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BSTRACT 

dentifying cell types based on expression profiles 

s a pillar of single cell analysis. Existing machine- 
earning methods identify predictive features from 

nnotated training data, which are often not available 

n early-stage studies. This can lead to overfitting 

nd inferior performance when applied to new data. 
o address these challenges we present scROSHI, 
hich utilizes pre viousl y obtained cell type-specific 

ene lists and does not require training or the ex- 
stence of annotated data. By respecting the hierar- 
hical nature of cell type relationships and assign- 
ng cells consecutively to more specialized identi- 
ies, excellent prediction performance is achieved. 
n a benchmark based on publicly available PBMC 

ata sets, scR OSHI outperf orms competing meth- 
ds when training data are limited or the diversity 

etween experiments is large. 

NTRODUCTION 

fter more than two decades of technological de v elopment 
rom its earliest attempts ( 1 , 2 ), single cell transcriptomics 
tudies have come of age and are widely used for basic 
s well as translational r esear ch ( 3–5 ). This is best show-
ased by the recent explosion of single cell atlases of vari- 
us organs and organisms ( 6–9 ), as well as the use of sin-
le cell transcriptomics for disease investigation ( 10 ). The 
erm ‘atlas’ describes the result of identifying each and ev- 
ry cell type in the analyzed tissue sample for known cell 
ypes and disco vering no vel cell types defined by their tran- 
criptomic phenotype. Performing such cell type annotation 

anually is often a labor-intensi v e process requiring expert 
eld knowledge, in particular in the presence of closely re- 
 To whom correspondence should be addressed. Email: michael.prummer@nex
 Full author list provided in the appendix. 
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ated, unknown, or novel cell types such as developing or 
recursor cells. 
In recent years, a large number of tools have been de v el-

ped to automate cell type identification with varying per- 
ormance, as summarized in a recent benchmark study ( 11 ). 
he common theme of these tools is that the expression pro- 
le of a target cell is compared to known expression pro- 
les of particular cell types, possibly limited to a subset of 
enes that are relati v ely stab le and highly e xpressed. In or-
er to deri v e e xpr ession featur es pr edicti v e for a cell type, it

s commonplace to use unsupervised clustering of a single 
ell data set and assign the cluster labels to cell types based 

n biological interpretation. In the next step, this cell type 
abel is interpreted as the ground truth to build a machine 
earning model that finds the features relevant for cell type 
rediction. 
Howe v er, as will be shown in the course of this work, 

earning features and performing the classification on the 
ame data can lead to overfitting even if separate training 

nd test data are used, provided they both were acquired un- 
er the same experimental condition. As a consequence, the 
ell type classification uncertainty is underestimated during 

alidation and the true misclassification rate in the test situ- 
tion is unexpectedly large. In other words, in practice often 

eatur es (i.e. expr ession levels) learned in one study are ap- 
lied to other studies, e.g. of the same tissue type, with the 
ssumption that the same features enable a robust classifica- 
ion across studies. Howe v er, e xpression values can largely 

ary between experiments, and thus this assumption can be 
iolated in which case features should not be used across 
tudies. As a consequence, methods dependent on training 

ata are again prone to an increased misclassification rate 
 hen a pplied to new data. 
Another challenge in cell type classification is that some- 

imes the number of possible candidate cell types is large, 
hich tends to increase the misclassification rate. Howe v er, 
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mostly the cell types are related because they are the prod-
uct of dif ferentia tion from a smaller number of precursor
cell types. 

To address these challenges, we present s ingle c ell
RO bust S upervised H ierarchical I dentification of cell types
(scROSHI), which utilizes a-priori defined cell type-specific
gene list and does not r equir e training or the existence of
annota ted da ta. scROSHI is independent of an y inf orma-
tion on expression levels of the cell type-specific gene lists,
and thus less prone to overfitting to any particular data
set. In addition, scROSHI respects the hierarchical nature
of cell type relationships due to differentiation within a
lineage and it assigns cells consecuti v ely to more special-
ized identities. This allows to distinguish e v en closely re-
lated and expression-wise similar cell types. Taken together,
scROSHI achie v es e xcellent prediction performance, which
we show case b y comparing the performance of scROSHI
with three existing tools that scored among the best in a re-
cent benchmark study ( 11 ). To capture a realistic scenario,
we utilize three annota ted da tasets and a ppl y methods
across those data, i.e. cell typing is performed on a dataset
different from the training set. We show that scROSHI
outperforms the competing methods when the training
da taset dif fers from the da ta tha t is evalua ted for cell
typing. 

