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The gut microbiota Parvimonas micra has been found to be enriched in gut mucosal tissues
and fecal samples of colorectal cancer (CRC) patients compared with non-CRC controls.
In the present study, we investigated the tumorigenic potential of P. micra and its regu-
latory pathways in CRC using HT-29, a low-grade CRC intestinal epithelial cell. For every
P. micra-HT-29 interaction assay, HT-29 was co-cultured anaerobically with P. micra at an
MOI of 100:1 (bacteria: cells) for 2 h. We found that P. micra increased HT-29 cell prolif-
eration by 38.45% (P=0.008), with the highest wound healing rate at 24 h post-infection
(P=0.02). In addition, inflammatory marker expression (IL-5, IL-8, CCL20, and CSF2) was
also significantly induced. Shotgun proteomics profiling analysis revealed that P. micra af-
fects the protein expression of HT-29 (157 up-regulated and 214 down-regulated proteins).
Up-regulation of PSMB4 protein and its neighbouring subunits revealed association of the
ubiquitin–proteasome pathway (UPP) in CRC carcinogenesis; whereas down-regulation of
CUL1, YWHAH, and MCM3 signified cell cycle dysregulation. Moreover, 22 clinically relevant
epithelial–mesenchymal transition (EMT)-markers were expressed in HT-29 infected with P.
micra. Overall, the present study elucidated exacerbated oncogenic properties of P. micra in
HT-29 via aberrant cell proliferation, enhanced wound healing, inflammation, up-regulation
of UPPs, and activation of EMT pathways.

Background
Unhealthy diet and lifestyle, which have long been associated with the occurrence of CRC, can also lead to
microbiota dysbiosis in the colon [1,2]. As a result of dysbiosis, pathogenic microbes displace normal flora
in the colon and/or rectum, disrupting its normal regulation and homeostasis [3,4]. Specifically, settlement
of these pathobionts may trigger the secretion of toxins, activation of reactive oxygen species (ROS), and
inflammation of colon cells; thereby increasing the risks of CRC in the host [5]. Indeed, scientists have
proposed the tumorigenic roles of gut-associated microbes in CRC, including Streptococcus bovis [6],
Enterococcus faecalis [7], Bacteroides fragilis [8], Streptococcus gallolyticus [9], Escherichia coli [10],
and Fusobacterium nucleatum [11].

Recently, we reported a 3-fold enrichment of Parvimonas micra, an oral bacteria, in the gut mucosa
tissues of 18 Malaysian CRC patients compared with 18 non-CRC patients based on 16S rRNA amplicon
sequencing [12]. Though the roles of P. micra in CRC oncogenesis remain unclear, our previous findings
were consistent with published meta-analyses, which demonstrated enrichment of P. micra in almost
2,000 participants of various CRC cohorts from different geographical locations [13,14]. Besides CRC,
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Table 1 Primer sequences for inflammatory marker and housekeeping gene expression determination

Marker Primer Nucleotide Sequences (5′ to 3′) Length (base pair)

