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Abstract: The increasing availability of molecular genetic testing has changed the landscape of both genetic
research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating
but also the phenotypic spectra associated with previously known genes are expanding. These advancements
lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and
genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the
characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition
of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to
early and correct diagnosis and assist the development of future personalized medicine for patients with these
disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that
are commonly seen in Asia, including Wilson’s disease, spinocerebellar ataxias (SCA) types 12, 31, and
36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear
inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen
worldwide with specific mutations or presentations that occur frequently in Asians.

Starting in the 1980s, advancements in genomics technologies
have resulted in the discovery of genetic factors underlying
many rare and non-rare diseases among different populations.1

Genetic diseases often cluster in different ethnic groups with
unique clinical presentations or red flags. Recognition of a
particular clinical phenotype, combined with information
about the ethnic origin of the patients, could lead to an early
and correct diagnosis.

There have been a few studies showing differences in both
the clinical phenotypes and genetic causes or risk factors of
movement disorders between Asian and Western patients.2 Some
of the disorders may be more common in some populations, or
it may be just a specific genetic variant that is more common.

In this article, we review the genetic movement disorders
that are considered to be commonly seen in Asians. We also
include disorders that are commonly seen worldwide with
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certain specific variants or presentations occurring frequently in
Asians.

Methodology
We searched PubMed from 1969 through March 31, 2022 and
used references from relevant articles. Search terms included
“Parkinson’s disease” (PD), “parkinsonism”, “ataxia”, “dystonia”,
“chorea”, “tremor”, “myoclonus”, “movement disorders”, and
“Creutzfeldt-Jakob” with “Asians” or “Asia” without language
restrictions. From the search, it was found that comprehensive epi-
demiological data for non-PD movement disorders in Asia were
largely lacking. Hence, the disorders nominated to be included in
this review had to be derived by consensus among experts who are
members of the Movement Disorders in Asia Task Force (TF) of
the International Parkinson and Movement Disorder Society—
Asian and Oceanian Section (MDS-AOS). This group comprised
representatives from most of the major regions in Asia: East Asia
(China, Japan, Taiwan, South Korea), the Indian subcontinent
(India), South-East Asia (Thailand, Malaysia, the Philippines), Cen-
tral Asia (Kyrgyzstan), and the Middle East (Saudi Arabia). Based on
their knowledge of the published literature and clinical practice
experience, genetic disorders that are widely accepted to be com-
mon in Asia, or have been more frequently reported in these
populations, were selected. The final reference list was generated by
giving priority to the articles directly related to the topic, articles
with the latest information, and comprehensive reviews.

Result
A total of 14 genetic movement disorders were found to be common
in Asians: Wilson’s disease (WD), spinocerebellar ataxias (SCA) types
12, 31, and 36, Gerstmann-Sträussler-Scheinker disease (GSS),
PLA2G6-related parkinsonism, adult-onset neuronal intranuclear
inclusion disease (NIID), paroxysmal kinesigenic dyskinesia (PKD), X-
linked dystonia-parkinsonism (XDP), dentatorubral-pallidoluysian
atrophy (DRPLA), Woodhouse-Sakati syndrome, benign adult famil-
ial myoclonic epilepsy (BAFME), Kufor-Rakeb disease, and tremu-
lous dystonia associated with variant of the calmodulin-binding
transcription activator 2 (CAMTA2) gene. The latter six conditions
have previously been reviewed by the TF (submitted). In this study,
we will focus on the first eight disorders listed above. We also discuss
the unique presentation of parkinsonism in Asian patients with SCA2
and SCA17, highlight the common genetic variants in PD-causative
genes in Asian patients, and discuss the differences between Asian and
Western patients for all the disorders where possible. Key differences
in the prevalence, risk factors, and clinical aspects of PD between
Asians and Western patients have been previously reviewed.2

Wilson’s Disease
WD is an autosomal recessive (AR) disorder of copper metabolism
caused by variants in the ATP7B gene on chromosome 13.3

Prevalence studies in Asian countries have been done in Chinese
(5.9/100,000),4 Korean (3.8/100,000; allelic variants-1.3/10,000),5

Japanese (1:20,000 to 1:30,000; allelic variants-1.2/10,000)6 and
Taiwanese (1.8/100,000) populations.7 The disease appears to be
especially commonly encountered by physicians in India. WD
affected 7.6% of patients in a study of hepatobiliary-spectrum dis-
orders in North India and about 15–20 new cases are registered
annually in a WD clinic in South India.8,9 These relatively large
numbers of patients are postulated to be due in part to high rates
of consanguinity8; however, systematic epidemiological studies
remain lacking.

The clinical presentation of WD is heterogeneous, ranging
from asymptomatic to acute or chronic liver involvement and
neuropsychiatric illnesses.10 Previous studies reported that the age
of onset in Indian patients may be earlier compared to those
from Europe and South America.11,12

Hepatic presentations are common in younger age groups and
neuropsychiatric features predominate in later-onset cases
(Video 1).10 Large cohort studies from Asia, including India, Korea
and China, on WD clinical features, show that neuropsychiatric
presentations account for 22–77% of the studied populations.13–15

Kayser–Fleischer rings are reported in 97–100% of neurological
cases, 14–87% of hepatic presentations and up to 60% of asymp-
tomatic patients, in the Indian population.9 Magnetic resonance
imaging (MRI) of the brain is a cornerstone for the diagnosis and
monitoring of neurological forms of WD.16 A study in 100 Indian
patients showed a variety of MRI features: classical T2-weighted
hyperintensity in the putamen (72%), caudate (61%), thalamus
(58%) and/or midbrain (49%); T2-weighted pallidal hypointensity
(34%); “face of the giant panda” sign (12%); central pontine
myelinolysis (7%); T1-weighted striatal hyperintensity (6%); and
bright claustral sign (4%) (Fig. 1).17 Sequential MRI study

