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A B S T R A C T

Background: The microbiome-gut-brain-axis (MGBA) is emerging as an important mechanistic link between diet and mental health. The role of sig-
nificant modifiers of the MGBA, including gut microbial metabolites and systemic inflammation, in individuals comorbid with obesity and mental
disorders, is under-investigated.
Objectives: This exploratory analysis examined associations among microbial metabolites—fecal SCFAs, plasma inflammatory cytokines, and diet with
depression and anxiety scores in adults comorbid with obesity and depression.
Methods: Stool and blood were obtained from a subsample (n ¼ 34) of participants enrolled in an integrated behavioral intervention for weight loss and
depression. Pearson partial correlation and multivariate analyses determined associations among changes in fecal SCFAs (propionic, butyric, acetic, and
isovaleric acids), plasma cytokines [C-reactive protein, interleukin 1 beta, interleukin 1 receptor antagonist (IL-1RA), interleukin 6, and TNF-α], and 35
dietary markers over 2 mo, and changes in SCL-20 (Depression Symptom Checklist 20-item) and GAD-7 (Generalized Anxiety Disorder 7-Item) scores
over 6 mo.
Results: Changes in the SCFAs and TNF-α at 2 mo were positively associated (standardized coefficients: 0.06–0.40; 0.03–0.34) with changes in
depression and anxiety scores at 6 mo, whereas changes in IL-1RA at 2 mo were inversely associated (standardized coefficients: –0.24; –0.05). After 2
mo, changes in 12 dietary markers, including animal protein, were associated with changes in SCFAs, TNF-α, or IL-1RA at 2 mo (standardized co-
efficients: –0.27 to 0.20). Changes in 11 dietary markers, including animal protein, at 2 mo were associated with changes in depression or anxiety
symptom scores at 6 mo (standardized coefficients: –0.24 to 0.20; –0.16 to 0.15).
Conclusions: Gut microbial metabolites and systemic inflammation may be biomarkers of importance within the MGBA, linking dietary markers, such as
animal protein intake, to depression and anxiety for individuals with comorbid obesity. These findings are exploratory and warrant replication.
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Introduction

Depression and anxiety are highly comorbid and the most common
neuropsychiatric illnesses, affecting approximately 280 and 284
million people worldwide, respectively [1]. Additionally, these disor-
ders are significantly prevalent in individuals with obesity [2].
Abbreviations used: FDR, False Discovery Rate; GAD-7, Generalized Anxiety Disorder
Better Mood and Weight version 2; IL-1RA, Interleukin 1 Receptor Antagonist; MGBA, M
Squares; PST, Problem-Solving Therapy; SCL-20, Symptom Checklist 20-Item.
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Unfortunately, effective integrated treatments are lacking, and mech-
anistic understanding of these neuropsychiatric illnesses, alone or in
comorbidities with obesity, are poorly understood.

Research on mechanistic processes involved in depression and
anxiety shifted toward understanding diet-related linkages to mental
disorders and the microbiome–gut-brain axis (MGBA) [3]. The MGBA
7-Item; HPA, Hypothalamic-Pituitary-Adrenal Axis; I-CARE2, Integrated Coaching for
icrobiome-Gut-Brain Axis; PHQ-9, Patient Health Questionnaire-9; PLS, Partial Least

23

served.

http://clinicaltrials.gov
mailto:maj2015@uic.edu
www.journals.elsevier.com/the-american-journal-of-clinical-nutrition
https://doi.org/10.1016/j.ajcnut.2023.01.018
https://doi.org/10.1016/j.ajcnut.2023.01.018
https://doi.org/10.1016/j.ajcnut.2023.01.018


T.CJ. Burton et al. The American Journal of Clinical Nutrition 117 (2023) 717–730
is a complex bidirectional communication system involving neural,
endocrine, and immune pathways along with gut microbiota and
metabolic functions [4]. Specifically, the gut microbiota is implicated in
producing neurotransmitters, essential vitamins, amino acid metabo-
lites, secondary bile acids, and SCFAs. In addition, these
microbial-produced metabolites modulate brain health and behavior via
the immune system [4, 5].

Diet is the predominant factor in gut microbiota establishment,
composition, and function [6, 7], and roughly 50% of the variation in the
gut microbiome is related to dietary changes [7, 8]. Moreover, gut
microbiome dysbiosis is associated with mental disorders, including
depression and anxiety [9]. However, mechanistic researches on the
linkage between mental disorders, diet-gut microbiota, and inflammation
are in its infancy, with studies showing fecal SCFAs, and gut microbiome
metabolites produced from fiber fermentation were lower in depressed
individuals than in controls [10–12]. Furthermore, SCFAs have benefi-
cial anti-inflammatory and mental health properties by inducing T-cell
differentiation, controlling inflammatory cytokine production, and
influencing serotonin and other neurotransmitter production [12].
Therefore, microbial fermentation of dietary fiber may play an essential
role in the pathophysiology of depression by modulating inflammation
and neurotransmitters, thereby regulating mood. However, current
research lacks explorations of the relationships between diet, gut
microbiome, and depressive and anxiety symptoms in individuals with
obesity comorbid with depression and associated anxiety.

Our recent randomized clinical trial, ENGAGE-2 (Engaging self-
regulation targets to understand the mechanisms of behavior change and
improve mood and weight outcomes in a randomized controlled trial-
Phase 2) was designed to elucidate potential multi-system mechanisms
underlying a 6-month integrated collaborative care intervention for co-
morbid obesity and depression [13]. Findings from ENGAGE-2 showed
significant treatment effects on depressive and anxiety symptoms but not
on BMI after the primary endpoint of 6 mo [14]. Here, we leverage blood
and stool samples collected from an ENGAGE-2 subsample (n ¼ 34) to
explore the potential mechanistic relationship between dietary behavior
change, MGBA, and depression and anxiety symptoms. Based on our
conceptual framework (Figure 1), this exploratory study examines if
changes in 1) fecal SCFAs and plasma inflammatory cytokines at 2 mo
are associated with changes in depressive and anxiety symptoms at 2 and
6 mo; 2) dietary markers at 2 mo are associated with changes in fecal
FIGURE 1. Conceptual framework of this study. GAD-7, Generalized Anx
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SCFAs and plasma inflammatory cytokines at 2 mo; and 3) dietary
markers are associated with depressive and anxiety symptoms at 2 and 6
mo.

