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Abstract

Comprehensive metabolomic data acquisition can be achieved using multiple orthogonal 

separation and mass spectrometry (MS) analytical techniques. However, drawing biologically 

relevant conclusions from this data and combining it with additional layers of data collected by 

other omic technologies present a significant bioinformatic challenge. To address this, a data 

processing approach was designed to automate the comprehensive prediction of dysregulated 

metabolic pathways/networks from multiple data sources. The platform autonomously integrates 

multiple MS-based metabolomics data types without constraints due to different sample 

preparation/extraction, chromatographic separation, or MS detection method. This multi-modal 

analysis streamlines the extraction of biological information from the metabolomics data as 

well as the contextualization within proteomics and transcriptomics datasets. As a proof of 

concept, this multi-modal analysis approach was applied to a colorectal cancer (CRC) study, 

in which complementary liquid chromatography mass spectrometry (LC/MS) data were combined 

with proteomic and transcriptomic data. Our approach provided a highly resolved overview of 

colon cancer metabolic dysregulation, with an average 17% increase of detected dysregulated 

metabolites per pathway and an increase in metabolic pathway prediction confidence. Moreover, 

95% of the altered metabolic pathways matched with the dysregulated genes and proteins, 
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providing additional validation at a systems level. The analysis platform is currently available 

via the XCMS Online (XCMSOnline.scripps.edu).

Graphical Abstract

Introduction

Metabolomics is emerging as an indispensable technology in the post-genomic era of 

biology, correlating ‘omic’ data analysis towards biomarker discovery1,2, mechanistic 

pathway findings3 and ultimately metabolite activity discovery for phenotype modulation4. 

Among various analytical platforms utilized to perform metabolomic analysis, mass 

spectrometry (MS) is the most prominent technology owing to its high throughput, 

sensitivity and specificity. However, metabolomic data analyses remain analytically 

biased by the technique being used to perform the experiments including the. type 

of chromatography and ionization. For example, reversed phase liquid chromatography 

mass spectrometry (RP-LC/MS) typically favors hydrophobic metabolites and ultimately 

limits comprehensive metabolome analysis. To achieve broad metabolome coverage 

for comprehensive biological interpretation, the combination of multiple orthogonal or 

complementary metabolomics platforms has been proposed5–8. This “multi-modal” strategy 
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involves the parallel analysis of the same batch of biological samples using several 

complementary analytical techniques and approaches. For instance, a dual-separation LC-

MS strategy has been developed to profile metabolites in both lipid metabolism and 

central carbon metabolism using reversed phase LC (RPLC) in positive mode electrospray 

ionization (ESI) or hydrophilic interaction liquid chromatography (HILIC) with ESI5. In yet 

another example, gas chromatography mass spectrometry (GC-MS) and LC-MS metabolic 

profiling approaches have been combined to provide a systems-level understanding of 

the pathological metabolic outcomes of aristolochic acid-induced nephrotoxicity9. More 

recently, MS-based hydrophilic and hydrophobic metabolite profiling have been performed 

to comprehensively elucidate the metabolic differences between a wild-type and a 

recombinant human cell line10. Taken together these examples demonstrated the vast, but 

so far not routinely employed potential of multi-modal analysis in global metabolomics 

studies.

The wide metabolome coverage achieved by multi-modal profiling will allow for an in-depth 

mechanistic understanding through coordinated mapping of detected metabolic changes onto 

biological pathways. However, performing these integrative pathway analyses following 

the multi-modal metabolite profiling is not a straightforward task. Prior to pathway 

analysis metabolomics data require preprocessing (i.e. metabolite feature extraction, 

alignment, grouping and annotation), statistical analysis and metabolite identification, to 

prepare a list of confirmed dysregulated metabolites11–13. Although the development of 

bioinformatic tools, such as XCMS Online14 and MZmine15, have significantly streamlined 

the process of metabolic feature extraction, alignment and statistical analysis, metabolite 

identification still remains time-consuming and labor-intensive part of the workflow16. For 

example, to perform pathway analysis following a multi-modal metabolomic experiment, 

metabolite identification needs to be repeated for each metabolomic data set, making the 

data preprocessing workload demanding and time-consuming. In addition, bioinformatic 

