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Abstract: BackgroundBackground: Technological advancements in deep brain stimulation (DBS) require methodological
changes in programming. Fractionalization poses significant practical challenges for the most common
approach for assessing DBS efficacy, monopolar review (MR).
ObjectivesObjectives: Two DBS programming methods: MR and fixed parameter vertical and horizontal fractionalization
(FPF) were compared.
MethodsMethods: A two-phase process of vertical and horizontal FPF was performed. MR was conducted thereafter.
After a short wash-out period, both optimal configurations determined by MR and FPF were tested in a double-
blind randomized manner.
ResultsResults: Seven PD patients were enrolled, providing 11 hemispheres to compare the two conditions. In all
subjects, the blinded examiner selected a directional or fractionalization configuration. There was no significant
difference in clinical benefits between MR and FPF. FPF was the preferred method for initial programming as
selected by subject and clinician.
ConclusionsConclusions: FPF programming is a viable and efficient methodology that may be incorporated into clinical
practice.

The established approach to deep brain stimulation (DBS) initial
programming involves a monopolar review (MR) of all
contacts.1–3 With the introduction of segmented (directional)
contacts, programming has become more complex. Although
these technological innovations have resulted in improved clini-
cal outcomes, exploring the therapeutic window for all contacts
is increasingly more time consuming.4 Many DBS centers are
attempting to improve programming efficiency and individualiz-
ing DBS therapy to patients’ symptoms by incorporating new
technologies, such as multiple independent current control
(MICC).5,6 Novel methods for performing initial programming
that account for the increased number of contacts are under
investigation.4 In this form of programming, each contact is
tested with the same pre-determined and fixed parameters and
stimulation is fractionalized along the electrode, that is, a single
parameter with fractionalization (FPF). In this double-blind

study, we compared traditional MR and FPF in terms of clinical
efficacy, side effects, and volume of tissue activated (VTA) at ini-
tial programming in PD patients who underwent bilateral sub-
thalamic nucleus (STN) DBS.

Methods
Subject Selection
Informed, written consent was obtained from all subjects and
approved by Colorado Multiple Institutional Review Board
(COMIRB; 20-0232). Subjects were recruited from the Univer-
sity of Colorado Anschutz Medical Campus, DBS Program.
Inclusion criteria were the following: PD diagnosis, recruited
prior to implant surgery, implanted DBS system-Boston
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Scientific Vercise Gevia™ DBS System (includes Vercise Car-
tesia™ DB-2202-45 lead and Vercise Gevia™ rechargeable
implanted pulse generator), prominent motor manifestation of
rigidity.

Study Protocol
All subjects underwent bilateral STN-DBS surgery.7–9 The study
occurred at the initial programming sessions and subjects with-
held dopaminergic medication at least 12 hours prior to visit.
One hemisphere was tested per study visit. For subjects in which
both hemispheres were tested, programming sessions were sepa-
rated by at least 48 hours and therapeutic stimulation was with-
held between sessions. The experimental session was conducted
in the following steps: (1) double-blinded assessment of vertical
FPF contact arrangements in randomized order, (2) double-
blinded, randomized assessment of horizontal FPF as determined
by the optimal level(s) obtained in step 1, (3) traditional MR,
(4) double-blinded comparison of FPF and MR contact configu-
rations identified from steps 1–3. To ensure a carryover effect
did not occur between programming settings, the examiner
determined that the subject returned to clinical baseline between
tests. All FPF programming was performed with the following
parameters: amplitude = 2.0 mA, pulse width = 60 μs, and
frequency = 130 Hz. All side effects were recorded including
transient (those that resolved within 1 minute) and persistent
(those that lasted >1 minute or were discomforting). For both
horizontal and vertical FPF conditions, the predetermined sets of
percent of stimulation allocated to contacts was selected to result
in a great enough change of the stimulation vector that would
be clinically observed and to permit efficient programming
time.6

During MR, amplitude was adjusted while pulse width
(60 μs) and frequency (130 Hz) where held constant.2,3 The four
levels were tested with the middle two levels tested in ring
mode. If the ideal level based upon side effects and clinical bene-
fit of rigidity identified was the middle two levels, then the seg-
ments of this level were independently tested. Thereafter, all
tested conditions, were ranked based upon side effects and clini-
cal benefit providing the optimal MR setting.

In the final comparison between FPF and MR, the examiner
was not present during the stimulation ramp-up phase to ensure
the blind. Following a � 2-minute wash-in phase, the examiner
would perform a unilateral MDS-UPDRS of the following
items: wrist, elbow, ankle and knee rigidity (item 3.3),
bradykinesia (items 3.4, 3.5, 3.6, 3.7, 3.8) and tremor (items
3.15, 3.16, 3.17, and 3.18). Upon completion the subject and
examiner ranked the test preference independently.

Volume of Tissue Activation
Analysis
Reconstruction of the volume of tissue activation (VTA) for
each stimulation condition was conducted using LeadDBS
v2.515.10 For each hemisphere, the FastField stimulation model

within LeadDBS was used to simulate the optimal FPF and MR
VTAs. To quantify the difference in percent overlap with STN
between each of the two VTA conditions, we used the Accolla
et al., STN atlas within LeadDBS, to visualize the tripartite func-
tional divisions of the STN.11 To compute volume of overlap,
we used an additional custom Matlab script that incorporated
mesh and polygon specific functions from the geom3D tool-
box.12 This technique was applied to compute the percent of
voxel overlay of each individual VTA and the brain area of inter-
est related to the respective stimulation parameters.