Methods

Study design and intervention
This study was approved by the Institutional Review Boards for the

University of Illinois at Chicago (UIC) and Stanford University. All the
study procedures were conducted in accordance with the Declaration of
Helsinki of 1975, as revised in 1983. All participants provided written
informed consent. This clinical trial is registered at clinicaltrials.gov
(NCT03841682).

This substudy was conducted among a subsample of ENGAGE-2
participants (n ¼ 34) who consented to have their stool and blood
specimens collected at baseline and 2 mo (Supplemental Figure 1). The
rationale, study design, and main findings for the ENGAGE-2 trial
have been described in detail previously [13, 14]. Briefly, the
ENGAGE-2 trial was conducted from March 1, 2019, to August 31,
2020, with data assessments at baseline, 2 mo, and 6 mo, with 6 mo as
the study’s primary endpoint. Study participants for the parent study
were recruited from the Outpatient Care Center at the University of
Illinois Hospital and Health Sciences System in Chicago. Eligible
participants included patients who were 18 y or older, obese (BMI�30,
�27 if Asian), and depressed [Patient Health Questionnaire-9 (PHQ-9)
score �10]. Individuals with certain psychiatric (i.e., bipolar disorders
or psychotic) or significant medical comorbidities (i.e., cardiovascular
disease or diabetes mellitus), or special life circumstances (planned
relocation or pregnancy) were ineligible. In addition, patients with
magnetic resonance imaging contraindications (i.e., tumor or other
known structural abnormality in the brain, traumatic brain injury, or
weight>147 kg because of scanner constraints) were ineligible. A total
of 106 adults with a mean age of 47.0 y (SD, 11.9) and comorbid
obesity and moderate to severe depressive symptoms were enrolled.
Participants were randomized using a 2:1 ratio to receive the Integrated
Coaching for Better Mood and Weight version 2 (I-CARE2) inter-
vention (n ¼ 71) or usual care (n ¼ 35). Randomization balancing
factors included baseline characteristics of age, sex, self-identified
race/ethnicity, education, BMI, Depression Symptom Checklist
iety Disorder 7-Item Scale; SCL-20, Depression Symptom Checklist-20.
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20-item (SCL-20) score, and current antidepressant medication
(Yes/No).

The I-CARE2 intervention combines the Group Lifestyle Balance
program [15–17] for weight loss and the PEARLS program [18,19]
which is a collaborative stepped depression care approach that utilizes
Problem-Solving Therapy (PST) and behavioral activation strategies as
the primary therapy, with antidepressant medications as needed. The
6-month I-CARE2 intervention included 6 in-person individual PST
sessions in the first 2 mo and 3 additional PST sessions, and 11
home-based self-study Group Lifestyle Balance videos for the
following 4 mo [13, 14].

Participants for this substudy were included if they had biomarker
and dietary data collected at 2 mo, as the COVID-19 pandemic limited
the collection of biospecimen samples at 6 mo. Therefore, participants
without 2-month biomarker and dietary data were excluded from this
analysis. Additionally, data analysis focused on examining associations
with clinical outcome changes after 6 mo (as the primary endpoint of
interest) with biomarker and dietary marker changes after 2 mo.

Clinical outcomes
Depression and anxiety were assessed at baseline, 2 mo, and 6 mo.

We used SCL-20 as opposed to PHQ-9 for outcome assessment
because PHQ-9 was used for screening and for progress monitoring
only for the intervention group, whereas SCL-20 was administered at
the same time point regardless of randomization. In addition, SCL-20 is
a more sensitive assessment tool than PHQ-9, and it measures the
perceived impact of symptoms, whereas PHQ-9 measures symptom
frequency [20]. The SCL-20 scores range from 0 to 4, with higher
scores indicating more severe depressive symptoms [21]. Anxiety
symptoms were measured using the self-assessed Generalized Anxiety
Disorder 7-Item (GAD-7) Scale. GAD-7 scores range from 0 to 21,
with higher scores representing more severe anxiety levels [22]. Bio-
markers (SCFAs and cytokines) and dietary markers from baseline to 2
mo were used to predict changes in depression and anxiety outcomes
from baseline to 6 mo.

Assessment of Fecal SCFAs, Plasma Cytokines, and
Dietary Intake Markers

Fecal SCFAs, plasma cytokines, and dietary intake markers were
assessed at baseline and 2 mo. At baseline, 59 participants had fecal
SCFAs, plasma cytokines, and diet data, except for 1 participant that
did not collect a stool sample. At 2 mo, 34 participants had fecal SCFAs
and plasma cytokines, and 52 had dietary intake data. A full list of the
fecal, blood, and dietary markers examined is shown in Supplemental
Table 1.

Fecal SCFAs and Plasma Cytokines
Rectal swabs containing stool samples for the SCFAs assessment

were collected by the participants at the UIC Clinical Research Center
or home [23] and submitted for processing within 24 h. For home
collection, participants stored the collected samples in their freezer
until transferred to UIC for processing. The collection kit included 2
rectal swabs, gloves, instructions, and a commode specimen collection
system (Minigrip LabGuard). Participants collected samples via rectal
swabs or collected stool in the commode specimen system and dipped
the swab in the collected stool. Analysis of the swabs for the SCFAs—
propionic, acetic, isovaleric, and butyric acid — was performed with
liquid chromatography with tandem mass spectrometry, LC-MS/MS,
with support from the UIC Mass Spectrometry Core in the UIC
Research Resources Center. SCFAs were extracted from swabs using
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MeOH:H2O (1:1, v/v) (Sigma-Aldrich), derivatized using 200 mM
3-nitrophenylhydrazine hydrochloride in 50% aqueous MeOH with
120 mM ethylene dichloride (Sigma-Aldrich) and ran on an Agilent
Single Quad 1290 gas chromatograph-mass spectroscope ultra--
high-performance liquid chromatography, UHPLC, system. Standard
compounds (propionic, acetic, isovaleric, and butyric acid) were dis-
solved in H2O:MeOH (1:1, v:v), and standard curves were created with
9 points (0.5, 1, 5, 10, 25, 50, 100, 200, and 500 μM). Internal stan-
dards consisting of 13C isotopes of each respective SCFAwere used to
determine extraction efficiency. Agilent MassHunter, the qualitative
analysis software, was used to extract the ion chromatograms. The total
amount of each SCFA present in each sample was determined by
calculating the area under the curve and comparing it to its respective
standard curve. All values were normalized to the total mass of the
samples.