Inflammatory CSF2 Forward 5′-AATGTTTGACCTCCAGGAGCC-3′ 21

CSF2 Reverse 5′-TCTGGGTTGCACAGGAAGTTT-3′ 21

Inflammatory IL-5 Forward 5′-AACTGTGCAAGGGGGTACTG-3′ 20

IL-5 Reverse 5′-AGGCCTGACTCTTTCTTGGC-3′ 20

Inflammatory IL-8 Forward 5′-TGCTTCCCCTTAGCATTTTGT-3′ 21

IL-8 Reverse 5′-CCAGCTATGCTAAAGCGCAC-3′ 20

Inflammatory IL-22 Forward 5′-CCTTCCCCAGTCACCAGTTG-3′ 20

IL-22 Reverse 5′-TGCGGTTGGTGATATAGGGC-3′ 20

Inflammatory CCL20 Forward 5′-CAAGAGTTTGCTCCTGGCTG-3′ 20

CCL20 Reverse 5′-GCTTGCTGCTTCTGATTCGC-3′ 20

Inflammatory TIMP1 Forward 5′-TTCTGGCATCCTGTTGTTGCT-3′ 21

TIMP1 Reverse 5′-CCTGATGACGAGGTCGGAATT-3′ 21

Housekeeping HPRT Forward 5′-TGTTGGTTCCATTTTCCTTGTTTG-3′ 24

HPRT Reverse 5′-GGTAGCCAAGTGGACCTCAG-3′ 20

Housekeeping β-tubulin Forward 5′- TTCAAGGGAGGTGTCAGCAGTA-3′ 22

β-tubulin Reverse 5′- GTGAGGGAGGTAGAGTTGGAA-3′ 21

P. micra infections have also been associated with cancer of the oral cavity and stomach [15,16], underscoring the
intriguing association and possible role of the bacteria in malignant tumour occurrence and development.

Later, Zhao and co-workers’ studies investigating P. micra infection using in vivo models indicated positive cor-
relations of P. micra abundance with tumour burden, cell proliferation, and the expression of pro-inflammatory
cytokines [17,18]. In this work, we elected instead to follow up in an in vitro manner our previous findings by infect-
ing HT-29, a CRC intestinal epithelial cell line with P. micra. We aimed to investigate the effects of this infection on
cell morphology and functional characteristics. We additionally profiled the molecular changes of the proteome as a
result of this bacteria–host cell interaction with shotgun proteomics followed by pathway analysis, to provide a better
understanding of the role of P. micra in CRC.

Hypothesis
We hypothesized that P. micra infections might play a role in CRC pathogenesis in the HT-29 cell line by affect-
ing its cell proliferation, wound healing, cell cycle activity, and causing inflammation. From this study, additional
information of the putative tumorigenic role of P. micra in CRC would be elucidated.

Methodology
Bacteria culture
P. micra (DSM 20468) was purchased from DSMZ-German Collection of Microorganisms and Cell Cultures GmbH
(Germany) in active culture form. E. coli DH5α was a gift from the Department of Bacteriology, Juntendo Uni-
versity, Tokyo, Japan. Both bacteria were cultured at 37◦C in Brain Heart Infusion (BHI) broth anaerobically in an
AnaeroPack™ 2.5 L rectangular jar containing an AnaeroGen™ sachet 3.5 L [19] for all experiments.

Intestinal epithelial cell culture
A low-grade colon cancer intestinal epithelial cell, HT-29 was used in all experimental setups. It was purchased from
American Type Culture Collection (ATCC, U.S.A.) and maintained using the Roswell Park Memorial Institute (RPMI)
1640 media (Pan Biotech, Germany) supplemented with 12% fetal bovine serum (Tico Europe, Netherlands). For
co-culture assays, 1% penicillin/streptomycin (Nacalai Tesque, Inc., Japan) was added post-infection to stop bacterial
growth. For the maintenance of the cells, HT-29 was cultured inside a 37◦C incubator supplemented with 5% CO2,
and 95% O2. During co-culture assays, the cells were maintained in a similar anaerobic condition as the tested bacteria
[20].
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Table 2 Top 10 up-regulated proteins from pathways that were enriched by P. micra infection in HT-29

Pathway Protein (Gene ID) P-value Log2 fold change

Oxidative phosphorylation ATP5F1A 0.0008 1.67

Protein processing in ER DNAJA1 0.03 1.64

Spliceosome U2AF2 0.0008 1.57

Ribosome MRPL10 0.02 1.50

Fatty acid elongation TECR 0.01 1.49

Proteasome PSMB4 0.0007 1.48

Ribosome RPS28 0.002 1.41

Protein processing in ER SEC24C 0.02 1.38

Spliceosome LSM5 0.02 1.31

Protein processing in ER CAPN1 0.009 1.31

HT-29 and bacteria co-culture
Cell proliferation assay
HT-29 cells were seeded in a 24-well plate at a density of 5 × 104 cells per well in antibiotic-free growth media
and grown aerobically overnight. After overnight incubation, cells were introduced with P. micra at a multiplicity
of infection (MOI) of 100:1 (bacteria: cells) [21]. E. coli DH5α was used as bacteria-host interaction control, while
uninfected HT-29 was a control for the co-culture system. The plate was incubated at 37◦C for 2 hr anaerobically.
Next, all experiment sets were washed three times with 1× PBS solution followed by supplementation of growth
media with antibiotics. The plate was then incubated for another 72 hr anaerobically. Subsequently, cells were fixed
with 20% methanol and stained with crystal violet stain solution (Merck, Germany). Cell images were taken with a
ChemiDoc MP Imaging System (Bio-Rad, U.S.A.). Dried stained cells were then diluted with 10% acetic acid prior
optical density (OD) reading at 600 nm using a Varioskan™ Flash Spectral Scanning Multimode Reader (Thermo
Fisher Scientific, U.S.A.). All experiments were conducted three times with technical triplicates.