Taken together, scROSHI is a transpar ent, interpr etable,
and robust cell type classification a pproach particularl y use-
ful when previous knowledge about cell type-specific genes
is available but annotated training data is scarce. scROSHI
is available as an R package and can thus be seamlessly in-
tegrated into single cell analysis workflows. 

MATERIALS AND METHODS 

The key idea of scROSHI is conceptually simple: it r equir es
a list of cell types expected in a sample, and for each of
those cell types a list of genes expected to be cell-type spe-
cific (or in the minimum prominently expressed in only one
cell type). Based on this inf ormation, f or each cell and for
each cell type scROSHI compares the expression of the cell
type-specific genes with the expression of the genes selected
for the other expected cell types. The assumption is that a
single cell is 100% pure, i.e. is identified by one cell type
or another but not a mixture. Then each cell should show
high expression of cell type-specific genes for only one cell
type, which will be the cell type classified by scROSHI. Pro-
vided the observed object is indeed a single cell, this as-
sumption can be violated in two scenarios: (i) the cell type
of the cell is not among the list of presented cell types (or
the quality of the cell type-specific genes is poor) and (ii)
the genes of more than one cell type show high expression
(e.g. because two cell types are highly similar). In the first
scenario scROSHI will label the respecti v e cell as ‘cell type
unknown’ to indicate that either a novel (‘unknown’) cell
type is present and / or further investigation is warranted.
In the second scenario scROSHI will label the cell as ‘cell
type uncertain’, again indicating the need for further inves-
tigation, while providing information of which cell types
are likely candidates for classification to ease the manual
interpretation. 
scROSHI: design considerations 

The most important design criterion for scROSHI was that
the method should be capable of automated classification
in the absence of labeled training data. This excluded any
machine learning approach that would r equir e training a
model. Instead, the method should utilize and rely on the
vast amount of validated cell type-specific gene lists avail-
ab le from pre vious bulk or single cell experiments, such as
the widely acknowledged immune cell type gene lists (also
known as ‘ lm22 ’) used by the cibersort algorithm ( 12 ) or
the somewha t rela ted r esour ce for single cell melanoma data
( 13 ). 

Another important design criterion was that the method
should avoid re-training on a dataset currently under inves-
tiga tion. W hile, in general, inclusion of training data from a
variety of sources is advantageous, at this stage, re-training
would lead to overfitting and ther efor e to an overestimation
of the prediction performance. Provided the originally cho-
sen gene list was previously validated to be robust against
changes in the experimental condition, re-training is not
necessary. 

This argument can be turned around to provide a strategy
on how to arri v e at a suitab le gene list for cell types for which
a previously validated set is not available: included as cell
type specific genes, i.e. genes that are highly expressed in the
target cell type, should be those genes that have this prop-
erty independent of tissue type, sample type (i.e. cultured
immortalized cells, cultured primary cells, tissue biopsy),
detailed setup (culture medium, organism), or patient char-
acteristics (gender, ethnicity, age). The larger the di v ersity
of the test data, the more robust and broadly applicable the
final gene list. 

Gi v en a set of cell type-specific genes and without the
need for training a model, one possibility to assign a cell
type from a list of candidates to a target cell is to test for
association and choose the one that fits best. On one end
of the spectrum when measuring association is the hyperge-
ometric test comparing the proportion of highly expressed
genes specific for one cell type with the proportion of highly
expressed genes specific for all other cell types. The advan-
tage is that it can almost always be calculated and is robust
against expression outliers. On the one hand, it is simple to
use because the cell type-specific r efer ence does not have to
be known quantitati v ely in the form of an expression pro-
file. On the other hand, it is relati v ely insensiti v e because
it completely ignores the quantitati v e nature of the expres-
sion profile of the target cell, which is typically available.
On the other end of the spectrum when measuring associa-
tion one can quantitati v ely match the expression profile of
a known cell type to the expression profile of the target cell,
for instance, using Spearman’s correla tion. W hile this ap-
pr oach is r ob ust a gainst expression outliers, it is relati v ely
e xpensi v e in data availability, i.e. it r equir es knowledge of
the gene expression profile of the reference. We chose to fol-
low an intermediate path by performing a quantitati v e and
robust test, the Mann-Whitney rank sum test, to compare
the expression ranks of the genes specific for one cell type
with the ranks of the genes specific for all other cell types.
The negati v e log of the test’s p-value is then a measure of
the association strength between the target cell and this cell



NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 3 

t
c

t  

c
a
k
fi

u
t
p
f
s
t
t
b

T

1
2

3

4

 

5

6

7
 

8

9

t
i
t
r
u
i
i
a

t
1
n
t
e
d
p

r
s
t
m
T
f
a  

m
t  

c
m
l  

c

p
b
T
a  

w
n  

e
b
t
b
g
i

s
t
i
f
c
w
s
c
t
c
i
e

s
c
m

ype. It can be interpreted as a score for how well the target 
ell matches the cell type at hand. 

Like in most classification problems it is assumed here 
hat each cell belongs to exactly one class of a gi v en set of
andidates. Howe v er, scROSHI goes one step further and 

llows for the introduction of two additional classes, un- 
no wn and uncer tain , to deal with the unavoidable classi- 
cation uncertainty. 
Another step to improve the classification efficiency is to 

tilize the hierarchical tree structure that is inherent to cell 
ypes due to de v elopmental specialization and ther efor e ap- 
ly a hierarchical classification approach. Instead of classi- 
ying all cell types at once, target cells are first assigned to a 

maller number of major cell types and then consecuti v ely 

o more specialized classes. This way, relati v ely similar cell 
ypes can be distinguished provided they belong to different 
ranches in the tree. 

he scROSHI workflow 

. Find out which cell types to expect from field knowledge. 

. Obtain validated cell type-specific gene lists from the lit- 
erature or learn cell type specific genes based on other 
datasets. Importantl y, onl y the gene names, not the ex- 
pression, is relevant. 

. Optional: Obtain a hierarchical tree structure to define 
cell type parent–kin relationships. 

. For each cell i and each cell type j in the first hierarchical 
le v el, compare the e xpression of the genes specific for this 
cell type with the expression of the genes selected for the 
other expected cell types: determine the P -value of a one- 
sided Mann-Whitney test of the Null hypothesis that the 
expression rank sum of the genes specific for this cell type 
j is the same as or smaller than the rank sum of the genes
specific for any other cell type in the list. 

H 

i j 
0 : 

∑ 

g k 

R ank ( g k = j ) ≤
∑ 

g k 

R ank ( g k�= j ) 

The alternati v e hypothesis is that the rank sum of the 
genes specific for this cell type is larger. 

. Compute the normalized negati v e log of the P -value for 
each cell i and each cell type j , respecti v ely. 

s i j = 

−log 10 ( p i j ) ∑ 

i j −log 10 ( p i j ) 

Interpret the result as a score for how well the cell 
ma tches tha t cell type. 

. Assign the cell type label with the highest score to the 
cell. 

. If none of the scores is above a certain threshold, do not 
assign a cell type label to the cell but assign it to the class
‘unknown’. 

. If the ratio between the largest and the second largest 
score is below a certain threshold, do not assign a cell 
type label to the cell but assign it to the class ‘uncertain’. 

. Repeat 4 to 7 for the second hierarchical le v el, and so 

on. Cells that have been classified as ‘unknown’ or ‘un- 
certain’ in the first iteration are included in the next iter- 
ation to allow classification into next level cell types. 
scROSHI takes as input the gene x cell count matrix, ei- 
her with raw or normalized counts (Figure 1 A). scROSHI 
s robust to the choice of normalization and / or transforma- 
ion method, because the cell type score is based on ranks 
ather than on the actual values. In our studies we typically 

se sctransform ( 14 ), which corrects unwanted biases us- 
ng regularized negati v e binomial regression. In general, it 
s advised that the scale of the input data matches the scale 
t which the cell type-specific gene lists were generated. 