Plasma for assessment of cytokines was obtained by venipuncture
with participants. Fasting was not required. Commercially available
ELISA kits were used (R & D Systems, Inc.) to quantify human CRP,
interleukin 1 beta (IL-1β), interleukin 6, interleukin 1 receptor antag-
onist (IL-1RA), and TNF-α.

Rectal swabs and plasma samples were stored at –80�C until
analysis.

Dietary intake markers
Dietary intake was captured and analyzed using multiple 24-h diet

recalls [24] (2 weekdays and 1 weekend day, with the majority within
1–2 wks) with the Windows-based Nutrition Data System for Research
software, version 2018 (University of Minnesota). Thirty-five a priori
dietary variable, including the DASH score, calories, fats, protein, fruit
and vegetable intake, micronutrients, alcohol consumption, fiber, and
certain phytochemicals (see the full list in Supplemental Table 1) were
selected for inclusion in the analysis based on consultation with team
experts in nutrition, gut microbiome, and neuropsychology research.
Overall diet quality was assessed using the DASH concordance index
[25]. This DASH index consists of 9 nutrient targets (i.e., total fat,
saturated fat, cholesterol, total protein, fiber, magnesium, calcium,
sodium, and potassium); DASH scores range from 0 to 9 points, with
higher scores indicating higher diet quality.
Statistical analysis
The sample size was designed for exploratory analysis of the bio-

specimen collection from the parent trial with the proposed selection of
60 participants [13], of which 59 participants were included at baseline.
However, data from participants in both the intervention and usual care
control groups of the parent were eventually combined for the statis-
tical analysis because of the limited number of participants completing
biospecimen sample collection at 2 mo (n ¼ 34) because of the
COVID-19 pandemic shutdown.

Fecal SCFA and plasma inflammatory cytokine data were log-
transformed, and dietary data were standardized per 1000 cal intake.
To fulfill each study objective, we conducted 2 sets of analyses using a
stepwise variable selection process. First, Pearson partial correlation
coefficients were generated to measure the linear relationships between
the changes in 1) individual biomarkers (i.e., fecal SCFA and plasma
proinflammatory cytokines) at 2 mo and clinical outcomes at 2 and 6
mo, 2) dietary markers and biomarkers at 2 mo, and 3) dietary markers
at 2 mo and clinical outcomes at 2 and 6 mo. Correlations were adjusted
for age, sex, and treatment group. To aid in transparent interpretation,
we reported a false discovery rate (FDR) [26, 27] corrected P value
with a cutoff threshold of <0.20, in conjunction with the unadjusted P
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value, for the Pearson partial correlation. However, due to the
exploratory nature of this study, significant correlations were identified
by having an unadjusted P< 0.05. Thus, the significant biomarkers and
dietary markers were selected as variables for the next step. Second,
partial least squares (PLS) analysis was used to further identify linear
combinations (factors) of 1) changes in biomarkers at 2 mo as pre-
dictors of changes in clinical outcomes at 2 and 6 mo, 2) changes in
dietary markers at 2 mo associated with changes in biomarkers at 2 mo,
3) changes in dietary markers at 2 mo as predictors of changes in
clinical outcomes at 2 and 6 mo. The factors were used to explain the
dependent variable and predictor variation. Variable importance plots
and centered and scaled parameter estimates were generated. All sig-
nificant association results (P < 0.05) are reported, and only larger
coefficient loadings that were �0.2 or �–0.2 for the PLS analysis were
discussed.

All analyses were conducted using SAS, version 9.4 (SAS Institute
Inc.).
TABLE 1
Characteristics of study participants, collected at baseline1

Characteristic Participants included (n

Age, y2 46.8 � 11.2
Female, n (%)2 23 (67.7)
Race/ethnicity (self-identified), n (%)
Non-Hispanic White 6 (17.7)
African American 19 (55.9)
Asian/Pacific Islander 0 (0.0)
Hispanic 6 (17.7)
Other (e.g., decline to state, multirace) 3 (8.8)

Education, n (%)
High school/GED or less 5 (14.7)
College - 1 y – 3 y 13 (38.2)
College - 4 y or more 11 (32.4)
Postcollege 5 (14.7)

Income, n (%)
<$35,000 13 (38.2)
$35,000 to <$55,000 8 (23.5)
$55,000 to <$75,000 2 (5.9)
�$75,000 11 (32.4)

BMI, kg/m2 36.6 � 6.2
Weight, kg 101.3 � 13.3
Waist circumference, cm 111.8 � 12.7
PHQ-9 score 12.3 � 2.3
10–14 (moderate depression), n (%) 30 (88.0)
15–19 (moderately severe depression), n (%) 3 (8.8)
�20 (severe depression), n (%) 1 (2.9)

SCL-20 score 1.0 � 0.7
GAD-7 score 5.0 � 4.0
0–4 (minimal anxiety), n (%) 15 (44.1)
5–9 (mild anxiety), n (%) 15 (44.1)
10–14 (moderate anxiety), n (%) 3 (8.8)
15–21 (severe anxiety), n (%) 1 (2.9)

Current use of ADM, n (%) 2 (5.9)
SBP, mmHg 124.2 � 17.9
DBP, mmHg 78.9 � 14.4
DASH score 1.6 � 0.9
Intake of fruit and vegetable, servings/d 2.5 � 2.0
Total fat, g/d 67.6 � 20.5
Energy intake, kilocalories/d 1658.0 � 550.9

ADM, antidepressant medication; DBP, diastolic blood pressure; GAD-7, Generali
P value; PHQ-9, Patient Health Questionnaire-9; SBP, systolic blood pressure; SC
1 Values are mean � SD unless noted otherwise.
2 Prognostic factors for randomization: age, sex, and treatment group.
3 Indicate P values <0.05.
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Results

