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Abstract

Age-related changes in immune competency and inflammation play a role in the decline of physical function. In this review of the conference 
on Function-Promoting Therapies held in March 2022, we discuss the biology of aging and geroscience with an emphasis on decline in physical 
function and the role of age-related changes in immune competence and inflammation. More recent studies in skeletal muscle and aging 
highlighting a crosstalk between skeletal muscle, neuromuscular feedback, and immune cell subsets are also discussed. The value of strategies 
targeting specific pathways that affect skeletal muscle and more systems-wide approaches that provide benefits in muscle homeostasis with 
aging are underscored. Goals in clinical trial design and the need for incorporating differences in life history when interpreting results from 
these intervention strategies are important. Where applicable, references are made to papers presented at the conference. We conclude by 
underscoring the need to incorporate age-related immune competency and inflammation when interpreting results from interventions that 
target specific pathways predicted to promote skeletal muscle function and tissue homeostasis.
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Although aging is a commonly recognized feature of life and living, 
there is a growing awareness that this process is heterogeneous, in-
fluenced by a life history of exposures and experience, from cell to 
whole person to ecosystem. How these experiences variably shape 
biological vulnerabilities and reserves, the mechanistic details, and 
the rate of their effects on health outcomes have become central 
questions in studies of biological aging.

Over the last decade, multiple molecular tools have been de-
veloped to measure the pace of biological aging and have revealed 
that people with the same chronological age (years from birth) can 
differ in biological age based on various molecular clocks, including 
methods measuring a composite immune profile (1), epigenetic 
clocks based on DNA methylation (2,3), and circulating plasma 
proteome signatures (4). A central question in the emerging field of 
geroscience is defining the linkage between molecular clocks and 
associations with capacities, reserve and resilience, and consequent 
health-span outcomes (5).

More recently, there has been interest in whether multiple aging 
conditions (eg, disease conditions, cognitive and physical decline, 

immune dysfunction) are outcomes of age-related changes in a 
limited set of molecular pathways, referred to as the hallmarks or 
pillars of aging (6). These include pathways related to senescence, 
stem cell function, macromolecular damage, and inflammation. How 
these pathways change and interact to drive biological aging at the 
cellular, organ, and whole-body levels, and whether those effects are 
asynchronous across organ systems to alter the pace of biological 
aging is unclear but is likely related to the history of stress exposures 
and host responses over the life course.

As highlighted in the conference focused on Function-Promoting 
Therapies by Anne Newman (7), mobility disability is among the most 
common types of age-related disability that can be in part averted 
through increased physical activity. How biological aging changes the 
transduction of benefits of physical activity remains a key challenge 
in the field. Functional independence and mobility are essential fea-
tures of healthy aging. Loss in functional independence, while having 
a complex etiology, is often linked to derangements in at least one of 
the hallmarks of aging: inflammation and immune homeostasis (8,9). 
Immune derangements (addressed later) generally include changes in 

https://orcid.org/0000-0001-8738-2838
mailto:mmontano@bwh.harvard.edu?subject=


immune cell subsets, for example, lymphoid and myeloid cell subsets, 
their function in inter-organ crosstalk, and changes in circulating 
factors that promote inflammation. Immune derangements are also 
associated with multiple age-related conditions, and indeed, systems-
guided approaches have identified associations between immune age 
biomarkers and multimorbid burden (1).

Skeletal muscle homeostasis is a dynamic process of muscle 
remodeling that relies on crosstalk with immune factors during 
muscle regeneration. This immuno-myogenic crosstalk occurs both 
in response to injury and in skeletal muscle regeneration as part of 
skeletal muscle maintenance (10,11). Therefore, identifying specific 
modifiable pathways that drive immune changes with aging, and 
the role of those changes in altering immune function, by altering 
tissue maintenance (eg, skeletal muscle tissue), as well as negative (or 
positive) effects on tissue vulnerability to stressors or resilience to 
stressors requires further investigation.

Immune Aging

Biological aging affects immune homeostasis, with age-related 
changes occurring in both the proportion of immune cell subsets 
and their functionality. Overall, there tends to be a decline in im-
munocompetence (eg, presentation, signaling, and pathogen clear-
ance) and an increase in inflammation. The decline in immune 
function that occurs with aging includes thymic involution and loss 
in lymphopoiesis by hematopoietic stem cells. Broad changes are evi-
dent across innate, adaptive, and circulating immune profiles, with 
declines in naïve T and B lymphocytes and expansion of memory 
and cell exhaustion phenotypes (Table 1).