The second ingredient required for cell type classifica- 
ion is a collection of cell type-specific gene lists (Figure 
 B). The selection of cell types to expect will depend on the 
ature of the sample. It is recommended to adapt the cell 
ype selection to keep classification specificity high when- 
 v er possib le: having closely related cell types in the candi- 
ate list may sometimes be r equir ed but should be avoided if 
ossible. 
Ther e ar e a number of r esour ces available containing cu- 

ated r efer ence datasets, mostly assembled from bulk RNA- 
eq or microarray data of sorted cell types. Examples are 
he C8 set of the MSigDB collection ( 15 ), the lm22 im- 
une cell list of cibersort ( 12 ), the BioGPS Human Cell 
ype and Tissue Gene Expression Profiles collection ( 16 ) 

rom harmonizome ( 17 ), or the Bioconductor ( 18 ) pack- 
ge celldex ( 19 ). These r efer ences ar e often good enough for
ost applications provided that they contain the cell types 

hat are expected to be present in the da ta a t hand. For our
ontribution to the Tumor Profiler Study ( 20 ), working on 

elanoma patient biopsy samples, we used the curated gene 
ist fr om Tir osh et al.( 13 ) in combination with the immune
ell list of cibersort. 

In cases where quantitati v e cell type-specific r efer ence 
rofiles are available they can be used as is or they can be 
inarized to obtain cell type-specific gene lists (Figure 1 B). 
hey should contain genes that show little variability and 

r e highly expr essed in the target cell type and have zero or
eak expression in all other cell types. The gene lists do not 
eed to be e xclusi v e, i.e. the same gene can appear in differ-
nt cell type lists, but the overlap between cell types should 

e kept small. Obviously, the more similar two cell types are, 
he larger the overlap between their specific gene lists will 
e. In addition, gi v en the sparsity of single cell count data, 
ene lists with only a few members will have lower sensitiv- 
ty compared to larger lists. 

The third ingredient to scROSHI is a hierarchical tree 
tructur e defining par ent - kin r elationships between cell 
ypes. The purpose of this tree is to classify cells first 
nto a small number of coarse-grained cell type super- 
amilies and then consecuti v ely into more and more spe- 
ialized, fine-grained cell (sub-)types (Figure 1 E). This 
ay, the number of possible candidate cell types in each 

tep is much smaller than the total number of candidate 
ell types thus reducing the possibility of false classifica- 
ion. Mor eover, the thr esholds for unknown and uncertain 

lasses can be chosen to fit the detailed cell type similar- 
ty distribution in each branch to optimize classification 

fficiency. 
With the three inputs (i) count matrix, (ii) cell type- 

pecific gene lists and (iii) hierarchical relationships between 

ell types, scROSHI performs the cell type score assign- 
ent and classification. For each cell and each cell type, a 
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Figure 1. Schematics of the scROSHI workflow. The gene x cell (row x column) normalized expression matrix ( A ) is combined with the binary gene ×
cell type membership matrix ( B ) to define genes specific for a cell type (black) and genes specific for other cell types (white). ( C ) The one-sided Mann- 
Whitney rank sum test provides a cell type x cell score matrix (top), which is normalized (bottom). ( D ) UMAP r epr esentation of all cells from a melanoma 
patient biopsy using the most highly variable genes, colored by pheno gra ph clusters. ( E ) De v elopmental ‘family tree’ defining cell type hierarchies. ( F ) The 
r epr esentation in (D) is colored by scROSHI predicted cell types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

one-sided Mann-Whitney U-test is performed. The Null hy-
pothesis is that the expression rank sum of the genes specific
for this cell type is the same as or smaller than the rank sum
of the genes specific for any other cell type in the list. The
alternati v e hypothesis is that the rank sum of the genes spe-
cific for this cell type is larger. The normalized negati v e log
of the p-value for each cell-cell type pair is interpreted as a
score how well the cell matches the respecti v e cell type (Fig-
ure 1 C). If none of the scores is above a certain threshold, no
cell type label is assigned to the cell but the class ‘unknown’.
Also, if the ratio between the largest and the second largest
score is below a certain threshold, again no cell type label is
assigned to the cell but the class ‘uncertain’. Both categories,
‘unknown ’ and ‘uncertain ’, can reflect popula tions tha t are
not included in the list of a priori selected cell types, thus
potentially indicating ‘novel’ cell types (or poor quality of
the cell type-specific gene lists). These two categories there-
fore help to avoid misclassification by explicitly considering
classification uncertainty and moreover point out cell pop-
ula tions tha t r equir e further investigation. The choice of the
two thresholds can be made ad hoc based on visual inspec-
tion of the results or consistency with other methods for un-
labeled data, or based on an optimization scheme by mini-
mizing the classification cr oss-entr opy when gr ound truth-
labeled data is available. In general, the higher the difference
between the cell types, the more stringent can the thresholds
be chosen. 