Video 1. Wilson’s Disease. A 33-year-old man with a seven-year
history of tremulousness involving bilateral upper limbs and
head. He has a past history of jaundice and upper
gastrointestinal bleeding. There is a family history of severe
liver dysfunction and subsequent demise of his sister. The
video shows severe rest and postural tremor of both upper
limbs (right more than left) as well as dystonia of the limbs
when outstretched. The tremor is a Holmes tremor and is of
“wing-beating” type. Courtesy: Prof. Pramod Kumar Pal.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.13737
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demonstrated imaging improvement in up to 70% of patients after
copper-chelating therapy.18

The diagnosis of neurologic WD is usually based on clini-
cal presentation, biochemical evaluation, and brain imaging,
but sometimes needs genetic confirmation. Variant “hot-
spots” in ATP7B have been reported to vary by geographic
region (Table S1).19 The p.R778L variant is common in East
Asians (30% in China,20 40% in Taiwan21 and Korea22) with
patients having an earlier onset and predominantly hepatic
presentation than those with other genetic variants.23 The
p.P992L variant is the second most common variant in East
Asians with a variant frequency of 14.6% in Chinese WD
patients.20 However, no single mutation appears to be domi-
nant in India.17 In contrast, the p.H1069Q variant has an
allelic frequency of 30–70% among Caucasians but is rare in
Asians. Most carriers with the p.H1069Q variant have a
mean onset age of 20–22 years and a predominantly neuro-
logical phenotype.24 Singh et al. in India have further noted

hepatosplenomegaly and extrapyramidal features like bradykinesia,
rigidity and dystonia to be associated with truncating variants, and
tremors with missense variants.25

A large Indian cohort showed improvement in clinical symp-
toms in 76% (176/225) of patients after a mean duration of
46 months of treatment (Video 2).13 Treatment response and
longitudinal tracking can be best done with the Global Assess-
ment Scale (GAS) for WD.26

Spinocerebellar Ataxia Type 12;
SCA-PPP2R2B
SCA12 is a rare autosomal dominant cerebellar ataxia (ADCA)
characterized by CAG trinucleotide repeat expansions in the 50

region of the PPP2R2B gene on chromosome 5q31–5q32,
which encodes for a brain-specific regulatory subunit of the pro-
tein phosphatase PP2A.27,28

FIG. 1. Wilson’s disease. Brain MRI T2-weighted images demonstrating the classic “double panda” sign: (A) Giant panda sign (B) Miniature
panda. (C) Kayser-Fleischer (KF) ring which occurs due to deposition of copper in Descemet’s membrane. (D) Classic Wilson’s face is
shown which is characterized by a facetious smile, pseudo-laughter, open mouth, dull look, and staring expression in variable
combinations. Courtesy: Prof. Pramod Kumar Pal.

880 MOVEMENT DISORDERS CLINICAL PRACTICE 2023; 10(6): 878–895. doi: 10.1002/mdc3.13737

REVIEW COMMON GENETIC MOVEMENT DISORDERS IN ASIA



The gene was first identified in 1999 in a large German kin-
dred.27 Following the discovery, a study in North India involv-
ing 77 families with ADCA phenotype found that SCA12
variants accounted for approximately 7% of the cohort (six
patients from five families), and was the third most prevalent
SCA, after SCA1 and SCA2.29 The same group subsequently
reported 15 new families.30 The mean onset age was in the
fourth decade, ranging from 26–56 years.30 These families were
from an endogamous population (Agarwal community) originat-
ing from Haryana, a Northern Indian region, suggesting a com-
mon founder. The mean CAG repeat length in PPP2R2B in the
expanded allele was 53.3 � 6.1 (40–72) with no correlation
between the CAG repeat size and the age at symptom onset.31

Overall, SCA12 accounts for around 16% of ADCA in Northern
India, which is considerably higher compared to series from
other populations.30,32

Apart from Northern Indian cases, few SCA12 cases have
been reported from elsewhere.33–35 A study among 120 French
and 27 Indian families with ADCA without common variants
identified one Indian family with SCA12, but none in the
French families.36 In other Asian populations, none of 82 index
patients from Thailand,33 1 of 430 ADCA families from China,34

and 1 of 204 ataxic patients from Singapore had SCA12.35

The most common clinical presentations of SCA12 are upper
extremity action tremor and gait ataxia (Video 3), followed by
varied features including pyramidal dysfunction (hyperreflexia
and positive Babinski sign), parkinsonism, dystonia, and cognitive
decline.31,32,37 Brain MRI usually reveals mild to moderate atro-
phy of the cerebellum, with more severe atrophy in the vermis
compared to the cerebellar hemispheres, as well as in the cerebral
cortex with or without subcortical white matter changes.37

The diagnosis of SCA12 requires genetic analysis. Since the
majority of patients present with upper extremity action tremor
and variable degrees of ataxia, SCA12 should be carefully

differentiated from essential tremor (ET) and other late-onset
tremor-ataxia syndromes, for example, Fragile X-associated
tremor ataxia syndrome (FXTAS).37 There is no disease-
modifying treatment available for SCA12, but beta-blockers or
GABAergic medications are used for symptomatic relief of the
upper limb action tremor.

Spinocerebellar Ataxia Type 31;
SCA-BEAN1
SCA31, caused by a large insertion containing pentanucleotide
repeats (TGGAA)n in overlapping introns of the BEAN1 and
TK2 genes, is largely restricted to the Nagano district of Japan
where it accounts for approximately 42% of ADCA, with a
strong founder effect.38–41 The abnormal repeat insertion forms
abnormal RNA structures, called RNA foci, preferentially in the
nuclei of Purkinje cells in affected patients.38 The length of the
SCA31 repeat insertion correlates inversely with the age of onset
and shows a pattern of genetic anticipation.