algorithms to automatically deduce the overlap and merge the complementary metabolite 

information from different analytical modes are lacking. In order to gain a more 

comprehensive biological understanding from multi-modal metabolomic data, researchers 

are processing each individual metabolomic data set separately and manually integrating 

the complementary metabolite information. Since the manual data integration relies heavily 

on the experience of the analyst and is prone to the bias of the individual researcher, 

the quality of data integration and pathway interpretation is not always ensured. These 

afore mentioned challenges in interpreting multi-modal metabolomic data warrant the 

development of bioinformatic tools to enhance processing efficiency and interpretation of 

multimodal metabolomics data sets, thereby directly linking the obtained comprehensive 

metabolomic information to its underlying biological context.

To address these challenges, we designed an autonomous multi-modal analysis approach 

within the cloud-based XCMS Online14 platform to integrate the heterogeneous 

metabolomic data sets. The approach is composed of two modules. The first module embeds 

a pathway analysis algorithm that can automatically combine metabolomic data generated 

from multiple analytical platforms including RP(+), RP(−), HILIC(+), and HILIC(−) and 

perform pathway analysis prior to the confirmation of putative metabolic identities in 

each data set. Importantly, as long as the accurate masses of the metabolite features are 
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provided, there are no other restrictions on the design of the analytical platform to perform 

integrated pathway analysis. The second module is a metabolomics-guided systems biology 

tool developed to overlay the user-uploaded transcriptomic and/or proteomic data onto the 

predicted pathways generated from the first module. In addition, this has been implemented 

to streamline the multi-modal metabolomics workflow, from metabolomic data processing 

and statistical analysis to integrative pathway prediction and multi-omic integration. The 

performance of the approach has been demonstrated in a colon cancer study. Following 

data processing, multi-modal metabolomic analysis was integrated with transcriptomic and 

proteomic data for a systems-level pathway analysis.

Experimental Section

Multi-modal XCMS web design.

The multi-modal XCMS web interface was constructed using PHP and JavaScript. The 

pathway analysis program was coded in Python and placed on a dedicated server17. Multi-

modal XCMS analysis results, including dysregulated metabolic pathways and underlying 

metabolic information, are zipped and stored in the results folder on the server. The 

pathway analysis results can also be visualized from the XCMS Online website through the 

“Systems Biology Results” button on the left side panel of the results summary page. Tables 

presenting the multi-modal XCMS analysis results, including metabolic pathway results 

and predictive metabolite results are displayed using a JavaScript package, DataTables 

(https://datatables.net/). The interactive pathway visualization tool, “Pathway Cloud Plot”, 

was displayed using a JavaScript package, Highcharts (https://www.highcharts.com/).

The back-end multi-omic data integration algorithm is programmed in python; the code was 

modified to interface with a relational database and run in a clustered environment. The 

front-end views are a mixture of PHP, HTML5, and JavaScript, optimized for responsive 

data visualization.

Chemicals and reagents.

Ammonium acetate (NH4AC) and ammonium hydroxide (NH4OH) were purchased from 

Sigma Aldrich. LC-MS grade 0.1% formic acid (FA) in acetonitrile (ACN), 0.1% FA in 

water (H2O), and methanol (MeOH) were purchased from Honeywell (Muskegon, MI, 

USA). LC-MS grade acetonitrile (ACN) was purchased from Fisher Scientific (Morris 

Plains, NJ, USA), LC-MS grade water was purchased from J.T. Baker (Philipsburg, NJ, 

USA).

Sample preparation.

Ten colon cancer and paired histologically normal tissues were collected from patients 

undergoing surgery and were immediately stored at −80 °C (the study was approved by the 

regional ethical board at the Karolinska Institute). Clinical features of the samples can be 

found in Supporting Information (SI), Table S-1. For each sample, 10 mg frozen colon tissue 

was used for metabolite extraction. The detailed extraction protocols can be found in the 

Text S-1.
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Multi-modal LC-MS analysis.

