Table 3.
Algorithm | Acc | Recall | Specificity | F1 | AUC | Parameters (M) | Test time |
---|---|---|---|---|---|---|---|
ResNet50a(He et al., 2016) | 0.941 | 0.941 | 0.9803 | 0.9411 | 0.9923 | 23.595 | 4.81 s±315 ms |
InceptionV3a(Szegedy et al., 2016) | 0.96 | 0.96 | 0.9867 | 0.9599 | 0.9947 | 21.811 | 4.78 s±277 ms |
Xceptiona(Chollet, 2017) | 0.95 | 0.95 | 0.9833 | 0.9501 | 0.9961 | 20.87 | 4.81 s±285 ms |
EfficientNetV2B3a(Tan and Le, 2021) | 0.928 | 0.928 | 0.976 | 0.9273 | 0.9929 | 12.937 | 5.39 s±204 ms |
Huanga(Huang et al., 2019) | 0.884 | 0.846 | N/A | N/A | N/A | N/A | N/A |
GABNeta | 0.965 | 0.965 | 0.9883 | 0.965 | 0.9969 | 9.361 | 7.26 s±353 ms |
FN-F1-OCTb(Ai et al., 2022) | 0.985 | 0.985 | 0.995 | 0.985 | 0.99 | 99.717 | 18.1 s±831 ms |
FN-Weight-OCTb(Ai et al., 2022) | 0.984 | 0.984 | 0.995 | 0.984 | 0.99 | 99.717 | 15.6 s±419 ms |
FN-Auto-OCTb(Ai et al., 2022) | 0.987 | 0.987 | 0.996 | 0.987 | 0.991 | 99.774 | 15.8 s±451 ms |
Kermanyb(Kermany et al., 2018) | 0.961 | 0.961 | 0.987 | 0.961 | 0.99 | N/A | N/A |
Hwangb(Hwang et al., 2019) | 0.9693 | N/A | N/A | N/A | N/A | N/A | N/A |
Sinhab(Sinha et al., 2023) | 0.944 | 0.944 | 0.9815 | 0.9448 | N/A | N/A | N/A |
EfficientNetV2B3+GABb | 0.978 | 0.978 | 0.9927 | 0.9781 | 0.9983 | 18.281 | 5.53 s± 94.5 ms |
Xception+GABb | 0.99 | 0.99 | 0.9967 | 0.99 | 0.9994 | 30.354 | 4.88 s±240 ms |
Non-transfer learning methods.
Transfer learning methods.
Value in bold means the best of the same class.
“N/A” Means that the metric was not displayed in the comparison article.