPCPD1 Down 8

NR2F1 Down 8

RIMKLA Down 8

AHNAK2 Up 7

ATP10D Up 7

BIRC3 Up 7

CDK14 Up 7

CLU Up 7

CPM Up 7

CYP1B1 Up 7

EDIL3 Up 7

ERAP2 Up 7

FSTL1 Up 7

GABARAPL1 Up 7

GPRC5B Up 7

HEG1 Up 7

ITPR2 Up 7

MMP14 Up 7

PAWR Up 7

SPP1 Up 7

SQSTM1 Up 7

SYNPO Up 7

UGCG Up 7

ACOX2 Down 7

AGR2 Down 7

AK4 Down 7

ALDOA Down 7

C11orf86 Down 7

C9orf152 Down 7

CA9 Down 7

CAMK1D Down 7

CASC8 Down 7

CEACAM6 Down 7
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DEG Expression Pattern # Of Occurrences*

DNAH2 Down 7

EEPD1 Down 7

ELFN2 Down 7

EMP1 Down 7

EMP2 Down 7

ENTPD6 Down 7

F12 Down 7

FOS Down 7

GGCT Down 7

GJB2 Down 7

GRHL1 Down 7

IGFBP2 Down 7

KCNF1 Down 7

KLHDC7A Down 7

LOXL1 Down 7

PDK3 Down 7

RAB3D Down 7

RP11-466H18.1 Down 7

S100A14 Down 7

S100A9 Down 7

SPDEF Down 7

SPNS2 Down 7

SPRY1 Down 7

SULT1A2 Down 7

TGM2 Down 7

TMEM205 Down 7

TMX4 Down 7

WFDC2 Down 7

*
Genes were commonly up or down regulated in seven or more of the 10 datasets. DEGs – Differentially expressed genes.
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