Complementary metabolomic profiling were carried out using a Bruker Impact II QTOF 

mass spectrometer (Billerica, MA, USA) coupled with an Agilent 1200 series capillary 

HPLC system (Palo Alto, CA, USA) in four different analytical modes to achieve a 

comprehensive metabolome coverage. These modes include RPLC-MS in ESI positive 

and negative modes and HILIC-MS in ESI positive and negative modes. Detailed LC-MS 

parameters for all the four analyses can be found in the Text S-2. The order of sample 

sequence was randomized. Autonomous tandem LC-MS experiments were performed on 

the pooled samples to collect MS/MS data using the same LC-MS instrumentation for 

metabolite identification.

Metabolomic data processing and multi-modal analysis.

Internal mass calibration was performed using the sodium formate (NaFA) segment 

programmed in the LC-MS analysis. MS data were converted to mzXML files using 

Bruker Compass Data Analysis 4.4. These files were uploaded to XCMS Online for 

data processing including peak detection, retention time correction, profile alignment, and 

isotope annotation. Data from all four analyses were processed using pairwise comparison 

(cancer tumor vs. adjacent control tissue) and the parameter settings can be found in the Text 

S-3. Dysregulated metabolite features were confirmed by matching experimental tandem 

MS data against standard MS/MS spectra in METLIN MS/MS spectral library18. After 

the completion of metabolomic data processing, a multi-modal XCMS job was created 

by selecting the “multi-modal” job type in XCMS Online Job tab to include all four 

processed data sets that were acquired using different LC-MS techniques. . Prior to multi-

modal analysis and pathway prediction, the appropriate p-value, fold change, and intensity 

thresholds for multi-modal analysis were defined in the parameter setting window (values 

shown in Table S-2). Finally, the integration of heterogenous metabolomic data sets was 

performed automatically, followed by the prediction of dysregulated metabolic pathways and 

display the pathway analysis results. The algorithm for multi-modal data integration and 

pathway prediction is detailed in the Results and Discussion section.

Transcriptomic and proteomic data sets.

Transcriptomic and proteomic data were integrated with the predicted metabolic pathways 

for the systems-level understanding of the pathway dysregulation. Comprehensive 

transcriptomic data downloaded from netgestalt19. These data were originally generated 

from The Cancer Genome Atlas (TCGA) in a study of 22 colon cancer tissue samples vs. 

22 normal tissue samples20. A total of 7,138 genes with p-value ≤ 0.01 and fold change ≥ 4 

were selected as dysregulated genes for multi-omics integration. Comprehensive proteomic 

data was also downloaded from netgestalt19. The data was originally generated by the 

Clinical Proteomic Tumor Analysis Consortium (CPTAC) in a study of 90 colon cancer 

tissue samples vs. 30 normal tissue samples21. A total of 2,545 proteins with p-value ≤ 0.01 

and fold change ≥ 2 were considered as overexpressed and used in multi-omic analysis. The 

p-value and fold change thresholds for protein and gene data were defined following the 

common literature settings.
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Results and Discussion

Integrating heterogeneous analytical data for pathway analysis.

The advantage of using multiple analytical strategies to gain a comprehensive coverage of 

metabolite classes is well understood, however a significant challenge remains on how to 

directly correlate the metabolic information for pathway analysis across different LC/MS 

analytical platforms. This is largely because metabolites contain high level of chemical 

diversity yielding different chromatographic retention and ionization behaviors depending 

on the applied analytical approach, making comparative analysis across disparate data sets 

difficult. Conventionally, to carry out pathway analysis, dysregulated metabolites need to 

be confirmed in each analytical mode typically requiring significant manual effort. And 

while the prediction of dysregulated pathways from metabolite features (mainly based on 

accurate m/z ratios and putative metabolite matches) has recently become available17, each 

data set in a multi-modal metabolomics study still must be interpreted individually (Figure 

1). In contrast, the pathway analysis described here makes it possible to automatically 

integrate multiple metabolomic data sets for pathway analysis allowing not only for more 

comprehensive but also more time effective data evaluation (Figure 1A). It is also worth 

noting that this pathway analysis tool not only takes LC/MS data, but also other types of 

mass spectrometry data, such as capillary electrophoresis (CE)/MS and chemical ionization 

(CI) GC/MS (Figure 1A).