Wound healing assay
Twelve-well plates were marked on the bottom of each well at specific locations prior experiments. HT-29 cells were
then seeded at a total of 5 × 105 cells/well. Cells were supplemented with antibiotic-free growth media and grown
overnight. Wells with at least 90% confluent cells were later wounded using 200μl pipette tips and washed with 1× PBS
solution. Wounded cells were then replenished with antibiotic-free growth media. Tested bacteria were introduced
to the cells at an MOI of 100:1 (bacteria: cells); uninfected cells were introduced to BHI broth only. Co-cultured
plates were incubated at 37◦C for 2 hr anaerobically. Later, cells were washed three times with 1× PBS solution and
replenished with growth media supplemented with antibiotics. Wound images were observed and captured at three
different time points (0, 24, and 48 hr) at a unified location. Wound area size was measured as the distance between
cell edges using ImageJ Software Version 1.53f (Maryland, U.S.A.) with the value at 0 hr as a baseline. The difference
in wound size percentage between each tested bacteria–host interaction assay and the control was also determined.
Each experiment setup was repeated three times with technical triplicates.

Inflammatory marker expression
HT-29 cells were seeded in a P60 cell culture dish at a density of 5 × 105 cells per dish. Cells were then grown overnight
anaerobically. Adhered cells were infected with P. micra at an MOI of 100:1 (bacteria: cells). Uninfected cells supple-
mented with BHI broth were used as a control. Both infected and uninfected HT-29 were incubated anaerobically
at 37◦C for 2 hr. Later, the growth media was moved and cell monolayers were washed three times with 1× PBS.
Cells were then replenished with growth media supplemented with antibiotics, and further cultured anaerobically
for 2, 24, or 48 hr. At the end of each designated incubation period, total cell RNA from each experiment set was
extracted using guanidinium thiocyanate–phenol–chloroform extraction. Extracted RNA was converted to cDNA
using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, U.S.A.). Relative expression of inflam-
matory genes (IL-5, IL-8, IL-22, CCL20, TIMP1, CSF2) and housekeeping genes (HPRT, β-tubulin) was analysed
using QuantiNova SYBR® Green PCR Kit (QIAGEN, U.S.A.) via an Applied Biosystem® 7500 Fast Real-Time PCR
(Thermo Fisher Scientific, U.S.A.). Primer sequences for each tested gene were designed using the Primer-BLAST
software (http://www.ncbi.nlm.nih.gov/tools/primer-blast) (NCBI, U.S.A.) and listed in Table 3.
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Table 3 Top 10 down-regulated proteins from pathways that were enriched by P. micra infection

Pathway Protein (Gene ID) P-value Log2 fold change

Oxidative phosphorylation MT-CO2 0.01 –1.55

Fatty acid degradation ACOX1 0.005 −1.44

Oxidative phosphorylation ATP5PB 0.02 −1.42

Oxidative phosphorylation NDUFS3 0.003 –1.42

Cell cycle YWHAH 0.0007 −1.40

Cell cycle CUL1 0.03 –1.39

Spliceosome SNRPD1 0.01 −1.32

Oxidative phosphorylation PPA2 0.002 –1.31

Spliceosome RBM17 0.001 −1.30

Cell cycle MCM3 0.02 –1.29

Differential proteomics profiling
Proteomics analysis of HT-29 infected with P. micra was determined to elucidate pathways associated with P. mi-
cra-associated CRC development. HT-29 cells were seeded in a 6-well plate at a density of 5×105 cells/mL and incu-
bated aerobically overnight. Cells were then co-cultured with P. micra at an MOI of 100:1 (bacteria: cells), whereas
uninfected cells were supplemented with BHI. Both setups were incubated anaerobically for 2 hr. After 2 hr, cells
were washed with 1× PBS three times and replenished with growth media supplemented with antibiotics. Cells were
incubated again anaerobically for 24 hr and harvested by adding 2× of 0.25% Trypsin-EDTA solution followed by
centrifugation at 200 × g for 5 min.