The prevalence of SCA31 ranges between 8–17% of ADCA
in other parts of Japan.40,42,43 It is rare or absent outside Japan
with only one case reported so far in a Chinese patient.44,45 The
clinical phenotype of SCA31 is one of late-onset and relatively
pure cerebellar ataxia. A natural history study prospectively
enrolling 44 patients with genetically-proven SCA31 showed
that the patients developed ataxic symptoms at the age of 58.5 �
10.3 years, were confined to wheelchair at 79.4 � 1.7 years, and

Video 2. Wilson’s disease, pre- and post-treatment. Segment 1:
Shows a child with Wilson’s disease who is confined to the bed
and anarthric with generalized choreo-dystonic movements.
Segment 2: The same child after initiation of decoppering
therapy shows significant improvement, with ability to speak
and walk independently. Some residual generalized chorea and
dystonic features are still noted. Courtesy: Dr. Prashanth
Lingappa Kukkle.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.13737

Video 3. Spinocerebellar Ataxia Type 12; SCA-PPP2R2B. A 48-
year-old man with an eight-year history of shaking of the hands
and gait imbalance, with a diagnosis of SCA12. The video
shows a coarse amplitude postural tremor of both upper limbs
(right more than left) when these are held in front of the chest
with shoulders abducted and elbows flexed, rest tremor of the
left fourth and fifth fingers, mild head tremor, mild dystonia of
the hands (spooning), finger-nose-incoordination especially on
the left side, inability to perform tandem walking, and
tremulousness of both lower limbs while walking. Courtesy:
Prof. Pramod Kumar Pal.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.13737
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died at 88.5 � 0.7 years.42 As with other SCAs, therapy is
supportive.

Spinocerebellar Ataxia Type 36;
SCA-NOP56
SCA36, another SCA that is rather specifically connected to Asia,
is a slowly progressive late-onset autosomal dominantly
(AD) inherited disease that is caused by a hexanucleotide repeat
expansion in NOP56.46–48 This gene encodes a nucleolar protein
56 which is involved in ribosomal RNA methylation and pre-
rRNA processing.49 This ataxic syndrome was first described in
two Japanese patients,50 and later from the Galicia region in
Northwestern Spain.47 SCA36 is now reported worldwide, but
most cases are found in Western Japan and Spain.51 In Western
Japan, SCA36 was initially named “Asidan” ataxia as many
patients with SCA36 lived in the Chugoku region near the Asida
river,46 while in Spain, SCA36 was named “Costa de Morte
ataxia”.47 SCA36 is the most frequent spinocerebellar ataxia in
the Galicia region, representing 6.3% of adult-onset ataxia,
followed by SCA2 (4.4%), SCA1 (1.9%), SCA3 (1.9%), and
SCA7 (1.3%).47 In Japan, the prevalence of SCA36 is lower than
other SCA subtypes and represents 0.6–3.6% of adult-onset
ataxia.52 SCA36 was reported to contribute to 3% of Italian fam-
ilies with ADCA without one of the commonly-tested SCAs.
Otherwise, SCA36 does not appear to be common in other
Asian countries, eg, 0.6% (3/512) of SCA patients in Taiwan,53

or other world regions, including Greece (none in 98 index
patients) and the USA (0.7%, 4/577),54,55 although cases could
also be underdiagnosed since this form of ataxia is currently not
included in most genetic ataxia panels.

SCA36 is characterized by a late-onset cerebellar ataxia with a
mean onset age in the fourth-to-fifth decades, combined with signs
of lingual atrophy and fasciculations, and sensorineural hearing
loss.46,47 Notably, even though lingual atrophy is prominent in the
later stage of the disease, dysphagia is rarely present.52 Mild cognitive
impairment of a fronto-subcortical pattern has been reported in
patients with SCA36.47 Brain MRI findings range from mild cerebel-
lar vermis atrophy to diffuse cerebellar atrophy. Fluorodeoxyglucose-
positron emission tomography (FDG-PET) scan can show
hypometabolism in the vermis and cerebellar hemispheres.56

The treatment for SCA36 remains supportive, including speech
therapy and communication devices for those with dysarthria.

Gerstmann-Sträussler-Scheinker
Disease
GSS is an extremely rare, AD-inherited disease, caused by patho-
genic variants in the prion protein (PRNP) gene.57 GSS was first
described in an AD inheritance family with the 25-year-old
index patient developing cerebellar ataxia and psychosis, eventu-
ally dying 6 years after onset. Neuropathological examination
revealed prominent cerebellar atrophy with molecular layer
“senile” plaques, along with cerebral cortical atrophy.58 Numer-
ous missense variants have been reported in PRNP with the most

prevalent being p.P102L.59 Octapeptide repeat insertions, partic-
ularly longer (>7) insertions in the PRNP gene, can also cause
GSS.60 Although GSS is an AD disorder, up to 30% of patients
have no apparent family history.61

The prevalence of GSS is estimated at 1–10 per 100,000,000 peo-
ple.61 One review reported that GSS accounted for approximately
7.9% of genetic prion diseases in European countries and about 10–
20% in East Asian countries including Japan, Korea and China.62,63

The p.P102L variant causing GSS is one of the most common
PRNP variants in Japan and Korea, but is rare in China.62,63 Another
common GSS-associated variant in Japanese, p.P105L, is also rare in
Chinese,63 while the p.A117V variant is common in Europeans.61

