Skip to main content
. 2023 Jun 2;17:1143422. doi: 10.3389/fnins.2023.1143422

Table 5.

Evaluation of DR classification algorithms on fundus photograph dataset.

Classification algorithm Transfer learning Attention mechanism Acc Recall Specificity F1 AUC
VGG19 (Wu and Hu, 2019) - - 0.51 N/A N/A N/A N/A
ResNet50 (Wu and Hu, 2019) - - 0.49 N/A N/A N/A N/A
Inception V3 (Wu and Hu, 2019) - - 0.61 N/A N/A N/A N/A
DR-IIXRN (Ai et al., 2021) - - 0.793 0.7933 0.8778 0.7602 0.7602
Xception NO NO 0.7479 0.7479 0.8307 0.6808 0.7307
YES NO 0.7901 0.7901 0.8767 0.7539 0.8093
YES YES 0.7939 0.7939 0.8711 0.7487 0.7942
EfficientNetV2B3 NO NO 0.7358 0.7358 0.8271 0.6628 0.7127
YES NO 0.797 0.797 0.8776 0.7555 0.8025
YES YES 0.804 0.804 0.8831 0.7653 0.8109
GABNet - NO 0.6877 0.6876 0.807 0.6242 0.5987
- YES 0.7607 0.7607 0.8398 0.6954 0.743

Value in bold means the best of the same class.

“N/A” Means that the metric was not displayed in the comparison article.

“-” Means that the algorithm does not have this feature or property.