Cell pellets were subsequently collected for protein extraction and proteomics analysis. Total cell protein was ex-
tracted using lysis buffer (8 M urea, 2 M thiourea, 50 mM ammonium bicarbonate) with pulsed ultra-sonication
and high-speed centrifugation. Protein concentration was estimated using a Bradford assay. Extracted proteins were
later subjected to acetone precipitation. Protein reduction, alkylation, trypsin digestion, iTRAQ labelling (AB SCIEX,
U.S.A.), C18 reverse-phase desalting, and LC-MS/MS analysis with the Eksigent reversed-phase nanoLC (AB SCIEX,
U.S.A.) coupled with 6600 TripleTOF (AB SCIEX, U.S.A.) system were carried out by the Protein and Proteomic Cen-
ter (PPC), Department of Biological Sciences, Faculty of Science, National University of Singapore (NUS) using the
standard protocol in their previous study [22].

For analysis, protein sequences were extracted from ProteinPilot 5.0 software Revision 4769 (AB SCIEX, U.S.A.),
by using the Paragon database search algorithm (5.0.0.0.4767) and integrated false discovery rate (FDR) analysis
function. Later, protein profiles were compared with the Homo sapiens reference proteome (UP000005640, 29 Jan
2021, 20380 entries) using SwissProt and spiked contaminant proteins (cRAP). A global FDR threshold at 1% was
implemented for differential protein determination (at least one peptide). Protein log2 fold change with a value of
>1.0 was categorized as up-regulated, whereas a log2 fold change of < -1.0 was considered as down-regulated. Lastly,
all proteins without iTRAQ quantitation ratios, and/or with accession and with ‘contam’, ‘RRRR’ and ‘REVERSED’
descriptions were removed from the analysis.

P. micra-associated CRC tumorigenesis pathway determination
DAVID Bioinformatics Resources 6.8 database (https://david.ncifcrf.gov/) and PANTHER16.0 database (http://
pantherdb.org/) were used to determine Gene Ontology (GO) classification of identified proteins based on bio-
logical processes, molecular functions, and cellular components. Pathway analyses were performed using the Ky-
oto Encyclopaedia of Genes and Genomes (KEGG) database. Protein interactions were built using STRING 11.5
databases (https://string-db.org/) for selected proteins. Identification of EMT-related proteins was done using EM-
Tome (http://www.emtome.org/) database and dbEMT 2.0 database (http://dbemt.bioinfo-minzhao.org/).

Statistical analysis
All data obtained were analysed using GraphPad PRISM 9.2.0 (GraphPad Software, U.S.A.). The Mann–Whitney
test, two-way multiple comparisons ANOVA and Student’s t-test were used to analyze results from functional assays,
inflammatory marker expression determination and differential proteomics profiling, respectively. All statistical anal-
yses with P-values of *≤ 0.05, **≤ 0.01, ***≤0.001, and ****≤ 0.0001 were considered significant.
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Results
P. micra increased the rate of HT-29 proliferation and wound healing
Co-culture of P. micra with HT-29 increased the rate of HT-29 proliferation by 38.45% (P=0.008) 72 hr post-infection
(Figure 1A). Highly densed colonies were also observed on cells infected with P. micra. On the other hand, E. coli
DH5α co-culture did not affect HT-29 cell proliferation (P=0.691) nor its colony formation. P. micra infection was
found to increase HT-29 proliferation rate and promote morphological changes compared with experimental controls
(Figure 1B).

The wound healing activity of infected HT-29 was determined at 0, 24, and 48 hr post-infection at a unified location
(Figure 1C). Cells infected with P. micra showed highest wound healing percentage at 24 hr (10.55%) and 48 hr
(12.7%) post-infection. At 24 hr, wound healing activity in P. micra-HT-29 was substantially higher compared to
uninfected HT-29 (3.95%, P=0.02) and E. coli-HT-29 (5.00%, P=0.003). The same trend was observed at 48 hr
comparison between P. micra-HT-29 against uninfected HT-29 (4.30%, P=0.03) and E. coli-HT-29 (6.20%, P=0.01)
(Figure 1D).