Clinically, GSS presents with progressive ataxia and lower
limb hyporeflexia, followed by cognitive decline and dementia
(Video 4).64 The age of onset is in the fourth-to-fifth decades,
although two patients with p.P102L were reported to develop
symptoms in their twenties.65 The average disease duration is
40 to 50 months after clinical onset.66 Some genotype–
phenotype correlations are emerging. For example, prominent
cognitive decline without cerebellar ataxia as the initial presen-
tation has been reported with p.Q212R.67 Parkinsonism and
psychiatric features such as delusions, paranoia, and hallucina-
tions can be seen in half of the patients with the p.P102L vari-
ant.66,68 Less than a quarter of patients with the p.P102L
variant developed a sporadic Creutzfeldt–Jakob disease (sCJD)-
like phenotype with rapidly progressive dementia.69 Recently,
a large cohort study enrolling 218 Chinese genetic prion disease
patients revealed that GSS p.P102L variant patients had a long
survival compared to those with other variants.63 Patients with
the p.P105L variant can present with late-onset spastic

Video 4. Gerstmann-Sträussler-Scheinker (GSS). A 44-year-old
man with a two-year history of gradually progressive gait
disturbance. His uncle and mother had similar symptoms, and
the uncle was clinically diagnosed as having Gerstmann-
Sträussler-Scheinker disease. On neurological examination, he
has saccadic pursuit eye movements in horizontal and vertical
directions and dysmetria and decomposition on finger-nose test
and heel–knee test. The deep tendon reflexes are generally
decreased, and the plantar reflex extensor on the left. Neither
rigidity nor spasticity is seen. Due to severe postural instability,
he is not able to walk independently. Genetic analyses revealed
the PRNP p.P102L variant, and no pathological variants for SCA1,
SCA2, SCA3, SC6, SCA7, SCA10, SCA17, SCA31 and DRPLA.
Courtesy: Assoc. Prof. Shinsuke Fujioka.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.13737
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paraparesis.70 These observations demonstrate that different var-
iants at different positions in PRNP result in different pheno-
types of GSS, which vary substantially in their ethnic
prevalence and clinical manifestations.

An integrated evaluation is needed to diagnose GSS, including
cerebrospinal fluid (CSF) analysis, electroencephalography
(EEG), brain MRI, and genetic analysis. The sensitivity of the
real-time quaking-induced conversion (RT-QuIC) test in CSF is
approximately 75% in GSS,71 while it was 92% in sCJD with
100% specificity.72 EEG periodic synchronous discharges are
uncommonly seen (<10%), and there are no specific MRI find-
ings for GSS, although up to 30% of cases show fluid-attenuated
inversion recovery (FLAIR) and diffusion-weighted imaging
(DWI) abnormalities similar to sCJD with increased signal inten-
sity in the cortex (cortical ribboning) and basal ganglia.73 GSS is
often misdiagnosed as other degenerative cerebellar ataxias, espe-
cially at the early stage. Genetic analysis of the PRNP gene is
needed to confirm the diagnosis. Management is supportive.

DYT/PARK-PLA2G6-Related
Parkinsonism
PLA2G6-associated neurodegeneration (PLAN) is an AR
neurodegenerative disorder caused by variants in PLA2G6.74

The clinical phenotypes of PLAN are heterogeneous: infantile
neuroaxonal dystrophy (INAD), with psychomotor regression
or delay between the ages of 6–36 months; atypical neu-
roaxonal dystrophy (ANAD), with prominent language diffi-
culty and autistic-like traits between ages 1.5–6.5 years75,76;
hereditary spastic paraparesis between ages 9–66 years77,78; and
early-onset dystonia-parkinsonism in the second to third
decades of life.

A total of 101 PLA2G6-mutated cases with parkinsonism have
been documented worldwide.74,79–88 The majority of the patients
(n = 86) were from Asia, mainly China and Taiwan (n = 36).89,90

Among the Asian cases, 51.8% were males and mean age of onset
was 25.1 � 9.1 years compared to 20.8 � 9.2 years in Caucasians.
The most common manifestations at onset were parkinsonism and
dystonia in 62.5% of the Asian patients. Psychiatric features (eg,
severe depression or anxiety, psychosis), the second most common
manifestations, presented more frequently in Caucasian (40%) than
in Asian (21.3%) patients.

The “classical” scenario of early-onset PLA2G6-related
dystonia-parkinsonism includes various movement disorders:
parkinsonism (100%), dystonia (68.3%), cerebellar ataxia
(36.2%), pyramidal signs (63.6%), psychiatric symptoms (76.8%)
and cognitive decline (59.7%).79,91 Besides these, autonomic
features (including urinary disturbances, constipation, sexual
dysfunction and orthostatic hypotension) were observed in
71.9% (23/32) of Asian patients and 75% (3/4) of Caucasian
patients.91 Brain MRI showed cerebral atrophy (especially gen-
eralized or frontotemporal lobe) in 52.6% and cerebellar atro-
phy in 39.1% of Asian cases, whereas only 13.2% of cases
reported iron accumulation in the basal ganglia, which is less
than in INAD and ANAD patients (26.7%).92

Pathogenic PLA2G6 variants impair iPLA2β function via a
variety of loss-of-function mechanisms.93 The most frequent var-
iant in Chinese is homozygous p.D331Y,89,94 suggesting a com-
mon founder effect. The p.R741Q variant is mainly reported in
Indian, Saudi Arabian and Pakistani populations, and p.R635Q
in Japanese patients.91 These above-mentioned variants were
rarely reported in Caucasian patients.

