Skip to main content
. 2023 Jun 2;17:1143422. doi: 10.3389/fnins.2023.1143422

Table 3.

Evaluation of different algorithms on retinal OCT classification.

Algorithm Acc Recall Specificity F1 AUC Parameters (M) Test time
ResNet50a(He et al., 2016) 0.941 0.941 0.9803 0.9411 0.9923 23.595 4.81 s±315 ms
InceptionV3a(Szegedy et al., 2016) 0.96 0.96 0.9867 0.9599 0.9947 21.811 4.78 s±277 ms
Xceptiona(Chollet, 2017) 0.95 0.95 0.9833 0.9501 0.9961 20.87 4.81 s±285 ms
EfficientNetV2B3a(Tan and Le, 2021) 0.928 0.928 0.976 0.9273 0.9929 12.937 5.39 s±204 ms
Huanga(Huang et al., 2019) 0.884 0.846 N/A N/A N/A N/A N/A
GABNeta 0.965 0.965 0.9883 0.965 0.9969 9.361 7.26 s±353 ms
FN-F1-OCTb(Ai et al., 2022) 0.985 0.985 0.995 0.985 0.99 99.717 18.1 s±831 ms
FN-Weight-OCTb(Ai et al., 2022) 0.984 0.984 0.995 0.984 0.99 99.717 15.6 s±419 ms
FN-Auto-OCTb(Ai et al., 2022) 0.987 0.987 0.996 0.987 0.991 99.774 15.8 s±451 ms
Kermanyb(Kermany et al., 2018) 0.961 0.961 0.987 0.961 0.99 N/A N/A
Hwangb(Hwang et al., 2019) 0.9693 N/A N/A N/A N/A N/A N/A
Sinhab(Sinha et al., 2023) 0.944 0.944 0.9815 0.9448 N/A N/A N/A
EfficientNetV2B3+GABb 0.978 0.978 0.9927 0.9781 0.9983 18.281 5.53 s± 94.5 ms
Xception+GABb 0.99 0.99 0.9967 0.99 0.9994 30.354 4.88 s±240 ms
a

Non-transfer learning methods.

b

Transfer learning methods.

Value in bold means the best of the same class.

“N/A” Means that the metric was not displayed in the comparison article.