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Abstract

S-adenosyl methionine (SAM)–dependent methyl transferases (MTases) are a

ubiquitous class of enzymes catalyzing dozens of essential life processes.

Despite targeting a large space of substrates with diverse intrinsic reactivity,

SAM MTases have similar catalytic efficiency. While understanding of MTase

mechanism has grown tremendously through the integration of structural

characterization, kinetic assays, and multiscale simulations, it remains elusive

how these enzymes have evolved to fit the diverse chemical needs of their

respective substrates. In this work, we performed a high-throughput molecular

modeling analysis of 91 SAM MTases to better understand how their properties

(i.e., electric field [EF] strength and active site volumes) help achieve similar

catalytic efficiency toward substrates of different reactivity. We found that EF

strengths have largely adjusted to make the target atom a better methyl accep-

tor. For MTases that target RNA/DNA and histone proteins, our results sug-

gest that EF strength accommodates formal hybridization state and variation

in cavity volume trends with diversity of substrate classes. Metal ions in SAM

MTases contribute negatively to EF strength for methyl donation and enzyme

scaffolds tend to offset these contributions.
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1 | INTRODUCTION

S-adenosyl methionine methyltransferases (SAM
MTases) are a ubiquitous class of enzymes. SAM MTases
are observed in a wide range of organisms including bac-
teria, fungus, plants, and humans (Bügl et al., 2000; Dhe-
Paganon et al., 2011; Nai et al., 2021; Zhang et al., 2018).
SAM MTases catalyze SN2 methylation, using SAM as a
methyl donor. Their functions are involved in many
essential life processes, including gene expression
(Katada & Sassone-Corsi, 2010; Min et al., 2003; Moore

et al., 2013), protein modification (Falnes et al., 2016;
Paik et al., 2014; Winter et al., 2018), neurotransmitter
degradation (Akil et al., 2003; Männistö &
Kaakkola, 1999; Witte & Flöel, 2012), and natural prod-
uct synthesis (Liscombe et al., 2012; Ohashi et al., 2017,
2023). SAM MTases target various types of atoms, includ-
ing carbon, nitrogen, oxygen, and sulfur (Scheme 1).
Enabled by advances in structural determination, kinetic
studies, and multiscale molecular modeling (Patra
et al., 2016; Ruggiero et al., 2004; Soriano et al., 2006;
Zhang et al., 2015), the mechanistic details of SAM
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MTases have been unveiled (Horowitz et al., 2014;
Roca & Williams, 2020; Świderek et al., 2018). The com-
bination of binding isotope effect experiments and large-
scale quantum mechanical calculations shows the depen-
dence of ground state donor-acceptor distance on the cat-
alytic efficiency of catechol-O-methyltransferase (Zhang
et al., 2020; Zhang & Klinman, 2016; Zhang et al., 2015).
Investigations into CH-X (X = O, C, or N) hydrogen
bonding have elucidated the role of these non-bonding
interactions in ensuring catalytic efficiency (Couture
et al., 2006; Horowitz et al., 2013; Trievel et al., 2003;
Yang et al., 2019). Analysis of charge transfer and electro-
statics on four Class I SAM MTases has illustrated the
ability of these enzymes to customize their electrostatic
potentials to the intrinsic reactivity of their target sub-
strates (Yang et al., 2019).

Although SAM MTases involve diverse substrate
scope with a wide range of intrinsic methyl-accepting
capability, the kinetic properties of MTase-catalyzed reac-
tions are largely consistent. A survey of 15 unique
MTases from IntEnzyDB shows an average activation
barrier of 12.7 kcal/mol with a standard deviation of
1.9 kcal/mol (Table S1) (Yan et al., 2022, 2021). Similarity
of turnover number across diverse substrates is not
unique to SAM MTases and is observed in many classes
of enzymes (Sousa et al., 2020). The combination of
diverse substrates and functional roles with consistent
kinetic output suggests that different SAM MTases
address the specific characteristics of each catalyzed reac-
tion. However, the molecular origins behind the substrate
kinetic homogeneity remain largely unknown.

A high throughput analysis of SAM MTase electro-
static and topological properties is needed to rationalize

how this diverse class of enzymes have adjusted to achieve
a narrow distribution of kinetics. Existing studies have
used different types of MTases but remained relatively low
throughput, usually using one or two structures (Patra
et al., 2016; Rod & Ryde, 2005; Ruggiero et al., 2004;
Świderek et al., 2018). A notable exception is the structural
survey conducted by the Trievel, which involves 46 differ-
ent SAM MTases (Horowitz et al., 2013; Yang et al., 2019).
Combined growth in computational resources and protein
databank (PDB) entries makes a strong case for higher
throughput studies that have greater potential to uncover
more universal trends (Berman & Gierasch, 2021; Shao
et al., 2022; Vasina et al., 2022).

Here, we present a computational analysis of 91 high-
quality SAM MTase structures that examines both
enzyme interior electric field (EF) strength and cavity
volume using EnzyHTP, a high-throughput enzyme
modeling software developed by our lab (Shao
et al., 2022). Existing computational and experimental
studies of SAM MTases (Yang et al., 2019) and other
types of enzymes have elucidated interior enzyme elec-
trostatics to be among the determining factors in mediat-
ing catalytic efficiency (Ji et al., 2022; Lameira
et al., 2015; Oanca et al., 2020; Zheng et al., 2022). Vol-
ume of active site cavity (Petřek et al., 2006) represents a
topological factor that informs the capability of SAM
MTases in substrate binding. Measuring both an electro-
static and topological value provides a holistic view of
how each MTase has evolved to the specific characteris-
tics of their respective substrates to achieve strong cata-
lytic efficiency. Our analyses of 91 unique SAM MTases
have enabled us to evaluate how SAM MTases have
evolved to specific characteristics of their substrates' tar-
get atoms, the diversity of their class of target substrates,
and the presence of metal ions in their structures.