Participant characteristics
A total of 34 (57.6%) participants completed biospecimen collection

at 2 mo and were included in this analysis (Supplemental Figure 1). Of
the 34 participants, the mean age was 47 y (SD, 11.2), 68% were female,
56% self-identified as African American, 18% as Hispanic, 85% had
some college or postcollege education, and 62% reported an annual
family income <$55,000 (Table 1). On average, participants had class 2
obesity [mean BMI, 36.6 (SD, 6.2)], moderate depression [mean PHQ-9
score, 12.3 (SD, 2.3); mean SCL-20 score, 1.0 (SD, 0.7)], mild anxiety
[mean GAD-7 score 5.0 (SD, 4.0)], and low diet quality [mean DASH
score, 1.6 (SD, 0.9)]. Among the 34 participants, 16 and 18 had 2, and 3
diet recalls, respectively, at baseline; 3, 21, and 10 had 1, 2, and 3 diet
recalls, respectively, at 2 mo. The mean (SD) days between the first and
last diet recalls was 13.53 (8.47) at baseline and 12.68 (13.79) at 2 mo,
with 58.82% having at least 2 diet recalls within the same week at
¼ 34) Participants not included (n ¼ 72) P

47.0 � 12.3 0.93
58 (80.6) 0.14

13 (18.1) 0.74
39 (54.2)
2 (2.8)
15 (20.8)
3 (4.2)

9 (12.5) 0.78
30 (41.7)
18 (25.0)
15 (20.8)

21 (29.2) 0.36
18 (25.0)
13 (18.1)
20 (27.8)
37.3 � 6.0 0.57
101.6 � 16.1 0.93
113.2 � 12.6 0.61
13.1 � 3.0 0.14
51 (70.8) 0.13
18 (25.0)
3 (4.2)
1.3 � 0.6 0.013

7.9 � 4.9 0.0043

28 (38.9) 0.08
19 (26.4)
20 (27.8)
5 (6.9)
17 (23.6) 0.033

121.8 � 16.4 0.49
76.2 � 8.9 0.31
1.6 � 1 0.95
3.1 � 1.9 0.13
73.4 � 34.7 0.28
1721.8 � 720.1 0.65

zed Anxiety Disorder 7-Item Scale; GED, general educational development; P,
L-20, Depression Symptom Checklist-20.
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baseline and 77.42% having at least 2 diet recalls within the same week
at 2 mo. Compared with those that were not included in this analysis
because of participant withdrawal and absence of biospecimen samples
resulting from the COVID-19 shutdown, participants in this substudy
exhibited significantly lower SCL-20 (P ¼ 0.01) and GAD-7 (P ¼
0.004) scores, and lower use of antidepressant medication (P ¼ 0.03).
Out of the 34 participants, 88%were comorbid withmoderate depression
(PHQ-9 score 10–14); and 88% experienced minimal to mild anxiety
(GAD-7 score <10) (Table 1).

Changes in SCFAs and inflammatory markers predict
changes in clinical outcomes

Table 2 shows Pearson partial correlation coefficients and P values
for changes in biomarkers at 2 mo and changes in clinical outcomes at 2
and 6 mo. Changes in the clinical outcome scores at 6 mo were posi-
tively associated with changes in TNF-α and most of the SCFAs (P <
0.5). Also, these biomarkers exhibited an FDR-corrected P < 0.2.
Changes in acetic acid were not associated with changes in GAD-7
scores at 2 or 6 mo but were positively associated with changes in
SCL-20 scores at 6 mo. Additionally, changes in IL-1RA were only
associated with changes in SCL-20 scores at 2 mo.

Using themultifactorial PLS analysis,which included all 4 SCFAs and
5 plasma inflammatory cytokines, 3 linear combinations (factors) were
extracted, explaining 62.9% of the variation in the dependent variables
(changes in SCL-20 and GAD-7 from 0 to 6 mo), whereas 55.0% of the
variation in the predictors (changes in the SCFAs and cytokines from 0 to
2 mo) was explained. The variable importance plot and the regression
coefficient profile (Figure 2) represent the contribution of changes in each
independent variable at 2 mo in predicting the changes in SCL-20 and
GAD-7 at 2 and 6 mo. For changes at 6 mo, the 3 factors were driven by
the changes in TNF-α, butyric acid, propionic acid, isovaleric acid, acetic
acid, IL-1RA, and CRP, with Importance for Projection statistic of Wold
>0.8 (Figure 2A). Changes in TNF-α, butyric acid, propionic acid, iso-
valeric acid, and acetic acidwere positively correlatedwith the changes in
SCL-20 (standardized coefficient loadings: 0.05–0.39) andGAD-7 scores
(standardized coefficient loadings: 0.03–0.34); and changes in IL-1RA
and CRP were negatively correlated with the changes in SCL-20 (stan-
dardized coefficient loadings: –0.24 and –0.07, respectively) and GAD-7
scores (standardized coefficient loadings: –0.05 and –0.16, respectively)
(Figure 2B). Results for changes in clinical outcomes at 2 mo were
TABLE 2
Pearson partial correlation coefficients (rpartial) and P values for changes in bioma

Biomarker change at 2 mo SCL-20 Change

at 2 mo (n ¼ 28) at 6 mo (n ¼ 23)

rpartial P FDR P rpartial P

CRP 0.10 0.63 0.78 0.16 0.52
IL-1β –0.31 0.13 0.25 –0.27 0.26
IL-1RA –0.40 0.0492 0.143 –0.41 0.07
IL-6 0.13 0.55 0.71 –0.07 0.77
TNF-α 0.07 0.74 0.86 0.50 0.032

Propionic acid 0.32 0.11 0.24 0.59 0.012

Butyric acid 0.31 0.13 0.25 0.68 <0.012

Isovaleric acid 0.29 0.16 0.27 0.55 0.012

Acetic acid 0.24 0.24 0.38 0.45 0.0472

FDR, false discovery rate; GAD-7, Generalized Anxiety Disorder 7-Item Scale; IL-
interleukin 6 protein; P, P value; rpartial, Pearson partial correlation coefficient; SC
1 Partial correlation adjusted for age, sex, and treatment group.
2 Indicate P values < 0.05.
3 Indicate FDR P values < 0.20.
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consistent with our primary endpoint at 6 mo. IL-1RA, TNF-α, and the 4
SCFAs were selected as significant biomarkers since they were identified
as important variables at both 2 and 6 mo.