The neuropathological findings of patients with PLA2G6 vari-
ants are also heterogenous, including Lewy bodies in the substantia
nigra and locus ceruleus (similar to idiopathic PD),95 co-existing
Alzheimer’s disease-like pathology in temporal lobe structures,
abundant gliosis, and some may also have excessive iron accumula-
tion in the substantia nigra and basal ganglia.96

Parkinsonism responded to levodopa in 98.4%, while
levodopa-induced dyskinesias were reported in 86.8% and
appeared within the first year of treatment in most cases. Early
occurrence of dyskinesias and exacerbation of psychiatric symp-
toms after levodopa initiation are considered tell-tale signs of
PLA2G6-related parkinsonism.79 Motor and non-motor symp-
toms and fluctuations responded well to subthalamic nucleus
(STN) and globus pallidus internus (GPi) deep brain stimulation
(DBS) in a few patients who have received the treatment, in
both Asians and Caucasians.79,85,97–99

Adult-Onset NIID and
NOTCH2NLC-Related Disorders
NIID has been reported since the 1960s, but was rarely diagnosed
as this required brain autopsy or invasive (eg, rectal or sural nerve)
biopsies.100,101 The recent recognition of cases based on MRI
findings and skin biopsy (showing eosinophilic ubiquitin-positive
and p62-positive intranuclear inclusions in adipocytes, fibroblasts,
and sweat glands) paved the way for more widespread recognition
of the condition, particularly among Japanese adult patients.100

In 2019, abnormally increased GGC-repeat expansions in the
50 untranslated region (UTR) of the NOTCH2NLC gene were
identified to be the cause of NIID, largely among Japanese and
other Asian patients.101–103 Since then, the phenotype has
expanded and NOTCH2NLC variants were found in 5.6% of
mainland Chinese families with ET104; 1.3% of typical sporadic
PD cases in Singapore (all cases were ethnic Chinese)105 and in
China (1.1%, 11/1011)106; and were also reported to be the most
frequent genetic cause of adult-onset leukoencephalopathy in
Japan and Taiwan.107,108 In contrast, NOTCH2NLC variants
appear to be extremely rare in Caucasians.101,109,110 A recent liter-
ature search revealed no more than a dozen adult-onset NIID
(and a similar number of juvenile-onset) cases reported from
Europe, North America, and Australia since 2000.101 Interestingly,
a recent analysis of NIID cases of European ancestry (confirmed
on post-mortem brain examination; n = 11) found no case of
expanded repeats in NOTCH2NLC, suggesting that NIID may be
genetically heterogeneous between Asians and Caucasians.111

In the “classical” scenario of adult-onset NIID, onset is usually in
mid- or later life and features commonly include cognitive decline
or dementia, various movement disorders (including parkinsonism,
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tremor, cerebellar ataxia), muscle weakness, peripheral neuropathy,
and autonomic dysfunction, with limb weakness vs. dementia being
more prominent in younger- vs. older-onset patients, respec-
tively.100 Cases may be sporadic or AD in inheritance (sometimes
displaying genetic anticipation).104 Apart from age, variable clinical
expressivity may be caused by genetic factors such as the length of
the GGC repeats, interruptions (eg, of GGA) in the repeat tracts, or
other unknown modifiers.104,112 For example, clinical NIID cases
typically have >65 (and up to about 500) repeats (vs. <40 in healthy
controls),105 and typical sporadic PD cases were mostly reported to
have intermediate-length expansions (40–60 GGC repeats).105,106

Interestingly, the Chinese familial ET cases had repeat sizes of 60–
250, but did not have other NIID features.104

Brain MRI could offer diagnostic clues with the characteristic
features of high signal intensity in the corticomedullary/gray-white
matter junction on DWI (Fig. 2A,B). FXTAS (also caused by

expanded trinucleotide repeats, but in FMR1) has been
highlighted as a mimic of NIID (and vice versa), in terms of clini-
cal, radiological (Fig. 2C,D) and also histological findings.101,113,114

However, it appears that FXTAS is quite rare in Asian populations
(Chinese, Japanese, Koreans, and Singaporeans).2,101

Like most other genetic neurodegenerative disorders, NIID has
no specific treatment besides supportive and symptomatic therapy.

Paroxysmal Kinesigenic
Dyskinesia; PxMD-PRRT2;
PKD-PRRT2
Paroxysmal dyskinesias are a rare heterogeneous group of condi-
tions.115,116 They are classified into three main subtypes based on
triggering factors: PKD, paroxysmal non-kinesigenic dyskinesia

FIG. 2. Representative brain MRI from a patient with genetically proven neuronal intranuclear inclusion disease (NIID). (A, B) Characteristic
high-intensity signal along the corticomedullary junction in the cerebral hemispheres on diffusion-weighted imaging (DWI). High-intensity
signal on T2-weighted images in bilateral middle cerebellar peduncles (arrows, C) and pons (D), which may mimic the radiological
features of FXTAS. This was Malaysian Patient #1 in Lim et al., Ishiura et al.101,102 Courtesy: Prof. Shen-Yang Lim.
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(PNKD) and paroxysmal exercise-induced dyskinesia (PED).117,118

The prevalence of PKD, which is the most common form of
paroxysmal dyskinesias, was estimated to be 1:150,000 in the
general population, with a suggestion that it may be more com-
mon in Asians, especially Chinese and Japanese, although direct
comparisons of prevalence among various ethnic groups are not
available.119,120 In studies from Malaysia and Singapore, which
are multi-racial Southeast Asian countries, a preponderance of
Chinese (over Malay and Indian) cases has been observed (65–
90% Chinese).121–123 The first multicenter study in Asia was
reported by Japanese investigators who analyzed 150 patients
with a clinical diagnosis of PKD comprising 53 sporadic cases
and 97 affected individuals from 32 pedigrees with a majority
compatible with AD inheritance.124 The mean age of onset was
8.8 years with male predominance (80%). Attacks were precipi-
tated by sudden voluntary movements, startle, or emotional
stress, lasted between seconds to 5 min, and upper limbs were
most affected. Treatment with carbamazepine or phenytoin was
effective in 95% of patients.

