Skip to main content
. 2023 Jun 2;13:1187831. doi: 10.3389/fcimb.2023.1187831

Table 3.

Substances secreted by bacteria and their influence on fungi.

Invasive fungi Produced by bacteria Mechanism of action Functional effect References
Pseudomonas aeruginosa Candida albicans Phenazine Oxidative activity, intracellular ROS production increased, mitochondrial membrane hyperpolarized, affect C. albicans respiration, apoptosis. Inhibit metabolism and biofilm formation (Gibson et al., 2009; Tupe et al., 2015)
Lipopolysaccharide LPS up-regulated the expression of transcription factor EFG1 in C.albicans biofilm, increased glycolysis and inhibited Candida hyphae-specific genes (HSGs) Alter gene expression during biofilm formation and inhibit hyphal formation (Bandara et al., 2013)
Secretory lysophospholipase C Degraded phosphatidylcholine (phospholipids abundant in eukaryotes) The death of the fungal cell (Hogan and Kolter, 2002)
Acyl homoserine lactones (AHLs) Inhibit the Ras1–cAMP–PKA pathway for hyphal growth in C. albicans Inhibit virulence (Davis-Hanna et al., 2008)
Cryptococcus neoformans Pyocyanine、2-heptyl-3,4-dihydroxyquinoline (PQS) Pseudomonas aeruginosa contacts C.neoformans, and antifungal molecules play a role Inhibit growth (Rella et al., 2012)
Aspergillus fumigatus Pyocyanine Chelated iron, deprived of A.fumigatus necessary nutrition for growth and metabolism Inhibit virulence (Mowat et al., 2010)
Staphylococcus Candida albicans Inhibit biofilm formation (Adam et al., 2002)
Cryptococcus neoformans Staphylococcus aureus attached to cryptococcus capsulatus, mitochondrial pathway was enhanced, and cells died. Apoptotic cell death (Ikeda et al., 2007)
Aspergillus fumigatus Fungal growth may be significantly limited by intercellular contact and synthesis of bacterial products Inhibit growth, conidia, hypha and biofilm formation (Ramírez-Granillo et al., 2021)
Bacillus Candida albicans Lipopeptide Biosurfactant properties, reduced the mRNA expression of hypha-specific genes HWP1 and ALS3 Inhibit biofilm formation (Ceresa et al., 2016; Janek et al., 2020)
Cryptococcus neoformans Chitinase
Laccase
Reduce the structural stability of cell wall to inhibit capsule formation; Inhibit melanin formation Inhibit biofilm formation and virulence factor production (Farrer et al., 2018; Upadhya et al., 2018)
Aspergillus fumigatus Inhibit the gene expression related to hyphae Inhibit hyphae formation (Benoit et al., 2015)
Enterococcus faecalis Candida albicans Bacteriocin Entv Regulate that Frs system of Candida, secreting GelE, SprE and some extracellular protease Inhibit the formation of hyphae and biofilm, inhibit virulence (Cruz et al., 2013)
Lactobacillus Candida albicans Short-chain fatty acid
Lactic acid
Inhibit the expression of C. albicans HWP1 gene, reduce the adhesion and the stability of biofilm structure Inhibit virulence and hyphae formation (Noverr and Huffnagle, 2004; Jang et al., 2019)
Cryptococcus neoformans Sodium butyrate Inhibit the formation of capsule and melanin Inhibit growth and enhance macrophages (Hoberg et al., 1983)
Escherichia coli Candida albicans Lipopolysaccharide Modulate biofilm
formation
(Bandara et al., 2010)
Aspergillus fumigatus Cytosolic proteins Inhibit the development of conidia and cause hyphal atrophy Inhibit growth (Balhara et al., 2014)
Acinetobacter baumannii Candida albicans Outermembrane protein A(OmpA) OmpA Attaches A. baumannii to C.albicans Filament Inhibit hyphae and biofilm formation (Brossard and Campagnari, 2012)
Serratia marcescens Candida albicans Glycolipid Biosurfactant properties, anti-adhesion Inhibit biofilm formation (Dusane et al., 2011)

“-” No detailed reports at the time of review