Statistics
A paired t-test assessed the mean amplitude difference between
MR and FPF conditions. A paired t-test assessed the mean differ-
ence in abbreviated MDS-UPDRS III scores between the condi-
tions. A one-way ANOVA assessed the mean difference in
abbreviated MDS-UPDRS III sub scores between conditions
using Tukey’s Honestly Significant Difference. Pair-wise com-
parisons were computed for each sub score. A one-way ANOVA
assessed the mean difference in condition generated VTA overlap
with STN subregion between the conditions. Pair-wise compari-
sons were computed for each STN subregion using Tukey’s
Honestly Significant Difference. A chi-square test of indepen-
dence assessed whether the fraction of clinician or subject pre-
ferred selected configurations was greater for one of the
programming conditions. The values P < 0.05 were considered
statistically significant. Statistical analyses were conducted using
both Matlab (v2022a) and Jamovi (v2.2.5; https://www.jamovi.
org/).

Results
Seven PD patients (F = 2/7) participated. Three subjects had
minimal rigidity and tremor on one side of their body and thus
analysis was only performed on the more affected side. Conse-
quently, a total of 11 hemispheres were analyzed. Table S1 sup-
plemental provides the demographics of the subjects. On
average, the first study session was conducted 23 days post-
surgery (median; IQR = 8), starting with the left hemisphere in
6/7 subjects. Four subjects were investigated on both hemi-
spheres, 2 subjects right only, 1 subject left hemisphere alone. To
compare efficacy between contact configurations, we first
assessed current delivered, which was non-significant between
MR and FPF conditions (t = 1.04 (10), P = 0.32,
SFP = 2.42 mA (� 1.04), MR = 2.26 (� 0.66); Fig 1A).

There was no significant difference in unilateral MDS-
UPDRS overall scores between MR and FPF (t = 0.12 (10),
P = 0.907, SFP = 10.6 (� 4.57), MR = 10.5 (� 3.39); Fig 1B)
and no significant effect of subscore analysis performed by an
ANOVA (F = 0.123 (2,65), P = 0.884; Fig 1C). The examiner
preference was based on clinical features extrapolated from the
MDS-UPDRS, whereas the subject preference may have
included subjective experience. For the examiner, a greater num-
ber of FPF configurations were selected in comparison to MR
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across hemispheres (FPF = 7/MR = 4; X2 = 0.818, df = 1, P-
value = 0.3657); similarly for the subject, a greater number of
FPF configurations were selected over MR (FPF = 7/MR = 2;
X2 = 2.77, df = 1, P-value = 0.095). In no condition did the
examiner select a ring configuration (eg, 2–3-4-) (Table 1).

Finally, we compared the estimated VTA as a percentage of
the functional sub-regions of STN (Fig. 1D). An ANOVA com-
paring percentage of VTA overlap for each of the three func-
tional sub-regions of STN by condition found no significant
effect (F = 0.259 (2,48), P = 0.772; Fig 1E).

Discussion
Overall, the acute outcomes were comparable between MR
and FPF. MDS-UPDRS analysis for unilateral overall signs and
sub scores were equivalent within patient and across patients.
The greatest benefit was in rigidity for both methods consistent
with known benefits of STN DBS.13,14 Interestingly, in evalu-
ating patient and clinician preferences there was a greater

selection for the FPF settings, patient preference 7/9 and clini-
cian preference 7/11. Furthermore, there was agreement as to
the optimal programming settings between the subject and cli-
nician in 7 of 9 test conditions. The instances when there was
not agreement were due to subjective sensations of the patient
that the examiner was not privileged to observe or discuss. In
clinical practice, these subjective assessments would have been
evaluated and further adjustments to stimulation would have
been made.

In 10 of 11 conditions, the contact selected by MR was at the
same level as the FPF, vertical fractionalization in one, horizontal
fractionalization in two, and combination of vertical and hori-
zontal fractionalization in seven conditions. This is remarkable
given that 25 test conditions were evaluated in the FPF method-
ology. The overlap is additionally exemplified in the VTA analy-
sis. Furthermore, in none of the test conditions did the examiner
select a single level (eg, ring 2-3-4-) with 100% cathodic stimula-
tion. Although the clinical benefits of directionality defined as
cathodic stimulation of a single segmental contact has been well
reported, the applicability of fractionalization has had minimal
investigations.2,5,6,15–23

FIG. 1. Summary of data of MR to FPF.
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The strengths of the study included that FPF was performed
in a blinded and randomized manner for each parameter adjust-
ment. Furthermore, allotted time was permitted to ensure an
adequate washout period. It may take minutes upon cessation of
stimulation for the individual to return to baseline rigidity.13,14

Without allowing for the subject to return to baseline, the subse-
quently assessment may have a carry-over effect. While FPF pro-
gramming as performed in this study was conducted to prevent
unwanted bias essential for interpretation of results, this method-
ology was time consuming. As we demonstrated that FPF is at
least as effective to MR, a modification of this form of program-
ming may be employed to improve time efficiency.4

Limitations include that the amplitude of stimulation had to
be adjusted, which was anticipated per the protocol. In three of
eleven test conditions the stimulation had to be reduced due to
unwanted side effects, while in six of the eleven the stimulation
had to be increased to appreciate a distinction in clinical out-
comes. Additionally, the long-term outcomes of FPF were not
evaluated, which could include effects of mood that may not be
appreciated in the acute setting. Finally, the maximum amplitude
to induce side effects was not evaluated with FPF.

In this study, FPF has equivalent benefit to that of
MR. Furthermore, there appeared to be a preference for frac-
tionalized stimulation based upon subject and clinician blinded
preference. Although FPF programming as tested in the most
rigorous manner in this study demonstrated clear benefits, opti-
mal programming may best be performed by incorporating a
combination of FPF and MR.
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TABLE 1 Summary of optimal MR and FPF stimulation conditions

Sub #
Hemisphere MR FPF

Levels
MRjFPF
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