Induction of inflammatory response upon P. micra infection
Quantification of the expression of six inflammatory markers (IL-5, IL-8, IL-22, CCL20, TIMP1, CSF2) was carried
out at 2, 24, and 48 hr post-infection. P. micra infection was found to up-regulate the expression of IL-5 (P=0.0001),
IL-8 (P=0.0001), CCL20 (P=0.0001), and CSF2 (P=0.0001) at 2 hr post-infection (Figure 1E). Nevertheless, the
increment in expression was not observed at 24 and 48 h post-infection. IL-22 and TIMP1 expression was found to
be similar at all time-points point infection.

Proteomics profiling of HT-29 infected with P. micra
Differential proteomics profiling analysis between uninfected HT-29 & P. micra-HT-29 revealed a total of 59,959
protein spectra. Eliminating the low-scoring spectra, 34,794 unique spectra were matched with 1,777 proteins based
on the SwissProt human database. A FDR at 1% reduced the amount of unique proteins to 1,389. From these proteins,
a total of 157 up-regulated proteins and 214 down-regulated proteins were identified (P<0.05).

Gene Ontology (GO) enrichment analysis in P. micra-associated CRC
tumorigenesis
GO enrichment analysis of up- (Figure 2A) and down-regulated (Figure 2B) proteins expressed during P. mi-
cra-associated HT-29 cell proliferation revealed differential protein expression of cellular components, correlating
cellular processes changes during cell proliferation and wound healing.

P. micra in CRC tumorigenesis
Up- and down-regulated differentially expressed proteins in P. micra-HT29 compared with uninfected HT-29 were
analysed separately to reveal P. micra-associated CRC tumorigenesis pathways. Figure 2C shows seven differentially
expressed pathways with the highest log2 fold change in P. micra-HT-29 compared to uninfected HT-29. On the
other hand, pathways that were found to be down-regulated by P. micra infection are illustrated in Figure 2D.

Top 10 proteins with the highest log2 fold change from these seven pathways were further analyzed (Table 1).
Proteasome subunit beta type-4, PSMB4, was identified to be putatively crucial in P. micra-associated CRC tumori-
genesis and commonly overexpressed in other human cancer [23]. PSMB4 protein–protein interaction figure with
neighbouring proteasomal subunits (PSMA1, PSMA3, PSMC2, PSMD1, PSMD6, PSMB8, and PSMD5) was built
(Figure 3A, Table 2).

Among the top 10 down-regulated proteins in P. micra-HT-29 were cullin 1 (CUL1), tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH), and minichromosome
maintenance complex component 3 (MCM3). Protein network interaction between these three proteins and other
significantly down-regulated proteins (YWHAG, SKP1, MCM6, and MCM7) are shown in Figure 3B.

Intriguingly, a few apoptosis related proteins were also found to be differentially expressed by the infected
cells. These include the up-regulation of heat shock protein family (HSAP9, HSP90B) and down-regulation of
apoptosis-inducing factor 1 (AIFM1).
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Figure 1. Effects of P. micra infection on cell proliferation, wound healing, and inflammation of the HT-29 cell line

(A) Cell proliferation rate of HT-29 (uninfected HT-29), co-culture of E. coli DH5α and HT-29 (E. coli-HT-29), and co-culture of P. micra

and HT-29 (P. micra-HT-29). Difference between groups were analyzed by Mann–Whitney test; **P≤ 0.01; (B) Observation of cell

proliferation activity on uninfected HT-29, E. coli-HT-29, and P. micra-HT-29 at 24, 48, and 72 hr post-infection; (C) Wound healing

and (D) wound area differences at 0–24 hr and 0–48 hr of uninfected HT-29 and HT-29 infected with P. micra and E. coli. Difference

between groups were analyzed by Mann–Whitney test; *P≤ 0.05, **P≤0.01. (E) Relative expression of inflammatory markers (IL-5,