The most common genetic variant underlying PKD is c.649dupC
(p.Arg217fs) in PRRT2, which was responsible for 76.4% of PRRT2
variant carriers in a Chinese study.120,125 A review of 1444 cases of
patients with PPRT2 variants showed that 58.5% of PKD-PRRT2
were Asians, mainly Chinese, followed by Caucasians (33.9%).120

PRRT2 variant carriers presented with earlier onset, longer attack
duration, and greater complexity (such as having bilateral involve-
ment or a history of infantile convulsions), compared to non-
PRRT2 carriers. The clinical phenotypes include an evolving contin-
uum from benign familial infantile epilepsy, to PKD and paroxysmal
headache disorders such as hemiplegic migraine.117,120 The excellent
response of PKD to antiepileptic medications, and the recent
identification of epilepsy-related genes (including SCN8A,
KCNMA1, DEPDC5, KCNA1, and CHRNA4) in pure or
complicated PKD suggest that PKD and epileptic disorders
might share similar pathogenesis.126–128 As such, implications
for clinical practice are starting to emerge, with revised clinical
diagnostic criteria incorporating genetic diagnosis, and treat-
ment recommendations.129

FIG. 3. SCA2 and SCA17 presenting with parkinsonism. (A) Brain MRI and 18F-FP-CIT PET images of a patient with SCA2 (26/36 expansions)
presenting with excellent levodopa-responsive symmetric parkinsonism with onset at the age of 43 years. There is mild degree
pontocerebellar atrophy, but he has no overt ataxia. Dopamine transporter availabilities are reduced bilaterally with anteroposterior
gradient. Notably, the patient’s family members showed marked clinical heterogeneity. His father and sister manifested severe ataxia and
his elder brother has predominantly parkinsonism. (B) Brain MRI and 18F-FP-CIT PET images of a patient with SCA17 (36/44 expansions)
presenting with levodopa-responsive parkinsonism with onset at 52 years of age. No clear evidence of cerebellar atrophy is seen, and FP-
CIT bindings are bilaterally reduced in the striatum with anteroposterior gradient. Courtesy: Prof. Jee-Young Lee and Prof. Beomseok Jeon.
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Issues of Parkinsonism in SCA2
and SCA17 in Asian Populations
Parkinsonism is not rare in ADCA patients with abnormally
expanded trinucleotide repeats. SCA2, caused by abnormal CAG
repeat expansion in ATXN2, is the most frequent SCA that can
present with parkinsonism, and can mimic PD.130,131 Pathologi-
cally, nigral dopaminergic neuronal loss exceeds that seen in
PD,132 with brainstem Lewy body pathology variably
found.132,133 Interestingly, midbrain dopaminergic loss appears to
be a universal phenomenon in SCA2 regardless of the presence
or absence of parkinsonism.134 Dopamine transporter imaging
findings can resemble those of PD with asymmetric and prefer-
ential involvement of the posterior putamen, although the dopa-
minergic denervation is often symmetrical involving the entire
striatal regions (Fig. 3A).134,135

The manifestation of parkinsonism in SCA2 is heterogeneous
and it is thought to be more prevalent in Asians compared to other
populations, although systematic epidemiological studies are lacking.
Studies in sporadic PD populations reported a SCA2 frequency of
2.2% among Singaporean Chinese136 and 0.4% in Koreans and
Taiwanese134,137; whereas familial PD populations had frequencies
of 1.5–8.7% in mainland China and Taiwan,138,139 2–2.5% in Italy
and France,135,140 and 0.9–1.5% in the USA.131,141

Genetic modifications have been suggested as one of the possible
mechanisms for the pure parkinsonian phenotype of SCA2. Patho-
genic alleles with one or more CAA interruptions and low-range
CAG repeat expansions are reported to be linked to parkinsonism in
SCA2.134,135,142 A report on quite long-lasting (up to 34 years) PD
phenotype with pure parkinsonism in a Korean SCA2 family without
anticipation across generations (40 repeats with four CAA interrup-
tions) supported the hypothesis of CAA interruption in contributing

TABLE 1 Variant frequency in Parkinson’s disease (PD)-causative genes with autosomal dominant inheritance in Asian patients with PD

AD inheritance

LRRK2 Heterozygous
missense variants

Similar to sporadic
late-onset PD

(Video 5)

23 of 1402 (1.6%) Japanese PD patients had
variants including 7 (0.5%) with p.G2019S, 7 (0.5%) with

p.I2020T, 5 (0.4%) with p.R1441H, and 4 (0.3%) with
p.R1441G157; 4 of 324 (1.2%) Taiwanese EOPD or FPD
patients had variants, including p.R1441H and
p.I2012T149; 2 of 662 (0.3%) Chinese EOPD had the
p.R1441C variant158 who, together with other p.R1441C
patients in Singapore and Malaysia, were suggested to have
a common founder.156

p.R1628P polymorphism Similar to sporadic PD A meta-analysis revealed that p.R1628P was a risk variant for
PD in Asians with an OR of 1.83.159

p.G2385R polymorphism Similar to sporadic PD A meta-analysis revealed that p.G2385R was a risk variant for
PD in Asians with an OR of 2.27.159

Risk variants identified
from GWAS

Similar to sporadic PD A Japanese GWAS study identified five risk variants
(rs1994090, rs7304279, rs4768212, rs2708453 and
rs2046932) for PD.160

A large East Asian study demonstrated that rs1384236 is a risk
variant for PD in Asians.161

p.N551K-p.R1398H
haplotype

Similar to sporadic PD An Asian cohort study showed a protective association in
Malays with an OR of 0.45; and meta-analysis of Chinese
patients showed a protective effect (OR: 0.79, 95% CI:
0.67–0.92).162

CHCHD2 Heterozygous
missense variants

Similar to sporadic PD A large Japanese cohort identified two families having p.T61I
variant, one family having p.R145Q and another one with
a splice-site variant (300 + 5G > A).163 A meta-analysis
showed p.P2L to be a risk variant for PD among
Chinese.164