Changes in SCFAs and inflammatory markers are associated with
changes in certain dietary markers at 2 mo

Based on the Pearson partial correlation results (Figure 3) showing
associations between dietary markers and the above 6 significant bio-
markers, IL-1RA, TNF-α, and the 4 SCFAs, and between dietary
marker changes at 2 mo and clinical outcome changes at 2 or 6 mo
(Table 3), 14 dietary markers were selected for PLS analysis which
included DASH score, fruits and vegetables, calories, animal protein,
monounsaturated fat, soluble fiber, added sugar, vitamin C, vitamin D,
beta-cryptoxanthin, alpha-carotene, daidzein, genistein, and glycitein.
These 14 dietary markers were significantly associated (P< 0.05) with
the changes in the 6 significant biomarkers at 2 mo or the clinical
outcomes at 2 or 6 mo. Among these 14 dietary markers, 4 had FDR-
corrected P < 0.2 for the correlations with the 6 significant biomarkers
(Figure 3), and 6 had FDR-corrected P < 0.2 for the correlations with
the clinical outcomes (Table 3). Components of the DASH score
calculation (total fat, saturated fat, total protein, total fiber, calcium,
magnesium, and potassium) that were significant in the Pearson partial
correlation between dietary markers and biomarkers were excluded in
the PLS analysis to limit the number of variables as predictors. In this
PLS analysis, 3 linear combinations (factors) were extracted, explain-
ing 41.3% of the variation in the dependent variables (changes in TNF-
α, butyric acid, propionic acid, isovaleric acid, acetic acid, and IL-1RA
from 0 to 2 mo), whereas 41.7% of the variation in the predictors
(changes in the 14 dietary markers from 0 to 2 mo) was explained.

Based on the variable importance plot and the regression coefficient
profile (Figure 4), the 3 factors were mainly driven by changes in 12 of
the 14 dietary markers, including DASH score, fruit and vegetable
intake, animal protein, monounsaturated fat, added sugar, vitamin C,
vitamin D, beta-cryptoxanthin, alpha-carotene, daidzein, genistein, and
glycitein from baseline to 2 mo (Figure 4A). Changes in these 12 di-
etary variables were mainly negatively correlated with the changes in
TNF-α, butyric acid, propionic acid, isovaleric acid, and acetic acid
(standardized loading coefficients: -0.24 to –0.01), except for mono-
unsaturated fat and added sugar which was mainly positively associ-
ated (standardized loading coefficients: 0.03–0.20) with these 5
biomarkers (Figure 4B). For correlations with changes in IL-1RA
rkers at 2 mo and changes in clinical outcomes at 2 and 6 mo1

GAD-7 Change

at 2 mo (n ¼ 28) at 6 mo (n ¼ 23)

FDR P rpartial P FDR P rpartial P FDR P

0.71 –0.02 0.92 0.95 –0.14 0.55 0.71
0.39 0.08 0.72 0.86 0.03 0.89 0.94
0.19 –0.19 0.37 0.54 –0.05 0.82 0.90
0.87 0.24 0.24 0.38 0.02 0.95 0.95
0.123 0.33 0.11 0.24 0.48 0.032 0.123

0.113 0.45 0.022 0.123 0.48 0.032 0.123

0.043 0.43 0.032 0.123 0.50 0.022 0.123

0.123 0.40 0.0462 0.143 0.49 0.032 0.123

0.143 0.34 0.10 0.23 0.34 0.14 0.25

1β, interleukin 1 beta protein; IL-1RA, interleukin 1 receptor antagonist; IL-6,
L-20, Depression Symptom Checklist-20.



FIGURE 2. Variable importance plot (A) and regression parameter profile (B) from PLS analysis (n ¼ 28 for 2 mo; n ¼ 23 for 6 mo). This graph shows the
variable important plot (A) and regression parameter profile (B), where in A, several predictors (biomarkers) met or exceeded the Variable Importance for
Projection (VIP) statistic Wold of 0.8. The VIP statistic of Wold illustrates the contribution of each predictor in fitting the PLS model for both predictors and
clinical outcomes. The most important biomarkers for changes at 6 mo were TNF-α, IL-1RA, and all the SCFAs, whereas changes at 2 mo had similar important
biomarkers with the addition of IL-1β. The regression parameter profile shows absolute coefficients for the centered and scaled parameter estimates (B). GAD-7,
Generalized Anxiety Disorder 7-Item Scale; IL-1β, interleukin 1 beta; IL-1RA, interleukin 1 receptor agonist; IL-6, interleukin 6; PLS, partial least squares
analysis; SCL-20, Depression Symptom Checklist-20.
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FIGURE 3. Heatmap of Pearson partial correlation coefficients, P values, and FDR-corrected P values for changes in dietary markers at 2 mo and changes in
biomarkers at 2 mo (n ¼ 28). P values are as follows: *P < 0.05, **P � 0.01, ***P � 0.001. zFDR values < 0.2. FDR, false discovery rate; IL-1β, interleukin 1
beta; IL-1RA, interleukin 1 receptor agonist.
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(Figure 4B), changes in monounsaturated fat, fruit and vegetable
intake, vitamin C, beta-cryptoxanthin, and glycitein were negatively
associated (standardized loading coefficients: –0.16 to –0.00), whereas
DASH score, animal protein, vitamin D, added sugar, alpha-carotene,
daidzein, and genistein were positively associated (standardized
loading coefficients: 0.001–0.20). The most significant correlations
(coefficients �0.2 or �–0.2) were between DASH score, fruit and
vegetable intake, animal protein, added sugar, vitamin C, and alpha-
carotene with the biomarkers.

Diet changes within the first 2 mo were associated with anxiety and
depression scores at 6 mo

In this PLS analysis including the same 14 dietary markers, 3 linear
combinations (factors) were extracted, explaining 62.2% of the varia-
tion in the dependent variables (changes in SCL-20 and GAD-7 from
0 to 6 mo), whereas 44.3% of the variation in the predictors (changes in
dietary markers from 0 to 2 mo) was explained.