IL-8, IL-22, CCL20, TIMP1, CSF2) upon P. micra infection on HT-29 at 2, 24, and 48 hr post-infection. Difference between groups

were analyzed by two-way multiple comparison ANOVA test; ****P≤0.0001.
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Figure 2. Gene ontology (GO) enrichment analysis of P. micra infection in HT-29

(A) GO enrichment analysis of up-regulated proteins in P. micra-HT-29 compared with uninfected HT-29 and (B) GO enrichment

analysis of down-regulated proteins in P. micra-HT-29 compared with uninfected HT-29 based on biological processes, molecular

functions, and cellular components. Enrichment analysis was made using DAVID Bioinformatics Resources 6.8 and PANTHER16.0;

(C) Enriched up-regulated pathways and (D) enriched down-regulated pathways associated with P. micra infection in CRC tumori-

genesis. Pathways enrichment was analyzed using DAVID Bioinformatics Resources 6.8 and PANTHER16.0.

Overexpression of epithelial–mesenchymal transition (EMT) proteins
induced by P. micra in HT-29
Some of the differentially expressed proteins (n=47) in P. micra infected HT-29 were associated with EMT. Nine
up-regulated (CD44, DRG1, BSG, NCL, CRKL, TP53, PAK4, NAMPT, ACTL6A) and thirteen down-regulated pro-
teins (PRDX1, PEBP1, FLNA, EPS8, YWHAG, TRIM28, TLN1, IDH2, TRAP1, GLYR1, MCM7, LAD1, TJP2) were
associated with CRC tumorigenesis (P<0.05). Protein–protein interaction network of these proteins elucidated TP53
regulation with significant interaction of NCL, PAK4, MCM7, TRIM28, YWHAG, ACTL6A, CD44, IDH2, EPS8, and
PRDX1 during P. micra infection (Figure 3C).

Discussion
Gut mucosal and faecal sequencing association studies have identified a variety of gut bacteria as being
over-represented in CRC patients [12–14]. Nevertheless, mechanistic studies demonstrating tumorigenesis effects
of these bacteria, including P. micra, a gut microbiota associated with CRC tumours of the consensus molecular
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Figure 3. Protein-protein network interaction of P. micra infection in HT-29

(A) Protein network interaction of PSMB4 with neighbouring proteasomal subunits that were differentially expressed in P. mi-

cra-HT-29 based on STRING. (B) Protein network interaction of CUL1, YWHAH, and MCM7 with proteins associated with cell

cycle activity in HT-29 infected with P. micra generated using STRING; (C) Network of EMT-related proteins in CRC tumorigenesis

expressed by HT-29 upon P. micra infection generated from STRING.

subtype 1 (CMS1) [24], remains few. P. micra was previously known as Streptococcus micros (1933), Peptostrepto-
coccus micros (1957), and Micromonas micros (1999) [25,26] and is the sole species in the Parvimonas genus. It is
a Gram-positive cocci, an obligate anaerobe that resides dominantly in the oral cavity as a commensal pathogen. Even
so, the isolation of P. micra is not limited to the oral cavity [27], but also in the laryngeal pharynx, gastrointestinal
tract, pus abscess, spondylodiscitis, and blood samples [28–30].

8 © 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. Summary of events in P. micra-associated tumorigenesis

P. micra-associated carcinogenesis in HT-29 at different post-infection time points. Cell inflammation was detected at 2 hr, followed

by cell proliferation and increased wound healing at 24 and 48 hr post-infection.

In the present study, P. micra infection was accompanied by a significant increase in the proliferation of HT-29 for
three consecutive days, compared with our control experiments comprising E. coli-HT-29 and uninfected HT-29 that
showed no significant changes. In addition, co-culture of P. micra with HT-29 demonstrated significantly increased
wound healing properties even at 48 hr observation. Similar observations were reported by Zhao et al. suggesting that
the bacteria may trigger proliferative signalling in cells and lead to uncontrollable cell division [17].