UQCRC1 Heterozygous missense
variants

Early-onset parkinsonism
with polyneuropathy

A large East Asian cohort study identified two Taiwanese
families and one Japanese family having UQCRC1 missense
or splicing variants.165 A subsequent large Chinese study
identified risk variants in UQCRC1 in sporadic PD.166 The
pathogenic variants of UQCRC1 were not identified in
European populations.167,168

Abbreviations: AD, autosomal dominant; EOPD, early-onset Parkinson’s disease; FPD, familial Parkinson’s disease; OR, odds ratio.
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to the pure parkinsonism phenotype.143 However, CAA interruption
was not the only factor determining phenotype,144,145 suggesting
other genetic modifiers could play a role in the manifestation of par-
kinsonism in different populations. Heterogeneous observations sug-
gest that genetic modifiers may be different across populations, which
may explain the heterogeneity in the frequency of pure parkinsonism
and in the relevant numbers of genetic interruptions and expansions
in SCA2 among different ethnic populations. In a large Chinese
cohort study, the presence or absence of parkinsonism was indepen-
dent of the severity of ataxia.145

In addition to SCA2, levodopa-responsive parkinsonism has
been reported in SCA types 3, 6, 8, and 17.130 SCA17 is caused
by abnormal CAG/CAA repeat expansion in the TATA-binding
protein (TBP) gene. The association with parkinsonism is com-
monly found in Asian populations.130 SCA17 patients can pre-
sent with an atypical parkinsonian syndrome and show poor
levodopa response resembling multiple system atrophy or pro-
gressive supranuclear palsy.146 However, SCA17-pure parkinson-
ism cases are also reported in Korean, Taiwanese Chinese, and
Thai populations.33,147–149 There has been no reported patho-
logic study of SCA17-parkinsonism, but dopamine transporter
imaging showed heterogeneous features as bilateral severely
reduced uptake or diffuse reduction without anterior–posterior
gradient, or resembling typical PD (Fig. 3B). Reduced copy
number of CAG in the TBP gene may be related to a pure par-
kinsonian presentation,147 but the cutoffs remain unclear, and
variable movement disorders have been reported with small-
expanded alleles.150,151 One study investigated the frequency of
low-range repeat expansions between parkinsonian patients and
normal controls but reported no difference between the

groups.152 Therefore, further studies are required to reveal the
exact mechanism of pure parkinsonism in SCA17.

PD-Causative Genetic Variants in
Asian Populations
Approximately 10% of PD can be attributed to a monogenic
cause, and the heritable component of PD due to common

Video 5. LRRK2 R1441C variant. This Malaysian patient of Chinese
ancestry was diagnosed with Parkinson’s disease (PD) at the age
of 58 years, later found to be associated with the LRRK2 p.R1441C
variant. Bilateral subthalamic nucleus (STN) deep brain
stimulation (DBS) was performed at the age of 67 years to treat
progressively worsening OFF periods (medication effect lasting
only 2–3 hr, with disabling OFF symptoms characterized by
akinesia, tremors and painful foot dystonia—described further in
Lim et al. Patient 2).156 This video was taken 6 weeks after the
DBS surgery, and the patient has come in OFF-medication for her
1st DBS programming session. The patient is in a wheelchair and
is able to take several small steps but requires close supervision.
Limb movements are bradykinetic and there is an obvious
“striatal toe” on the right side. Courtesy: Prof. Shen-Yang Lim.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.13737

Video 6. GBA1 p.L483P variant and also the LRRK2 Asian variant
p.R1628P. Parkinson’s disease in this patient was diagnosed at
the age of 44 years. She underwent bilateral subthalamic
nucleus (STN) deep brain stimulation (DBS) at the age of
57 years. The video, taken at the age of 59 years, was in the
stimulation-ON, medication-ON (3.5 hr post-dose) condition.
Parkinsonian signs including bradykinesia can be observed, of
mild-to-moderate severity. She is able to stand up quickly and
walk independently without an aid (albeit slowed, with reduced
arm swing bilaterally), and is able to recover during pull test.
However, she has difficulty following simple verbal/gestural
commands, with Montreal Cognitive Assessment (MoCA) score
of only 9/30. The patient was later found to have the GBA1
p.L483P (p.L444P) variant (which could be an explanation for
her dementia), and also the LRRK2 “Asian variant” p.R1628P.
Courtesy: Prof. Shen-Yang Lim.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.13737
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genetic variability is estimated to be around 22%.153 LRRK2 var-
iants, the most frequently implicated genetic factor in familial
and sporadic PD, display significant ethnic variation. In particu-
lar, the LRRK2 p.G2019S variant is very common (up to around
40% of PD cases) in North African Berber Arabs and Ashkenazi
Jews and to some extent in Europeans, but very rare in
Asians.154,155 In contrast, p.G2385R and p.R1628P (so-called
LRRK2 Asian variants) are common genetic risk factors in Asian
PD (Table 1), each being present in around 5–10% of some
Asian PD populations such as Han Chinese, vs. approximately
half of that in the respective general populations.2 Although
overall the clinical features of LRRK2-related parkinsonism
appear to be comparable to idiopathic PD (Video 5), several
studies have reported that patients with the p.G2019S variant are
more likely to be women and less likely to have non-motor

symptoms, including olfactory impairment, cognitive dysfunc-
tion, and rapid eye movement sleep behavior disorder.169,170 A
recent meta-analysis revealed that patients with the p.G2385R
variant have lower motor symptom severity and better cognitive
function, but a higher tendency to develop levodopa-related
motor complications than those without this genetic substitu-
tion.171 In addition, heterozygous variants in GBA1 also increase
the risk of PD in both Eastern and Western populations,
although specific variants (eg, p.L483P which is associated with a
more aggressive phenotype (Video 6)) may be over-represented
in Asian populations (Table 2). Interestingly, a recent study
suggested that combined LRRK2 p.G2019S and GBA1 variants
were not associated with worse disease progression, although no
information was available on LRRK2 Asian variants.197 PINK1
variants have also been commonly reported in Asians. Specifically,