The pathway analysis algorithm was developed to facilitate the biological interpretation of 

metabolomic data sets that were generated using heterogeneous experimental approaches 

(Figure 1A). The algorithm initially processes the metabolite feature tables from the 

individual XCMS Online jobs. These tables contain accurate m/z values, retention times, 

and statistical p-values of all the metabolite features extracted by XCMS, a metabolomics 

peak picking and statistical analysis package embedded in XCMS Online22. A user-defined 

p-value cutoff is applied to divide each feature table into statistically significant and 

non-significant feature lists. The accurate m/z values of the metabolite features from both 

lists are then matched against background knowledge - BioCyc metabolite database23 - to 

assign putative metabolite identities (mass error for matching is defined by user depending 

on instrument accuracy). This preprocessing step generates two lists of significant and 

non-significant putative metabolite identities. Following their generation, the output lists 

for each metabolomics experiment are finally merged into two lists containing significant 

and reference (non-significant) putative metabolite identities. Shared putative metabolite 

identities in multiple analyses are deduplicated in the merged list, thus all putative 

metabolites will be weighted the same in the pathway analysis regardless of the number 

of techniques or platforms by which they were detected. Once the two merged lists 

are prepared, pathway enrichment analysis is performed using Fisher’s exact test (FET) 

described in the mummichog24 algorithm, which evaluates the probability of a pathway 

being dysregulated given the number of dysregulated metabolite identities involved. This 

mummichog-based pathway analysis strategy directly uses putative metabolic identities 

for accelerated pathway analysis, prioritizing the discovery of biological information from 

the metabolomic data set and leaving metabolite identification as a means of pathway 

confirmation in the final step of the metabolomics workflow. It is worth noting that since the 
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metabolic pathways are predicted using putative metabolite identities, there is a possibility 

of false positive pathway identification due to false positive identity assignments. Therefore, 

further validation experiments, such as MS/MS-based metabolite identification, should be 

performed to confirm the metabolite identities. The last update of the METLIN database 

provides MS/MS spectra covering over 15,000 metabolites, including lipids, amino acids, 

peptides, and natural products, among other chemical classes. By using METLIN spectral 

library for metabolite identify validation, it is possible to unbiasedly and thoroughly confirm 

the dysregulated metabolites and metabolic pathways.

To analyze multi-modal metabolomics data sets, users need to first process each individual 

metabolomic analysis (pairwise or multigroup) on XCMS Online to generate metabolite 

feature tables14. Users can then create a multi-modal job to integrate the complementary 

information from several different metabolomic analysis. Several parameters, including 

polarity, p-value cutoff, intensity threshold and mass tolerance, need to be defined for 

each metabolomic analysis to accurately extract the significant and the non-significant lists 

of features in each data set. Parameter settings have been detailed elsewhere25. The user 

also needs to define the proper metabolic model for pathway analysis by selecting samples 

biosource. Although central carbon metabolism, such as TCA cycle, glycolysis, oxidative 

phosphorylation, purine and pyrimidine metabolism, involved in energy production and 

storage are highly conserved and shared across different biological species, there are 

many species-specific metabolic pathways23. To provide precise pathway analysis, multi-

modal XCMS archives comprehensive pathway information from over 7,600 metabolic 

models from BioCyc23 with more pathways being implemented from Reactome26 and 

Wikipathways27. After defining the parameters, users can confirm all the settings and submit 

the job.

The process of multi-modal pathway analysis takes only a few minutes and the user will 

receive an automated email notification once the job is completed. The user can then 

view the analysis results in XCMS Online through a web browser and download for 

further analysis (if desired) and archiving. Firstly, the multi-modal job results summary 

page presents the total ion chromatogram (TICs), the cloud plot, and the score plots of 

principal component analysis (PCA) from each individual job. This provides the user a quick 

glance at all different experiments and datasets involved in a multi-modal analysis. Secondly, 

the multi-modal integrative pathway analysis results are presented in three visualization 

modules implemented in multi-modal XCMS, including pathway analysis results, pathway 

cloud plot, and predicted metabolite results (Figure 2). It is important to note that in 

the predictive metabolite results table (Figure 2C), metabolite features matching the same 

metabolite according to their m/z values and possible adduct formations are all listed. 