Changes in innate response include blunted immune responses, 
with neutrophil and natural killer (NK) cell loss in pattern recogni-
tion receptor activation and increases in NK cell number but decline 
in functional capacity (16–18). There are also increases in myeloid 
cells; however, there is a functional decline in macrophage phagocyt-
osis. Changes in adaptive response include a reduced T-cell receptor 
mobilization. There is a skewed memory, termed “memory inflation” 
of T-cell subsets specific for cytomegalovirus that appears to con-
strict the T-cell repertoire. Autoreactive memory B cells accumulate; 
B-cell functional antibody responses decline (eg, antibody-dependent 
cellular cytotoxicity). The relative contribution of these potential 
drivers of loss in immune homeostasis is likely influenced by anti-
genic exposures and immune response to environmental stressors 
(12,19–22).

Changes in circulating factors include age-related increases 
in circulating interleukin-6 and variably other factors including 
C-reactive protein, interleukin-1beta, fibrinogen, tumor necrosis 
factor, and others. The drivers that may contribute to age-associated 
inflammaging include (a) adiposity, (b) microbial translocation, (c) 
accumulation of T cells reacting to specific antigens, and (d) the 
senescence-associated secretory phenotype (SASP), a composite of 
many inflammatory factors. The relative contribution of drivers 
likely differs based on life history (23,24) and is exacerbated by 
age (25–28).

The decline of the immune system with aging serves as a catalyst 
to age-related diseases or conditions by failing to protect older adults 
against the development of infections and adequate response to vac-
cines; malignancies, autoimmune diseases, and other conditions; and 
providing inappropriate or misguided support in tissue regeneration, 
maintenance, and wound healing (13).

As discussed in the conference proceedings, Denis Mogilenko and 
colleagues identified a distinct subset of clonal Granzyme K (GZMK)+ 
CD8+ T cells as a conserved cellular hallmark of inflammaging in mice 

and humans (27) that accumulate across multiple organs (spleen, lungs, 
liver, peritoneal cavity) in young and old mice. Further studies of the 
GZMK+ CD8 T cells showed that expression of GZMK+ is virtually 
absent in young CD8 T cells and appears as distinct, separate clusters 
in the “age-associated population” of CD8 T-cell evidence for clonal ex-
pansion with age of the CD8 T-cell population. In human cohort studies, 
single-cell RNA sequencing of the blood of healthy young and old 
human males revealed that GZMK+ cells were distinctly accumulating 
with healthy aging. Dissecting healthy aging cross-sectionally (GZMK+ 
CD8 T cells and lifetime trajectory of human aging) was another ap-
proach taken by investigators to explore whether a cross-sectional look 
at multiple points of the lifetime would yield similar types of trajec-
tories and observed 3 major subpopulations accumulated with age—
central memory cells, GZMK+ effector memory cells, and Granzyme B 
(GZMB)+ effector memory cells (27,29).

Interactions between multiple organs (eg, immune compartment 
and skeletal muscle, neuroendocrine) are essential to ensure physio-
logic homeostasis and are the basis for exciting new technologies 
focused on inter-organ crosstalk (30) and disease progression (31). 
Whether and how mechanistically the accumulation of distinct 
lymphoid subsets in distinct organs with aging skews inter-organ 
crosstalk to dysregulate global homeostasis of physiologic function 
remains to be determined (Figure 1).

Skeletal Muscle—Immune Interactions

Age-related loss in muscle mass (atrophy), although initially conceived 
as an imbalance in protein synthesis versus protein degradation, is 
now understood to be driven by multiple interrelated conditions as 
discussed by Sue Bodine and others (7). These interrelated conditions 

Table 1. Inflammation and Immunocompetence in Aging

Decline in Immunocompetence and Increase in Inflammation 

General changes in immune function
 Thymic involution
 Loss in lymphopoiesis by HSCs
 Declines in naïve T and B lymphocytes
 Expansion of memory and cell exhaustion phenotypes
Changes in innate response
 Blunted immune responses
 Neutrophil and NK cell loss in PRR activation  
 Increase in NK cell number but loss in functional capacity
 Relative increase in myeloid cells
 Decline in macrophage phagocytosis
Changes in adaptive response
 Reduced TCR mobilization
  “Memory inflation” of T-cell subsets specific to CMV
 Autoreactive memory B cells accumulate
 B-cell functional antibody response declines
Changes in circulating factors
 Aging-related increases in circulating IL-6
 Changes in CRP, IL-1b, fibrinogen, TNF, and other factors
Drivers contributing to age-associated inflammaging
 Adiposity
 Microbial translocation
 Accumulation of T cells reacting to specific antigens (eg, CMV)
 Senescence and SASP

Notes: The table summarizes consensus observations from reviews on im-
mune aging (12–15). CMV  =  cytomegalovirus; CRP  =  C-reactive protein; 
HSCs  =  hematopoietic stem cells; IL  =  interleukin; NK  =  natural killer; 
PRR = pattern recognition receptor; SASP = senescence-associated secretory 
phenotype; TCR = T-cell receptor; TNF = tumor necrosis factor.
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input is likely affected by multiple factors that can include both in-
trinsic changes in motor unit number with biological aging as well as 
extrinsic environmental factors such as hormones, nutrition, inflam-
mation, physical activity, and psychosocial factors (47,48).