TABLE 2 Variant frequency in Parkinson’s disease (PD)—causative genes with autosomal recessive inheritance and risk gene in Asian patients
with PD

Gene Variants Phenotypes Variant frequency in cohort studies

AR inheritance

PARK2 Missense variants or
exonic deletions
(especially exons 2 to 5)149,172,173

Early to juvenile-onset
levodopa-responsive PD
(average 26.1 yr)2,172

5 of 189 (2.6%) Korean patients with EOPD or FPD174; 15 of
324 (4.6%) Taiwanese patients with EOPD or FPD149; 9 of
240 (3.8%) Han Chinese patients with sporadic or familial
EOPD,175 83 of 1676 (5.0%) Han Chinese patients with
EOPD or FPD173; 137 of 1204 (11.4%) Japanese FPD
patients.176

PINK1 Missense variants Early-onset levodopa-
responsive PD (average
30–50 yr)

(Video 7)

2 of 47 (4.3%) Japanese AR-inheritance families and 1 of 190
(0.5%) sporadic PD patients178; None of 324 Taiwanese
patients with EOPD or FPD149; 7 of 1676 (0.4%) Han
Chinese patients with EOPD or FPD173; 3 of 289 (1.0%)
mixed Asian populations of PD patients179; 6.9% of Malay
EOPD patients had homozygous p.L347P variants.177 7 of
273 (2.6%) EOPD patients from New Zealand had
homozygous p.L347P variants.180

PLA2G6Missense variants Early-onset parkinsonism
and may be combined
with atypical features

3 of 29 (10.3%) Japanese patients with EOPD91; 2 of 324
(0.6%) Taiwanese patients with EOPD or FPD149; 9 of
1676 (0.5%) Han Chinese patients with EOPD or FPD.173

The p.D331Y variant was almost exclusively found in
Chinese patients, suggesting a common founder effect in
this population.89

Risk Gene

GBA1 Heterozygous variants A younger onset age
and more severe
motor and non-motor
features,181–187 for
GBA1 p.L483P (old
nomenclature p.L444P)
variant184,187–190

(Video 6)

An international multicenter cohort showed an increased risk
for PD in those carrying p.N370S (OR 3.96) and p.L483P
(OR 6.73), but p.N370S variant is uncommon among
Asians while p.L483P is a pan-ethnic variant.191

A meta-analysis found that p.R159W (old nomenclature
p.R120W) increased the risk of PD (OR 14.93) specifically
in East Asians.127 In East Asians, p.L483P (OR 12.43),
RecNciI (a recombinant allele containing p.L483P) and
A495P (also known as V499V) increased the risk of PD
(OR 3.56).127

The p.L483P variant has been reported to be the most
common GBA1 variant in some Asian populations.173,192–196

Abbreviations: AR, autosomal recessive; EOPD, early-onset Parkinson’s disease; FPD, familial Parkinson’s disease.
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the p.L347P variant appears to be a common cause of AR early-
onset PD in Southeast Asia and the Pacific Islands (proposed to
reflect ancient migratory patterns of Austronesian races), and dis-
plays marked clinical heterogeneity ranging from mild PD
(or even dopa-responsive dystonia without parkinsonism), to cases
with extremely severe motor complications (Video 7).177,180,198

In recent years, several novel PD-causative or related genes
have been identified, notably in Asian populations. Variants in the
CHCHD2 gene were linked to a late-onset AD form of PD
(PARK22) in a large Japanese cohort.163 The authors identified

two families having the p.T61I variant, one family having the
p.R145Q variant, and another with a splice-site variant (300
+ 5G > A).163 Their phenotypes were similar to idiopathic PD
with good levodopa response. A further meta-analysis showed the
p.P2L substitution to be a risk variant for PD.164 Although the
aforementioned variants were not found in a large European
cohort of PD patients, three other rare variants (p.A32T, p.P34L,
and p.I80V) were identified199 and a homozygous missense variant
(p.A71P) was reported in a young-onset Caucasian PD patient.200

Variants in UQCRC1 were reported in a large East Asian PD
cohort, including two Taiwanese families (p.Y314S and p.I311L) and
one Japanese family (concomitant splicing variant, c.70-1G4A, and a
frameshift insertion, p.Ala25Glyfs*27).165 The Taiwanese family pres-
ented with early-onset, levodopa-responsive parkinsonism with poly-
neuropathy. A subsequent large Chinese study identified risk variants
in UQCRC1 in sporadic PD.166 PD-related variants in UQCRC1
have not so far been observed in European populations.167,168

Conclusion
Asian patients have unique disease-causing variants which may
come from founder effects, and high rates of consanguinity are
also likely to be contributory in specific regions. Furthermore,
many patients may present with characteristic phenotypes, in part
related to the genetic variants that are more common or almost
exclusively found in specific Asian groups. However, access to
genetic testing facilities varies vastly between regions in Asia and
may skew some of the results.201

Recent advances in understanding the pathogenic mechanisms of
PD and related movement disorders have shed light on the develop-
ment of disease-modifying or mechanism-targeted therapies. There-
fore, it is becoming increasingly imperative that clinicians are aware
of and have knowledge about genetic disorders that are more com-
monly encountered in different ethnic groups. Improved recogni-
tion of particular phenotypic characteristics, coupled with
information about the ethnic origin of patients, would point to spe-
cific genetic testing and lead to earlier diagnosis for better prognosti-
cation and, potentially, genetics-based, mechanism-targeted,
therapies. All these issues underscore the need for further improve-
ments in infrastructure and services, and concerted efforts in training
and research involving cross-collaborations between clinicians and
researchers in Asia, and the rest of the world.
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