The fold changes and p-values of these metabolite features allow for a rapid similarity 

comparison to find out the possible existence of the same metabolite in different analytical 

modes, therefore assisting and facilitating the metabolite identification process. Finally, to 

gain a detailed understanding on how the dysregulated metabolites contribute to a pathway 

dysregulation, users can visualize the list of dysregulated metabolite features simply by 

clicking on the number of overlapping metabolites in a particular dysregulated pathway. 

(Figure 3).
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Incorporating transcriptomic and proteomic data into the metabolomic pathway analysis.

Bringing metabolomics into systems biology is an emerging research direction for 

the functional understanding of metabolites at a systems level. However, due to the 

heterogeneous chemical natures of metabolites, the metabolome coverage offered by a 

single untargeted profiling approach is usually limited. Therefore, integrating the more 

unbiased transcriptome and proteome profiling results with metabolomic data covering only 

limited metabolic information does not permit the complete interpretation of the investigated 

biological process. Fortunately, with the help of multi-modal XCMS, it is now possible 

to combine metabolic information from complementary metabolomic data sets to generate 

comprehensive information on pathway dysregulation. Further multi-omic data integration 

based on such complete pathway information enables a truly comprehensive biological 

understating at the global scale.

After the completion of pathway analysis, users can upload transcriptomic and/or proteomic 

data to perform multi-omic data integration. Dysregulated genes should be uploaded as a 

list of gene symbols and dysregulated proteins should be uploaded as a list of either gene 

symbols or protein UniProt accession IDs. These omic data lists have to be uploaded in 

comma separated values (csv) file format. A matching algorithm17 is embedded to match 

user-uploaded dysregulated genes and/or proteins against genes and/or proteins implicated in 

the metabolic pathways that have been identified as enriched following pathway analysis (as 

described in previous section). After the multi-omic data integration, the overlapping genes 

and proteins in each pathway are presented in the systems biology results page with detailed 

overlapping information accessed by clicking the numbers (Figure 2A). Multi-omic data 

integration ultimately provides yet another level of validation of pathway analyses based on 

metabolomic data, thus enabling for a rapid and more meaningful analysis at a systems level.

Colon cancer.

The metabolic activities in cancer cells are fundamentally different from those in normal 

epithelial cells. This dramatic metabolic reprogramming meets the raised demand for 

nutrients, bioenergetics and biosynthesis, and fuels cancer cell growth and proliferation28–30. 

Thus, a better understanding of the associated metabolic dysregulation may enable the 

development and optimization of therapeutic strategies to selectively target cancer metabolic 

vulnerabilities.

We used tissue samples to assess the performance of multi-modal pathway analysis using 

XCMS. This study was carried out in four different analytical modes to achieve the 

comprehensive coverage of colon cancer metabolome and lipidome. Using four analytical 

modes, 29,394, 13,231, 14,610 and 8,565 metabolic features were detected in RP(+), 

RP(−), HILIC(+) and HILIC(−) analyses, respectively. Among them, 881, 721, 587 and 

266 features were statistically significant (p-value ≤ 0.01) with fold changes ≥ 1.5 or ≤ 0.67 

and MS signal intensity ≥ 10,000.

In the next step we applied multi-modal analysis to the results from different experiments 

and to perform integrative pathway analysis. Many dysregulated pathways were uniquely 

predicted only in one analytical mode, reflecting the unique metabolome coverage of 
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each analytical mode. For instance, histidine degradation was only observed in HILIC(+) 

analysis, where histidine and its derivatives were detected (Table S-3). Other dysregulated 

pathways were commonly predicted in data sets from two (or more) different metabolomic 

analysis modes. In these cases, the dysregulated pathway information from each analytical 

mode were complementary to each other. For example, the dysregulation of adenine and 

adenosine salvage I pathway was observed in HILIC(+) and HILIC(−) analytical modes. 