Based on the variable importance plot and the regression coefficient
profile (Figure 5), the 3 factors were driven by changes in 11 out of the
14 dietary markers, including DASH score, calories, animal protein,
monounsaturated fat, soluble fiber, added sugar, vitamin D, alpha-
carotene, daidzein, genistein, and glycitein from baseline to 2 mo
(Figure 5A). Changes in DASH score, animal protein, soluble fiber,
723
vitamin D, daidzein, genistein, and glycitein at 2 mo were negatively
correlated with the changes in SCL-20 and GAD-7 (standardized co-
efficient loadings: –0.24 to –0.10 and –0.16 to –0.04, respectively) at 6
mo. Changes in calories, monounsaturated fat, and added sugar at 2 mo
were positively correlated with changes in SCL-20 and GAD-7 (stan-
dardized coefficient loadings: 0.15–0.20 and 0.08–0.15, respectively)
at 6 mo (Figure 5B). The most significant correlations (coefficients
�0.2 or �–0.2) were between animal protein and monounsaturated fat
with the clinical outcomes.

PLS analysis on the associations between changes in dietary
markers at 2 mo and changes in clinical outcomes at 2 mo showed
similar relationships to the results for changes in clinical outcomes at
6 mo. However, added sugar, calories, and DASH score were not
associated with the clinical outcomes at 2 mo (Figure 4A). The most
significant correlations (coefficients �0.2 or �–0.2) were between
monounsaturated fat and soluble fiber with the clinical outcomes at 2
mo.

Discussion

To our knowledge, this is the first study exploring longitudinal
relationships within the MGBA in individuals with obesity and



TABLE 3
Pearson partial correlation coefficients (rpartial) and P values for changes in dietary markers at 2 mo and changes in clinical outcomes at 2 and 6 mo1

Dietary marker change at 2 mo SCL-20 change GAD-7 change

at 2 mo (n ¼ 34) at 6 mo (n ¼ 26) at 2 mo (n ¼ 34) at 6 mo (n ¼ 26)

rpartial P FDR P rpartial P FDR P rpartial P FDR P rpartial P FDR P

DASH score –0.16 0.39 0.76 –0.43 0.042 0.23 –0.13 0.50 0.84 –0.12 0.57 0.82
Fruit and vegetable 0.08 0.65 0.85 –0.08 0.73 0.81 0.04 0.85 0.96 –0.03 0.88 0.92
Calories 0.08 0.68 0.85 0.42 0.0452 0.23 0.18 0.32 0.84 0.40 0.06 0.51
Total protein –0.24 0.20 0.63 –0.55 0.012 0.143 –0.26 0.16 0.64 –0.34 0.11 0.69
Animal protein –0.23 0.21 0.63 –0.53 0.012 0.143 –0.21 0.26 0.84 –0.29 0.18 0.82
Vegetable protein 0.05 0.77 0.85 0.07 0.74 0.81 –0.06 0.75 0.94 –0.08 0.73 0.85
Total fat 0.39 0.032 0.63 0.34 0.12 0.33 0.35 0.05 0.37 0.07 0.75 0.85
Saturated fat 0.22 0.24 0.63 0.27 0.21 0.42 0.13 0.48 0.84 0.12 0.59 0.82
Monounsaturated fat 0.28 0.13 0.63 0.49 0.022 0.163 0.32 0.08 0.48 0.14 0.51 0.82
Polyunsaturated fat 0.20 0.28 0.70 –0.25 0.24 0.45 0.18 0.34 0.84 –0.24 0.28 0.82
Trans-unsaturated fat 0.01 0.95 0.95 0.12 0.57 0.81 0.04 0.82 0.96 –0.09 0.68 0.85
Cholesterol –0.05 0.78 0.85 –0.08 0.72 0.81 –0.16 0.40 0.84 –0.13 0.55 0.82
Total fiber –0.14 0.45 0.82 0.00 0.99 0.99 –0.15 0.41 0.84 –0.21 0.33 0.82
Soluble fiber –0.25 0.17 0.63 –0.28 0.19 0.42 –0.29 0.12 0.58 –0.27 0.21 0.82
Insoluble fiber –0.05 0.78 0.85 0.13 0.54 0.81 –0.07 0.72 0.93 –0.16 0.48 0.82
Total grains –0.08 0.67 0.85 –0.09 0.68 0.81 0.11 0.57 0.84 0.15 0.49 0.82
Whole grains 0.13 0.47 0.82 0.23 0.29 0.51 0.20 0.27 0.84 –0.08 0.71 0.85
Refined grains –0.17 0.36 0.76 –0.20 0.36 0.59 –0.01 0.94 0.98 0.18 0.41 0.82
Total sugar –0.09 0.65 0.85 0.27 0.22 0.42 –0.11 0.56 0.84 0.15 0.48 0.82
Added sugar –0.03 0.87 0.90 0.36 0.09 0.30 –0.01 0.96 0.98 0.16 0.46 0.82
Alcohol 0.08 0.65 0.85 –0.02 0.92 0.94 0.10 0.60 0.84 0.06 0.80 0.87
Calcium 0.07 0.72 0.85 –0.09 0.68 0.81 –0.14 0.45 0.84 –0.15 0.51 0.82
Magnesium 0.04 0.84 0.89 –0.03 0.90 0.94 –0.15 0.43 0.84 –0.20 0.36 0.82
Potassium –0.30 0.10 0.63 –0.37 0.08 0.29 –0.27 0.13 0.59 –0.24 0.26 0.82
Sodium –0.05 0.78 0.85 –0.08 0.73 0.81 0.04 0.82 0.96 –0.08 0.71 0.85
Vitamin C 0.16 0.39 0.76 0.08 0.72 0.81 –0.12 0.54 0.84 –0.02 0.92 0.92
Vitamin D –0.16 0.38 0.76 –0.31 0.15 0.36 –0.40 0.032 0.24 –0.33 0.12 0.69
Alpha-carotene –0.30 0.10 0.63 –0.51 0.012 0.143 0.00 0.99 0.99 –0.09 0.67 0.85
Beta-carotene –0.23 0.22 0.63 –0.33 0.12 0.33 0.08 0.66 0.89 –0.02 0.92 0.92
Beta-cryptoxanthin 0.13 0.50 0.83 0.10 0.64 0.81 –0.13 0.50 0.84 –0.15 0.49 0.82
Lutein and zeaxanthin –0.29 0.12 0.63 –0.32 0.14 0.35 –0.11 0.56 0.84 –0.13 0.54 0.82
Lycopene –0.06 0.77 0.85 0.12 0.60 0.81 –0.03 0.89 0.97 –0.16 0.46 0.82
Daidzein –0.31 0.09 0.63 –0.37 0.08 0.29 –0.54 0.0022 0.023 –0.54 0.012 0.093