Therapeutic Strategies and 
Immune Considerations

Targeted Strategies Focused on Modulating Skeletal 
Muscle Intrinsic Mechanisms (Eg, Testosterone, 
Selective Androgen Receptor Modulators, Myostatin)
Testosterone levels have been inversely associated with age-related 
circulating markers of inflammation (49), and sex steroids more 
generally have been linked to immunocompetence (50). Testosterone 
treatment increases skeletal muscle mass and strength in young 
and older men and can be augmented by exercise and growth 
hormone. Testosterone promotes increase by inducing type 1 and 
2 muscle fibers and increasing satellite cell number but has more 
modest effects on physical performance measures such as gait speed, 
as discussed by Shalender Bhasin (7). The advent of selective an-
drogen receptor modulators (SARMs) may provide anabolic benefits 
while minimizing the androgenic risk of prostate hyperplasmia and 
erythrocytosis, as discussed by Adrian Dobs (7). Combined modal-
ities that include testosterone, SARMs, and other nutritional supple-
ments with exercise need to be explored in future studies.

A key repressor of skeletal muscle hypertrophy is the secreted 
factor myostatin (a.k.a. growth differentiation factor 8, GDF-8), 
achieved in part through inhibition of the mTOR signaling pathway 
(51). Overexpression or knockout of myostatin expression can cause 
significant atrophy (52) or hypertrophy (53), respectively. Daniel 
Rooks (7) discusses progress in clinical trial manipulating myostatin 
levels. Interestingly, myostatin inhibition has been linked to a reduc-
tion in systemic inflammation (54,55), further linking anabolic pro-
cesses with immune homeostasis.

Systems Strategies Targeting Skeletal Muscle 
Extrinsic Modulators
The geroscience hypothesis (ie, that multiple age-related condi-
tions result from a finite set of evolutionarily conserved molecular 
processes) implies a dynamic balance between gerodrivers and 
geroprotectors over the life course (5,31). Research presented by 
Joseph Baur (7) describes nicotinamide adenine dinucleotide (NAD) 
decline with aging adding to a growing appreciation for the linkage 
between decline in NAD levels and various age-related disease states 
(56–59). Age-related declines in NAD in blood and tissues in multiple 
models have been linked to deficits in mitochondrial function and 
metabolic capacity (60–63). In humans, data are more limited with 
evidence for age-associated declines in NAD in skin (62), brain (63), 
and adipose tissue (64). In mouse skeletal muscle, genetic knockout 
of NAD biosynthesis results in elevated centrally located nuclei and 
reduced PGC-1a activity (65), followed by a decline in mitochondrial 
function and exercise capacity (65). Cellular inflammatory responses 
require bioenergetic adaptations to mediate effector functions. 
Knockdown of the energy sensor adenosine monophosphate–acti-
vated protein kinase (AMPK) increases pro-inflammatory cytokines; 
conversely, activation of AMPK increases anti-inflammatory ex-
pression (66,67), in part through activation of the NAD-dependent 
SIRT1 deacetylation of the p65 subunit of NF-kB (68,69). The inter-
play between the AMPK->NAD->SIRT pathway and NF-kB-driven 
inflammation with aging requires further study.

Figure 1. Drivers of loss in homeostatic muscle maintenance of capacity. 
The accumulation of dysfunctional lymphoid subsets with aging skews 
inter-organ crosstalk. Shown are upstream effectors (eg, adiposity, microbial 
translocation, SASP) that potentially influence immuno-muscle crosstalk 
and homeostatic maintenance. SASP  =  senescence-associated secretory 
phenotype.

include disuse atrophy and denervation, and metabolic states such 
as chronic inflammation associated with multiple disease states both 
noncommunicable (8) chronic infection (31), hypoxia (32), altered 
autophagy and proteostasis (33), loss in bioenergetic capacity (34), 
and loss in optimal signaling through mechano-transduction and 
inter-organ crosstalk between muscle and nerve cells (35). It is likely 
that immune mechanisms interact with all of these atrophy pathways 
and stem cell–mediated remodeling of skeletal muscle to exacerbate 
muscle maintenance (36) and reflect a concomitant burden of poor 
muscle quality (37). Although outside the scope of this review, there 
is an emerging literature on the role for inflammasome activity, in 
response to pathogen or endogenous stressors, in reducing muscle 
function and increasing sarcopenic risk, as well as in the design of 
targeted interventions (38,39).