In the dysregulation of this pathway, while the upregulation of adenosine was commonly 

detected in both analytical modes, the upregulation of adenine was uniquely detected by 

HILIC(+) and the upregulation of 5-phospho-α-D-ribose 1-diphosphate and AMP were 

uniquely detected by HILIC(−) (Table S-3). These examples demonstrate that by integrating 

the unique and complementary metabolic information from multiple modes, it is possible to 

gain an unprecedented view of pathways dysregulation. Compared to the pathway analysis 

results obtained by using a single metabolomic data set, multi-modal-based pathway 

analysis has improved performance in two aspects. First, multi-modal XCMS automatically 

combines the metabolic information from multiple analytical modes, therefore dysregulated 

metabolites belonging to the same pathways are grouped together, leading to an average of 

17% increase in the number of dysregulated metabolites per pathway (Figure 4). Second, 

the increased number of dysregulated metabolites detected in a given pathway improves the 

confidence of pathway prediction as indicated by an associated lower statistical p-value, 

which enables the discovery of an additional of 53 dysregulated pathways (Figure 4). If all 

the predicted pathways were included in the comparison without setting a threshold based 

on their p-values, we could have observed more pathway overlapping between different 

data sets (data not shown). However, the pathway p-value is affected by the number of 

dysregulated metabolites detected in each pathway and the pathways with high p-values 

(p-value > 0.05) usually don’t present enough number of dysregulated metabolites. These 

pathways show limited statistical confidence and they were excluded in our real comparison. 

Further, combining the comprehensive metabolic information from the multi-modal XCMS 

analysis, we were able to extract the colon cancer-related metabolic network as shown in 

Figure 5. Importantly, all the involved metabolites were positively confirmed using MS/MS 

spectra matching against the METLIN spectra library (Table S-6).

Since metabolic pathways are predicted using putative metabolite identities, some 

dysregulated pathways can be false positively discovered due to falsely assigned metabolite 

identities. We noticed that the largest source of incorrect identity assignment is due to 

artifact metabolite features generated by low quality peak picking. To facilitate rapid 

inspection of metabolite annotations, we have implemented the data visualization tool, 

allowing users to have direct access to the LC chromatogram, MS spectra and box plots 

of the metabolite features (Figure 3). Using this function, metabolite features not correctly 

extracted during the peak picking process can be immediately spotted and the pathways 

predicted based on these features can be excluded from further metabolite identification and 

biological interpretation. On the other hand, metabolic pathways with more dysregulated 

metabolites are more likely to be relevant to the biological activity. Therefore, the number 

of dysregulated metabolites can be used to gauge the false positives in pathway prediction. 

For instance, in our colon cancer analysis, the top 20 pathways predicted in multi-modal 

XCMS (Table S-5), with an average of 6.6 dysregulated metabolites involved, are consistent 
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with previous reports on colon cancer. In addition, users can also confirm the predicted 

pathway information through metabolite identification based on their biological knowledge. 

Metabolic pathways known to be relevant to the given biological research topic have higher 

chance to be correctly predicted as the involved dysregulated metabolites are more likely 

to be presented in the data set. Therefore, users can first perform metabolite identification 

for the pathways that are relevant to the biological question. This biological knowledge-

based metabolite identification is an effective way to confirm the pathways predicted from 

our multi-modal XCMS analysis. For instance, we started our pathway confirmation by 

the metabolites involved in pathways that are relevant to cancer metabolism (Figure 5). 

As shown in Table S-6, all the putative metabolic identities were confirmed as correct 

assignments, thus allowing us to further interpret the corresponding dysregulated pathways. 

Further, colon cancer transcriptomic and proteomic data were uploaded for multi-omic data 

integration to gain a systems-level understanding of these dysregulated pathways. These 

colon cancer-associated multi-omic data sets were obtained from public available data 

repositories31,32. While it is generally recommended to use multi-omic data sets generated 

from the same set of biological samples, obtaining data from publicly available repositories, 

where experimental conditions are either the same or very similar, can also be highly 

informative33,34. This is especially useful for studies where a large quantity of curated 

data is available, such as human cancer research20. Moreover, given the recent effort of 

developing infrastructure for data curation and sharing, multi-omic integration using open-

access data will be very convenient and practical in the near future35–38.