Upon co-culturing P. micra and HT-29, the expression of IL-5, IL-8, CCL20, and CSF2 became elevated; indi-
cating the possible activation of PI3K-AKT, NF- κB and MAPK pathway in P. micra-associated CRC [31–34]. In-
deed, most CRC-associated pathobionts have been shown to modulate inflammation. Enterotoxigenic B. fragilis was
found to induce colonic tumours via the T-helper type 17 inflammatory response [8] and infection of F. nuclea-
tum caused upregulation in cellular cytokines levels via NF-κB activation and β-catenin phosphorylation [35]. In
the in vivo study by Yu et al. [18], P. micra infection of germ-free mice was found to increase the expression level of
pro-inflammatory cytokines including TNF-α, IL-17A, IL-6, and CXCR1, indicating the importance of inflamma-
tion in pathobiont-associated CRC. Even though the increases were only observed at the 2 hr time point in our study,
this infection-associated inflammation may sustain in vivo, especially in the colon of CRC patients. This occurs in
addition to cell proliferation and migration, contributing towards tumorigenesis.

To further disentangle the roles of P. micra in CRC, differential protein expression between P. micra-HT-29 and
uninfected HT-29 was determined. Proteins of cellular components in HT-29 were found to be enriched by P. micra
infection and this corresponds to the proliferative changes observed in our functional assays. In addition, expression
of proteins involved in NIK/NF-κB, Wnt signalling, and TNF-mediated signalling pathways [36,37] were also elevated
in P. micra infected HT-29, indicating the carcinogenic role of the bacteria in tumorigenesis. Of note, up-regulation
of PSMB4 was also found in P. micra-HT-29, which hypothetically occurred alongside the increased expression of

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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neighbouring proteasomal subunits of PSMA1, PSMA3, PSMB8, PSMC2, PSMD1, PSMD5 and PSMD6. These pro-
tein components are crucial to the ubiquitin–proteasome pathway (UPP) activation in cancer [38,39], where they
interfere degradation of β-catenin via Wnt signalling, resulting in continuous proliferation and metastasis in CRC
[40,41]. PSMB4 was also found to be associated with formation of blood vessels (angiogenesis) and metastasis [42,43].
Upregulation of PSMB4 and mutated tumour suppressor p53 in the infected cells might function to activate inflam-
matory responses via NIK/NF- κB pathways [23,44]. On the other hand, down-regulation of CUL1, YWHAH, and
MCM3 was observed; these proteins play a role in disturbing cell cycle activity [45–47]. Furthermore, significant
differentially expressed EMT proteins were found to be induced by P. micra infection, mediating the cells towards
increased proliferation, invasion and survival in CRC [48–53]. In addition, regulation of proteins such as HSAP9,
HSP90B, and AIFM1 was altered, restricting apoptosis and promoting proliferation of infected cells [54–56].

Taking it all together, we found that P. micra infection in HT-29 for 2 hr in an in vitro system lead to increased
inflammatory response in the cells. This occurs in concert with cell perturbation due to proteasome and cell cycle
activity, mediating the cells towards EMT at 24 hr after infection. Morphologically, increased cell proliferation and
wound healing were observed compared to HT-29 cells without infection, signifying the contribution of P. micra
towards increased tumorigenesis in HT-29 (Figure 4). Nevertheless, as these observations were found in an in vitro
model utilizing a CRC cell line (whereas an in vivo model will allow investigation into the dynamic effects of chronic
P. micra infection on the colon cells), future studies investigating similar parameters of the bacterial infection in an
animal model will be useful to confirm the definite role of P. micra in CRC.

Future direction
As this study has been conducted on the HT-29 (a CRC cell line) and with P. micra as the only tested pathobiont,
future areas of investigation include to confirm the tumorigenic potential of the bacteria in a non-CRC colon cell line,
both in a sole-pathobiont and also dysbiotic bacterial community study to elucidate the complexity and interaction of
these bacterial communities in CRC. It will also be interesting to investigate the ability of probiotics in protecting cells
infected with P. micra from tumorigenesis. As P. micra demonstrated tumorigenic properties in this study and has
been identified to be over-represented in gut mucosal tissues and stool samples of CRC patients, the bacteria could
be investigated as potential biomarker for CRC.

Conclusions
In conclusion, this study demonstrated increased tumorigenesis properties caused by P. micra infection in a HT-29
model and provided additional evidence of P. micra as a pathobiont in the colon. Future studies of the bacteria’s
interplay with other colon pathobionts will be important to understand its role in CRC.
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