Taken together, these steps facilitate an enrichment of the
pure data-dri v en description of the single-cell data (Figure
1 D) with biological meaning (Figure 1 F). 
 

Benchmarking 

A detailed description of the datasets used, their origin,
which preprocessing steps were applied, as well as the de-
scription of the pipeline and the competing tools is de-
scribed in the Supplementary Material (Supplementary Ta-
bles S1–S5, Supplementary Figures S1–S3). 

To briefly summarize, we used public datasets with a sim-
ilar cell type composition to benchmark scROSHI against
high profile competitor methods. Data from three periph-
eral blood mononuclear cell experiments were retrie v ed, one
from an adult human in which the cell types were pre-sorted
(Zheng sorted set), and one each of an adult (Adult set) and
a newborn (Newborn set). Hence, the three sets are similar
in content but differ in experimental setting and donor age.

We defined a common set of matching cell type labels
across the three datasets for comparisons between datasets
(see Supplementary Material for further details on the
ground truth dictionary). 

Based on a pre vious benchmar k of automatic cell identi-
fication methods ( 11 ), we decided to compare scROSHI to
three front runners: support vector machine (SVM), ran-
dom forest (RF) and GARNETT ( 21 ). The main difference
between scROSHI and its competitors is the fact that they
use part of the data to train a model whereas with scROSHI
there is no training involved once the cell type-specific gene
lists are selected. While SVM and RF can capture non-
linear relationships between the explanatory features (gene
expression) as well as interactions between them, GAR-
NETT is based on a penalized multivariate generalized
linear prediction model (GLMNET). All methods, includ-

art/lqad058_f1.eps
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ng scROSHI, were used under standard conditions, with 

efault parameter settings. 
We trained a model for RF, SVM, and GARNETT and 

valuated the performance of the classifiers by a ppl ying a 

-f old cross-validation f or each dataset. The f olds were split 
n a stratified manner in order to keep equal proportions of 
ach cell population in each fold. We used the same train- 
ng and testing f olds f or all classifiers. scROSHI and Gar- 
ett r equir e a cell type specific gene list. We used a list
f cell type specific genes based on pre vious pub lications 
 12 , 22 ) for scROSHI and a garnett-optimized marker list 
 check markers() function from the garnett package 
.0.2.17) for Garnett. In addition, the following criteria were 
upplied to scROSHI for classifying a cell as unknown or un- 
ertain . A cell is labeled unknown if none of the P -values is
elow 0.05 and uncertain if the ratio between the smallest 
nd the second smallest P -values is above 0.1 (major cell 
ype) or 0.8 (subtype). These thr esholds wer e chosen as the 
efault settings when designing scROSHI in the context of 
rofiling tumor samples from the Tumor Profiler study ( 20 ). 

alidation scheme. Each of the three datasets was split in 

raining, validation, and testing sets. Three major valida- 
ion runs were performed in which each of the three datasets 
erved as the training / validation set. After the final model 
as obtained, it was tested once ‘in set’ on the testing set 

hat came from the same experiment as the training data, 
nd two times ‘out of set’ on the two remaining sets from 

hich the model has not yet seen any data. scROSHI was 
ested by the same scheme. Further details on the validation 

cheme can be found in the Supplementary Material. 

opy number variation estimation 

o pre-process scRNA-seq data from the Tumor Profiler 
tudy, we used a procedure based on standard quality con- 
rol measures ( 23 ). First, to retain only high quality cells, we 
emoved cells with fewer than 700 expressed genes and 1500 

otal read counts detected. Second, to avoid contamination 

y dying cells while retaining as many informati v e cells as 
ossible, we filtered out cells with more than 35% of read 

ounts coming from mitochondrial genes ( 24 , 25 ). 
To distinguish normal from malignant cells, we inferred 

arge-scale copy number variations (CNVs) from the gene 
xpression data using inf er cnvp y ( https://github.com/icbi- 
ab/infer cnvp y ). We ran infercnvpy on e v ery sample in-
ividually using T cells , B cells , Endothelial cells and 

acrophages as r efer ence cells. The gene ordering file con- 
aining the chromosomal start and end position for each 

ene was generated from the human GRCh37 assembly. To 

educe the noise le v el, we only used genes that had a mean
ead count greater than 0.1. 