Genistein –0.29 0.11 0.63 –0.42 0.042 0.23 –0.58 <0.0012 0.023 –0.55 0.012 0.093

Glycitein –0.23 0.22 0.63 –0.39 0.06 0.28 –0.54 0.0022 0.023 –0.57 0.012 0.093

FDR, false discovery rate; GAD-7, Generalized Anxiety Disorder 7-Item Scale; P, P value; rpartial, Pearson partial correlation coefficient; SCL-20, Depression
Symptom Checklist-20.
1 Partial correlation adjusted for age, sex, and treatment group.
2 Indicate P values < 0.05.
3 Indicate FDR P values < 0.20.
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depression. Our data indicate that after 2 mo, changes in fecal SCFAs
and TNF-α positively correlated with changes in depressive scores at
6 mo, whereas changes in IL-1RA negatively correlated. In addition,
at 2 mo, these biomarkers were associated with changes in dietary
markers, including animal protein, which also correlated with
depressive scores at 6 mo. Together, these results are hypothesis-
generating, supporting future studies examining microbial fermenta-
tion and inflammation as potential mediators in diet effects on
depression and anxiety in obesity.

SCFAs, cytokines, and depression and anxiety
In this study, changes in fecal SCFAs were positively associated with

changes in depressive and anxiety symptoms. Gut-derived SCFAs
maintain central nervous system homeostasis and impact the hippo-
campus and striatum by modulating reward-associated behaviors,
cognition, and learning [28–31]. Evidence on SCFA supplementation in
obese mice decreased anxiety and depressive-like behavior, improved
Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity and intestinal
permeability, and altered anhedonia whereas showing increased fecal
724
SCFAs levels caused by stress [29]. Interestingly, this mice study,
cross-sectional studies in individuals with hypertension [32–34] and
obesity [35–37], and our findings support the hypothesis that higher
SCFA excretion and lower circulating SCFAs may indicate impaired gut
health, and higher stress and inflammation, thus representing a potential
pathway withinMGBA. However, studies assessing circulating and fecal
SCFAs are needed to confirm this hypothesis. Furthermore, other
cross-sectional studies demonstrated no association, or either a positive
[11, 38] or negative [10, 11, 38] association, between fecal SCFAs and
mood disorders, warranting further investigations.

Our data showed that after 2 mo, an increase in proinflammatory
TNF-α and a decrease in anti-inflammatory IL-1RA could predict an
increase in depressive and anxiety symptoms at 6 mo, supporting the
“cytokine” hypothesis of depression [39, 40]. Proinflammatory cy-
tokines may stimulate serotonin uptake, regulate neuronal serotonin
transporter activity, and activate indolamine-2,3-dioxygenase and
tryptophan pathways that reduce serotonin in depression [40]. For
anxiety, activation of stress response via HPA axis dysregulation and
diminishing actions of glucocorticoids inhibit proinflammatory



FIGURE 4. Variable importance plot (A)
and regression parameter profile (B) from
PLS analysis (n ¼ 29). This graph shows the
variable important plot (A) and regression
parameter profile (B), where in A, several
predictors (dietary markers) met or exceeded
the Variable Importance for Projection (VIP)
statistic Wold of 0.8. The VIP statistic of
Wold illustrates the contribution of each
predictor in fitting the PLS model for both
predictors and biomarkers. The majority of
the examined dietary markers were important
except calories and soluble fiber. The
regression parameter profile shows absolute
coefficients for the centered and scaled
parameter estimates (B). IL-1RA, interleukin
1 receptor agonist; PLS, partial least squares
analysis.
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activity through nuclear factor kappa B [41]. Anti-inflammatory
IL-1RA is an antagonist to proinflammatory interleukin 1 alpha and
IL-1β [42] and prevents their effect on serotonin homeostasis and
stress response. Nonetheless, longitudinal studies on associations of
cytokines with depression and anxiety symptoms are conflicting,
showing no association [43] or higher TNF-α in depressed subjects
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versus healthy controls [43–46]. Although for IL-1RA, showing
positive [47–49] and negative associations [50]. For anxiety, results
showed TNF-α positively correlating with anxiety symptoms
compared with controls [51, 52], and to our knowledge, longitudinal
investigations examining IL-1RA for anxiety are lacking. In contrast
to previous studies [44, 45, 56], our data did not show any



FIGURE 5. Variable importance plot (A) and regression parameter profile (B) from PLS analysis (n ¼ 34 for 2 mo; n ¼ 26 for 6 mo). This graph shows the
variable important plot (A) and regression parameter profile (B), where in A, several predictors (dietary markers) met or exceeded the Variable Importance for
Projection (VIP) statistic Wold of 0.8. The VIP statistic of Wold illustrates the contribution of each predictor in fitting the PLS model for both predictors and
clinical outcomes. The most important dietary markers for changes at 6 mo were monounsaturated fat, soluble fiber, and animal protein. Changes at 2 mo had
similar important dietary markers. The regression parameter profile shows absolute coefficients for the centered and scaled parameter estimates (B). GAD-7,
Generalized Anxiety Disorder 7-Item Scale; PLS, partial least squares analysis; SCL-20, Depression Symptom Checklist-20.
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associations between changes in IL-1β and interleukin 6, and a
modest inverse association between CRP at 2 mo with changes in
depressive and anxiety symptoms at 6 mo, meriting future studies.
Animal protein, biomarkers, and depression and anxiety
In this study, changes in 12 dietary markers significantly correlated

with the SCFAs, TNF-α, and IL-1RA, with DASH score, fruit and
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vegetable intake, added sugar, vitamin C, and animal protein, exhib-
iting larger coefficient loading standards (�0.2 or �–0.2). In addition,
for depression and anxiety scores, 10 dietary markers significantly
correlated with SCL-20 and GAD-7 scores at 2 or 6 mo, with mono-
unsaturated fat, soluble fiber, and animal protein displaying larger
coefficient loading standards. Interestingly, animal protein was the only
dietary marker associating significantly with the biomarkers and a
clinical outcome at 6 mo, highlighting its potential MGBA importance.