Immune interactions driving skeletal muscle regeneration and re-
pair are well described (36). Upon muscle injury, muscle tissue with 
resident muscle stem cells (ie, satellite cells) produces a chemotactic 
cytokine, monocyte chemoattractant protein 1, that recruits macro-
phages to the muscle tissue site of injury, whereupon the macrophage 
polarizes into an M1 type of macrophage that mediates removal of 
damaged muscle, followed by a transition into an M2 type of macro-
phage that stimulates muscle stem cell proliferation, differentiation, 
and fusion, that in effect replace damaged muscle (10,11). Age- and 
disease-related changes in circulating immune factors, as well as 
age-related changes in immune cell subsets and their function, might 
then be predicted to perturb muscle homeostasis. Indeed, with aging, 
the composition of muscle tissue shifts toward an increased pres-
ence of fibrotic cells and an altered and stiffer extracellular matrix 
that collectively impair muscle remodeling and reduce functional 
capacity (40–42). Recent studies highlight a role for optimal com-
pression and sensory neuron mechano-transduction as essential for 
skeletal muscle adaptation during exercise and aging (43,44).

Notably, neural input into muscle maintenance undergoes 
age-related changes, as noted by Brian Clark (7), limiting anabolic 
improvements in muscle strength and physical function. Loss in 
neural activation in part due to structural and functional changes in 
motor units resulting in the loss of motor units innervating muscle, 
reduced firing rates, and neuromuscular junction derangements (45). 
Additionally, sensory neurons through neuroimmune crosstalk and 
nociceptor signaling may contribute to and modulate inflammatory 
response affecting tissue homeostasis (46). The rate of loss in neural 
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Physical activity can act as a geroprotector by promoting resilience 
and reserve and providing a buffer against fatigue and fatigability 
(70,71), age-related multimorbidity (72), and inflammation (73). As 
discussed by Roger Fielding, Marco Pahor, Tom Storer, and others 
(7), exercise is an effective intervention to avert mobility loss (74). 
However, the exact molecular pathways that explain the beneficial ef-
fects of exercise and physical activity require further study—a major 
goal of the Molecular Transducers of Physical Activity Consortium, 
MoTrPAC (75). Physical reserves are geroprotectors that promote re-
silience and provide a buffer against fatigue and fatigability, thereby 
increasing capacity for physical activity beyond rest (70,71). Physical 
activity, in turn, may provide positive feedback, amplifying reserves 
that in effect decrease the risk for age-related multimorbidity and 
inflammation (72). Indeed, exercise improves mitochondrial health, 
which is linked to age-related inflammation (76).

Perspective on Function-Promoting Trials
Inhibiting or activating signaling molecules of the numerous known 
pathways underlying immunosenescence may offer an opportunity 
to pharmacologically prevent, reduce, or reverse age-related loss 
of muscle mass, strength, and function. In papers presented by 
Shalender Bhasin and Bill Evans (7), framing indications and stand-
ardizing outcomes and trial endpoints targeting skeletal muscle 
mass, function, and performance are needed. As a new flourishing 
therapeutic target, investigating the aging immune system may help 
us determine the impact of various lifestyle (nutrition, physical 
exercise) and pharmacological interventions. New biomarkers and 
indexes may be identified or better understood in their relation to 
the immune cells and cytokines that can eventually benefit the as-
sessment and treatment of age-related skeletal muscle dysfunctions.

The arsenal of therapeutic strategies based on geroscience that 
may be useful in this context continues to grow; however, defining 
the molecular transducers is currently an active area of research. For 
example, senolytic approaches appear to promote the clearance of 
senescent cells through apoptosis by B-cell lymphoma 2 (Bcl-2) in-
hibitors/Bcl-2 Homology 3 (BH3) mimetics, signaling pathway in-
hibitors (such as heat shock proteins, p53, histone deacetylase, and 
kinases), and mitochondria targeting (tamoxifen). For example, 
quercetin (a plant flavanol with senolytic activity that inhibits the 
Bcl-2 pro-survival pathway) when combined with dasatinib (a tyro-
sine kinase inhibitor) can improve the physical function in the con-
text of some disease states (77). Senomorphic approaches do not 
clear senescent cells but block their proliferation of a senescence 
phenotype (ie, SASP) (78), which as discussed earlier, is a significant 
contributor to age-related inflammation.

In summary, the conference on Function-Promoting Therapies 
raised many important questions regarding the role of immune–
muscle interactions and potential therapeutic opportunities, This 
adds to a growing awareness of the need to include aging effects 
on immunocompetence and inflammation when evaluating declines 
in physical function and when designing age-adjusted therapeutic 
strategies.
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