We then used an approach based on hierarchical cluster- 
ng of single cell copy number profiles to detect cells with 

nd without CNVs. After calling CNVs, we used scipy ’s im- 
lementation of hierarchical clustering with Ward linkage 
 26 ) to obtain a dendrogram of the CNV profiles. By defini-
ion, each node in a dendro gram onl y had two child nodes 
hat r epr esented a cluster of clusters, except for leaf nodes 
hat r epr esented a cluster of cells. Each cell was annotated 
s malignant or non-malignant using scR OSHI’ s cell type 
nnota tions. Starting a t the root node, we then iterati v ely 

ssigned a CNV status to the nodes according to the com- 
osition of their subtrees. Specifically, a node and all nodes 

n its subtree were annotated as presenting no CNVs if both 

ts subtrees contained at least 60% of non-malignant cells. 
e traversed the dendrogram until we reached all nodes or 

 maximum depth of fiv e in the dendrogram. Finally, a cell 
as assigned the ‘no CNVs’ status if it belonged to a leaf 
ode that had been annotated as not presenting CNVs. All 
emaining cells were annotated as showing CNVs. 

ESULTS AND DISCUSSION 

erf ormance ev aluation 

e compared the performance of scROSHI on test datasets 
ith the performance of supervised methods that had been 

rained with the test dataset (intra-dataset evaluation) and 

hat had been trained with a different dataset (inter-dataset 
valuation). Ther e wer e thr ee types of classifiers: ( 1 ) prior
nowledge method (scROSHI) for which a cell type specific 
ene list is r equir ed. ( 2 ) Supervised methods (RF, SVM), 
hich r equir e a training dataset labeled with correspond- 

ng cell labels. ( 3 ) Combined method (GARNETT), which 

 equir es both a cell type specific gene list and a training 

a taset. We calcula ted the percentage of unlabeled cells 
cross all cell populations per classifier. Further, we calcu- 
ated the accuracy of only major cell types for scROSHI and 

ARNETT, since both methods perform a hierarchical cell 
yping with major and subtype labels (Supplementary Table 
5). Additionally, we determined the proportions of cells 
hat only have a major cell type label, cells that have label 
unknown’, or are unclassified. 

Figure 2 shows the overall results of the inter and intra- 
a taset evalua tion. Generally, scROSHI performs as well 
s the supervised methods if the supervised methods were 
rained with the test dataset (scROSHI accuracy: adult 
.823, newborn 0.879, Zheng 0.715). However, scROSHI 
utperforms the supervised methods if they were trained 

ith another dataset –– in this case we observed a lower ac- 
uracy and / or a higher amount of unlabeled cells for all su- 
ervised methods, a consequence of overfitting to the train- 

ng data. The supervised methods perform better if they 

ere trained with a dataset that is closer to the test dataset 
e.g. training da ta: Adult; test da ta: Newborn) but there is a 

trong decrease in performance if the test data is dissimilar 
e.g. training data: Adult; test data: Zheng). 

The subtype classification on the Zheng dataset was chal- 
enging for all classifiers (scROSHI accuracy: 0.715). How- 
 v er, the accuracy of the major cell type label was 0.952 

or scROSHI indica ting tha t e v en if it was not possible to
nd the correct subtype label the correct major cell type 

abel could usually be determined. Moreov er, e v en though 

he fraction of unknown cells was slightly increased for 
cROSHI in the Zheng dataset, considerably elevated lev- 
ls were observed for the ML-based methods regardless of 
hether the Zheng data was involved in training or testing 

Figure 2 , black bars in the right column and the bottom 

ow, respecti v ely). 

https://github.com/icbi-lab/infercnvpy
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Figure 2. Benchmark results for scROSHI (left) and the three competing machine learning methods. Each panel corresponds to a combination of training 
data (column) and test data (row). The cross-validation accuracy (in%) is shown separately for major cell types (orange) and all fine-grained cell types 
(green). The black bar shows the percentage of cases where the cell type is ‘unknown’. 
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Figure 3. UMAP r epr esentation of cells in gene expr ession and CNV space. Cells from thr ee melanoma biopsy samples ( A , n = 3928 cells; B , n = 2967 cells; 
C , n = 2326 cells) were annotated using scROSHI. The first row shows the UMAP embedding of the normalized and log-transformed gene expressions 
and the second row shows the UMAP embedding of CNV profiles. The colors r epr esent the cell type annotations. The greyscale in the insets r epr esent the 
CNV status. 
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Ther e wer e two cases wher e on first glance the out-of-
raining performance of the RF model was comparable 
training Zheng, test Adult) or e v en better (training New- 
orn, test Zheng) than scROSHI. Howe v er, both were ac- 
ompanied by an unknown cell fraction of more than 70% 