FIGURE 6. Potential microbiome-gut-brain axis relationships depicted in
obesity comorbid with depression and associated anxiety involving diet, fecal
SCFAs, and inflammatory cytokines. The linkage between diet and mental
health may rely on the mediating relationship of biomarkers such as in-
flammatory cytokines and gut microbial metabolites, SCFAs. For this sample
population, biomarkers at 2 mo, including 2 plasma cytokines, TNF-α and
IL-1RA, and 4 SCFAs, propionic, butyric, acetic, and isovaleric acids, were
associated with depression and anxiety scores after 6 mo. These biomarkers
at 2 mo were also associated with dietary intake markers such as animal
protein at 2 mo and animal protein associated with depression at 6 mo. IL-
1RA, interleukin 1 receptor agonist;.
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Our findings showed changes in animal protein intake inversely
associated with changes in SCFAs at 2 mo. Mechanistically, fecal
SCFA production involves carbohydrate fermentation, such as fiber,
from plant-based food consumption and nutrient bioavailability [53].
Animal protein can be high in fat, reducing plant carbohydrate
metabolizing bacteria, whereas plant-based protein increases beneficial
bacteria production [53]. Contrary to our findings, a previous cohort
study in individuals with obesity showed no association between fecal
SCFAs and animal protein [54]. Since SCFAs are produced by mi-
crobial fiber fermentation [53], surprisingly, our data lacked any as-
sociations between fiber and SCFAs, and other studies show similar
results [55, 56].

Animal protein intake inversely correlated with TNF-α and posi-
tively correlated with IL-1RA at 2 mo. The underlying mechanisms
between animal protein and inflammation are unclear [57, 58].
However, in a cross-over [59] and parallel-arm [60] randomized
clinical trial with healthy individuals, kangaroo, and wagyu beef were
associated with increased TNF-α levels, whereas salmon and herring
fish were associated with lower TNF-α levels [60]. Additionally, in
individuals with metabolic syndrome and obesity, there were no as-
sociations between changes in TNF-α from baseline and between
control and high protein diets; however, overall inflammatory scores
(which included TNF-α levels) were associated with increased meat
intake [61]. For our study, we did not differentiate between the type
and levels of animal protein which may explain the deviation from
previous studies, thus warranting further analysis. Additionally, to our
knowledge, no previous studies examined animal protein and IL-1RA
associations.

Our findings determined that after 2 mo, animal protein signifi-
cantly and inversely correlated with SCL-20 scores at 6 mo. The
mechanisms involved in the relationship between diet and mental
disorders are complex and poorly understood, acting on inflammation,
epigenetics, mitochondrial dysfunction, gut microbiome, obesity, the
HPA axis, and neurogenesis pathways [62]. Several systematic reviews
and cross-sectional studies suggest that certain animal protein intake is
associated with higher depression prevalence and incidence [63–67],
which complements our data. Interestingly, other reviews and
cross-sectional studies show that fish and white meat consumption is
associated with lower depression incidence [67–69]. Because we did
not differentiate between animal protein types, possibly explaining
differences in our data versus previous studies, more investigations in
this area.

Potential Mechanisms within the MGBA
This study does not infer causality or define the clinical impact of

the observed associations between fecal SCFAs, plasma cytokines,
dietary markers, and depression and anxiety symptoms. However, the
data presented suggest a potential mechanistic model within the
MGBA in individuals with obesity, depression, and anxiety. In this
sample population, inflammation and gut microbial fermentation may
be potential mediators in the dietary effects (specifically animal pro-
tein) on depression and anxiety (Figure 6). Since our sample size was
limited, we could not perform a mediation analysis. However, this data
informs future mediation studies that examine these biomarkers in
relation to diet within the MGBA.

Strengths and limitations
This exploratory study has several strengths. To our knowledge, this

is the first human study to provide insight into changes in SCFAs,
inflammatory cytokines, and dietary markers with depression and
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anxiety with respect to the MGBA in adults with comorbid obesity and
depression. Also, this study expands and extends current epidemio-
logical studies by addressing gaps in longitudinal associations of fecal
SCFAs and plasma inflammatory cytokines with depression and anx-
iety, a diet with these biomarkers, and a diet with these neuropsycho-
logical disorders, highlighting animal protein as a possible significant
MGBA dietary marker.

This study is not without limitations. By combining the data, we
explored relationships for adults with obesity comorbid with depres-
sion and associated anxiety; however, we cannot infer the relationship
differences based on the treatment effect of the intervention. We only
examined associations at 2 and 6 mo; therefore, a longer study could
provide insights into long-term associations. The gut microbiota
composition, structure, and functional metabolism could provide an
extensive understanding of gut microbiome relationships to diet and
mental health, which our future study includes. We did not measure
dietary supplement intake, which could affect depression and anxiety
scores and their associations with diet, SCFAs, and inflammatory cy-
tokines. We observed associations between animal protein; however,
the type of animal protein was not examined, which may show different
results. Lastly, depression and anxiety were not validated by a provider
and based on self-reported assessments, the majority of this substudy
participants experienced lower mood symptoms. Thus, further work is
needed to determine if our findings extend to those with higher
depression and anxiety levels.

In conclusion, in this study, after 2 mo, increased fecal SCFAs were
associated with worse depressive and anxiety symptoms after 6 mo.
Additionally, increased proinflammatory TNF-α and decreased anti-
inflammatory IL-1RA after 2 mo were associated with worse depres-
sion and anxiety symptoms after 6 mo. Animal protein is significantly
associated with biomarkers and depression, displaying its potential
impact within the MGBA. These findings are data-driven and
hypothesis-generating, highlighting the potential of implementing di-
etary changes and using anti-inflammatory medication to treat
depression, anxiety, and obesity simultaneously.
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