By integrating colon cancer transcriptomic and proteomic data, the dysregulated pathways 

were confirmed on the multi-omic level. Overall, 95% of the dysregulated metabolic 

pathways were matched by both dysregulated genes and proteins. Table S-7 lists top 

10 dysregulated pathways ranked by the number of dysregulated genes. The multi-

omic information allows a comprehensive mechanistic understanding of the pathway 

dysregulation. For instance, the dysregulation of spermine and spermidine metabolism is 

strongly correlated with colon cancer progress, which has been evidenced in many studies39. 

By using multi-modal XCMS, we were able to integrate multi-modal metabolomic data sets 

together with colon cancer transcriptomic and proteomic data to understand the dysregulated 

genes, proteins and metabolites on the global scale (Figure 6).

After multi-modal metabolomics analysis, the biological relevance of these dysregulated 

pathways require further verification, e.g., whether or not they are causally associated with 

colon cancer proliferation and how they contribute to colon cancer tumorigenesis. These 

questions can be addressed by additional biochemical experiments, where the application of 

multi-modal XCMS can improve the extraction of biological information from multiple 

complementary metabolomic data sets, therefore leaving more resources for additional 

biochemical experiments.

Conclusions

In summary, a multi-modal XCMS metabolomics data analysis approach has been developed 

for comprehensive pathway analysis using data acquired on multiple analytical platforms. 

This web-based tool automates metabolomic data integration and interpretation a and allows 
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for its combined analysis with proteomics and transcriptomics datasets. The approach was 

demonstrated in a colon cancer study to perform automatic data integration, metabolic 

pathway analysis, and multi-omic pathway interpretation. With the help of this data 

integration platform it is now possible to automatically perform comprehensive biological 

analysis and, perhaps more importantly, this approach allows for data processing of archived 

data sets obtained from different analytical platforms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) The schematic of a multi-modal metabolomics workflow where the data processing 

is integrated from multiple analytical approaches. This is compared to a single analytical 

approach (RPLC-MS) that is traditionally used for pathway mapping (B).
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Figure 2. 
Multi-modal pathway analysis results. (A) Summary of pathway analysis results. The 

numbers of overlapping gene and protein show up after uploading dysregulated gene and 

protein data for multi-omic data integration (B) Pathway cloud plot. Each metabolic pathway 

is represented by a bubble. Metabolic pathways with higher statistical significance are 

located in the top right corner, showing low p-value and high metabolic overlapping. (C) 

Feature analysis results. Metabolic features matching the same metabolite according to their 

m/z values and possible adduct formations are all listed.
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Figure 3. 
Detailed metabolic feature information in each dysregulated pathway. Metabolic feature 

details for each dysregulated pathway can be accessed by clicking on the number of 

overlapping metabolites in the pathway analysis results table (Figure 2A). The pie chart 

on the top shows the number percentage of the overlapping and non-overlapping metabolites 

detected in all analyses. For each metabolic feature, the green feature ID button allows 

users to get detailed MS information including the LC chromatogram, MS spectrum, and 

box-and-whisker plot so that visual checking of the feature quality is available to assist the 

metabolite confirmation. If one dysregulated metabolite is detected in multiple analytical 

platforms, all the dysregulated metabolic features will be listed, along with their IDs of the 

associated analytical platforms.
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Figure 4. 
Number of significantly dysregulated pathways and dysregulated metabolites per pathway 

from RP(+), RP(−), HILIC(+), HILIC(−) and multi-modal analyses. Blue columns 

represent the number of statistically significant pathways (p-value ≤ 0.05) observed 

in each metabolomic analysis. Red line shows the average percentage of significantly 

dysregulated metabolites involved in dysregulated pathways in each metabolomics analysis. 

The percentage value is determined by first calculating the percentage of dysregulated 

metabolites out of all the metabolites involved in each pathway and then averaging the 

percentages across all the dysregulated pathways.
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Figure 5. 
Colon cancer-associated metabolic dysregulations illustrated by metabolic network 

developed from multi-modal metabolomics pathway analysis in multi-modal XCMS.
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Figure 6. 
Systems-level interpretation of the dysregulated spermine and spermidine metabolism 

pathway. ODC, ornithine decarboxylase; SRM, spermidine synthase; SSAT, spermidine/

spermine N1-acetyltransferase; SMOX, spermine oxidase; AOC3, membrane primary amine 

oxidase; PAO, polyamine oxidase.
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