n RF but below 10% in scROSHI. Essentially, the high ap- 
arent accuracy was therefore only achie v ed at the cost of 
 large proportion of cells that could not be assigned any 

abel. 
All in all, our benchmark study shows that scROSHI per- 

orms superior to competing tools provided a good quality 

ell type specific gene list is available and annotated train- 
ng data are limited or not available, which is often a re- 
listic scenario in early stage projects. Moreover, the good 

erformance is achie v ed with v ery reasonab le amount of re-
ources. For example, it took less than 35 s to classify 2000 

ells expressing 3368 genes into 11 cell types using 6 GB 

AM on a standard laptop (i7 Intel processor). And be- 
ause classification is done independently cell-by-cell, e v en 

xtremely large datasets can be handled by splitting into 

maller batches. 
Similar to the scoring tool ucell ( 27 ), the cell type 

core of scROSHI depends only on the relati v e rank of the
ene expression signal, does not require normalization, and 

akes no assumptions about the distribution of the sig- 
al. But, because scROSHI utilizes the hierarchical nature 
f cell identities, it can outperform its competitor when a 

ample contains similar cell types that deri v e from different 
ranches of the lineage tree. 
scROSHI was de v eloped for 10xGenomics mRNAseq 

ata of tumor patient samples but there is no known limita- 
ion to use it on any other modality or or ganism. Ho we v er,
t is ideal if the cell type-specific gene lists were defined from 

esults of the same technology as the data at hand. 
One possibility to improve the performance of the ma- 

hine learning tools, i.e. the accuracy on unseen data, might 
e to train them on a more di v erse data set. Yet, because
raining on accuracy does not learn causal features for cell 
ype identity, this approach by design does not lead to a 

ni v ersall y a pplicable model and the performance will still 
e lower on unseen data than in the validation set, due to 

verfitting. 
The hierarchical scheme in scROSHI, to successi v ely clas- 

ify cells first into more coarsely grained parent cell types, 
ollowed by more and more fine-grained sibling cell sub- 
ypes within each parent cell type, reduces the classification 

omplexity in each branch of the tree, potentially reducing 

he classification error rate in turn. Moreover, the thresh- 
lds for unknown and uncertain classes can be tailored to 

he detailed cell type similarity distribution or count matrix 

parsity within each branch. 

onsistency with estimations of copy number alterations 

n addition to these benchmark datasets with known 

round truth but relati v ely simple cell type composi- 
ion we used scROSHI for cell type identification in 

linical samples, i.e. biopsies from melanoma patients 

art/lqad058_f3.eps
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Figure 4. Cell type classification where the list of expected cell types was modified. ( A ) All known cell types are included. ( B ) Plasmacytoid dendritic 
cells are excluded. ( C ) T cells are excluded. ( D ) Melanoma cells are excluded. In panels B–D, the cluster of cells for which the label was excluded in the 
classification is marked by an arrow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

participating in the Tumor Profiler Study ( 20 ). In these sam-
ples the cell type composition can vary considerably from
patient to patient depending, for instance, on the biopsy
location, and is more complex to start with. No ground
truth was available for such clinical samples, thus we eval-
ua ted the classifica tion results by comparison to single cell
CyTOF cell type composition analysis on the same sam-
ples ( 28 ) and by consistency with copy number variation
(CNV) estimations (Figure 2 ). The rationale is that only tu-
mor cells are expected to harbor any CNVs, and thus CNVs
can be used to distinguish tumor cells from non-tumor
cells. 

The thr ee r epr esentati v e samples in Figure 3 A–C show
a di v erse cell type composition, as illustrated by the two-
dimensional UMAP r epr esentation based on gene expr es-
sion in the top row. CNV states appear nearly e xclusi v ely in
cells identified as melanoma cells, the only malignant cells
present (insets). In Figure 3 bottom row, the focus is shifted
to UMAP r epr esentations based on CNV states, where all
non-malignant cells form a single cluster and malignant
cells one or more separate clusters. In the sample shown
in Figure 3 A, a few cells located in the melanoma cluster
are mis-classified as cancer associated fibroblasts (CAFs,
filled purple circles), possibly a consequence of an increased
copy number in melanoma cells loca ted a t some CAF spe-
cific genes and / or copy number decrease in some melanoma
specific 
genes. The cell type composition in these samples is dom-
inated by melanoma cells (A: 92%, B: 8%, C: 87%), B cells
(A: 0%, B: 52%, C: 1%) and T cells (A: 1%, B: 33%, C: 7%).
A comparison to single cell CyTOF experiments of the same
samples gave similar proportions (S. Chevrier, private com-
munication, manuscript in preparation): melanoma cells
(A: 81%, B: 2%, C: 84%), B cells (A: 0.7%, B: 40%, C: 2%)
and T cells (A: 5%, B: 40%, C: 9%). 

Unexpected cell types 

As we have introduced the label ‘unknown’ into scROSHI
when none of the classification scores of the list of candi-
date cell types was high, we investigated whether this would
empower scROSHI to recognize that there is an unexpected
cell type present in a sample. 

We simulated the situation that there is an unknown cell
type in a sample by removing one cell type from the can-
didate cell type list. As a starting point, we used a sam-
ple from the Tumor Profiler Study ( 20 ) with se v eral differ-
ent cell types that could be identified (Figure 4 A). Then we
removed the genes specific for three cell types (Plasmacy-
toid dendritic cells (pDC), T cells, Melanoma cells) and re-
peated the analysis for each case (Figure 4 B–D). All pre-
viously identified pDCs were classified as ‘unknown’ when
excluded from the candidate list, as expected (Figure 4 B,
bottom right corner). 
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When T cells were missing in the candidate list, a small 
roportion was mis-classified as dendritic cells or plasma 

ells but the vast majority was correctly labeled ‘unknown’ 
Figure 4 C). Moreover, the cells now (mis-) labeled as den- 
ritic cells are sparsely scattered across the entire former T 

ell popula tion ra ther than forming a compact cluster or 
egion, which would be expected if they belong to a well- 
efined cell type or subtype. This observation should raise 
uspicion and trigger further investigation as it reflects the 
ossibility that the cell type-specific genes do not r epr esent 
he profile of a distinct cell population observed in this par- 
icular study. 

In contrast, when melanoma cells wer e r emoved from the 
andidate list, a considerable proportion was mis-labeled 

Figure 4 D). One particular subpopulation on the left hand 

ide of the melanoma cluster appears to share expres- 
ion features with cancer associated fibroblasts (CAFs), 
hereas another subpopulation on the right hand side of 

he melanoma cluster seems to share some similarity with 

acrophages. At the same time the relati v ely large propor- 
ion of ‘unknown’ cells in the center of the cluster indicates 
hat the cell type candidate list is incomplete or otherwise 
ot suitable for this kind of data. A possible explanation 

or this observation may be the fact that tumor cells can 

har e expr ession featur es with other cell types by exploiting 

ellular plasticity and de-dif ferentia tion programs ( 29 ). 
To summarize this part, most of the cells for which the 

ell type specifics were excluded from the candidate list were 
abeled as ‘unknown’ while a small proportion was misclas- 
ified. This procedure outlines how scROSHI may serve as 
 tool to detect novel cell types that were not expected to be 
n the sample under investigation. 

ONCLUSION 

ell type identification is a critical, yet challenging, step in 

ingle cell transcriptomics analysis. Although various ma- 
hine learning based methods for cell typing are available, 
he necessity to learn features on adequate training data is 
rone to overfitting and also challenging in practice, in par- 
icular for studies on novel experimental conditions. Here, 
e have presented scROSHI, a novel supervised cell type 

lassification method independent of training data but in- 
tead based on a priori defined cell type cell type specific 
enes. In a benchmark study and on clinical data from tu- 
or samples, we have shown that scROSHI is useful, ro- 

ust, versatile, and competitive to existing methods under 
eal-life scenarios. 

A T A A V AILABILITY 

vailability of benchmark data: ask at scp-support@ 

roadinstitute.zendesk.com . 
The three data sets from the TumorProfiler Study are 

vailable upon request at info@tu-pro.ch , and according 

o the data sharing policy at the w e b site https://eth- 
exus.github.io/tu-pro w e bsite/data/ (in preparation by the 
onsortium). In the meantime, we have posted the raw 

ount matrices on Zenodo ( https://doi.org/10.5281/zenodo. 
577402 ). 

Code availability: scROSHI is available as R package on 

RAN ( https://cran.r-project.org/package=scROSHI ). 
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