2 | COMPUTATIONAL METHODS

2.1 | Data curation

Structures were curated from the PDB on October 3, 2022
(Berman & Gierasch, 2021). Filtration criteria are: (1) res-
olution under 2.0 Å, (2) enzyme commission
(EC) number of 2.1.1.X (i.e., SAM-dependent methyl-
transferase), (3) inclusion of SAM, and (4) no RNA or
DNA fragments. These criteria yielded 175 PDB entries.
The PDB codes and corresponding search queries are
listed in Supporting Information (Table S2 and
Figure S1).

The biological assembly and FASTA sequence for
each entry was downloaded from the PDB website. The
curated enzymes consist of 80.2% monomers, 18.7%

SCHEME 1 Chemical structure of S-adenosyl methionine. The

left side (a) shows the full molecule in the protonation state seen at

a pH of 7.0. Top right (b) shows the relevant S–C bond broken

during methyl donation by S-adenosyl methionine. The negative

partial charge of sulfur and positive partial charge of the methyl

group are shown. Bottom right (c) shows a hypothetical SN2

transition state where the methyl group is being transferred to

either a carbon, nitrogen, oxygen, or sulfur.
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dimers and 1.1% trimers (Table S3). When alternative
locations or ANISOU records were available, the first coor-
dinates were used. All waters were removed from each
structure. Co-crystallizing ligands and ions were removed
manually except Zn and Mg ions. Mg ions were only kept
for catechol O-methyltransferase (COMT) structures. Miss-
ing residues were added to each structure using the Model-
ler python package (Webb & Sali, 2014) by treating the
incomplete sequence as a template and aligning it to the
full sequence provided by the FASTA. All structures were
protonated at a pH of 7.0 using the EnzyHTP (Shao
et al., 2022) package and ligands were protonated using
the molecular operating environment (MOE) software
package (Chemical Computing Group ULC [CCG], 2022).
Ligands missing heavy atoms were replaced with idealized
models found in the PDB's chemical library. The struc-
tures were used as is from this point forward.

Each entry was clustered into one of 104 groups using
edit distance with a cutoff of 95% sequence similarity and
a maximum length difference of 5% (Text S1). Clustering
was performed by iterating through the list of sequences
and checking if the sequence has satisfied the criteria
listed above. If it satisfied these criteria, it would be
added. If not, a new cluster containing just that sequence
would be created. A total of 21 clusters were identified to
contain more than one sequence. The sequence from
each cluster with the best resolution in angstroms
(i.e., the smallest value) was selected by default. If a clus-
ter contains a native version of the enzyme and versions
with inhibitors, the native version was selected as the
representative member from the cluster. PDB entries
3m6v and 3m6w were included due to being in different
space groups as specified by their authors.

Numbers were sourced from PDB entries when avail-
able, and from the UniProtKB database when not listed
in the PDB (Coudert et al., 2022). Information on sub-
strate type and target heteroatom were derived from the
BRENDA database entry corresponding to EC number
(Chang et al., 2020). Substrate and heteroatom informa-
tion was also derived from PDB entries when no EC
number could be derived. We found 11 entries that have
no corresponding EC number and removed them from
the data set for analyses that focus on substrate and tar-
get atom specificity. We also removed 21 entries that
have EC numbers other than 2.1.1.X. Complete enzy-
matic function data annotations are listed in the Support-
ing Information (Table S4).

2.2 | Molecular mechanics minimization

The SAM MTase complexes were parameterized using
the antechamber, parmchk2 and tleap utilities from

AMBER19 (Kamenik et al., 2020). Non-SAM ligands were
removed from all structures. Each structure was mini-
mized using molecular mechanics in Amber19's sander
application with the initial x-ray structure as a starting
point. Minimization was run for a maximum of 20,000
steps and the remaining settings are listed in Supporting
Information (Figure S2).

2.3 | EF calculation

For each SAM-MTase complex, the enzyme's interior EF
strength was calculated along the S–C bond of SAM using
the RESP charges for each atom as well as the coordi-
nates of the minimized structure. The below equation
was used to calculate the EF strength at the mid-point of
the S–C bond by summing over all atoms:

Electric Field Strength¼
X kq

r
!���
���
2 br �bd
� �

Here r
!

is the vector from each atom to the S–C bond
mid-point, bd is a unit vector pointing along the direction
of the S–C bond from the center of the bond, q is the
charge of the atom in internal Amber units and k is a
conversion constant with a value of 332.4 kcal Å/ mol e2.
When a structure was a dimer or trimer, EF strength was
calculated for each active site and averaged. The resulting
units of EF strength are MV/cm.

2.4 | Dipole moment calculations

We used the Gaussian16 software package to perform
density function theory (DFT) calculations and the
Multiwfn package to calculate dipoles (Frisch
et al., 2016; Lu & Chen, 2012). A set of 10 representative
SAM structures were extracted from 10 PDB structures
from the main set of 91 MTases. Each structure was
first minimized with a maximum of 20,000 cycles using
molecular mechanics. A structural cluster model was
then constructed by taking the SAM cofactor and
nearby amino acids within 3 Å from the surface of
SAM. The truncated structural models were used for
the Gaussian single-point energy calculations. The
B3LYP-D3 method was used with a 6–311 g(d) basis
set. Dipoles were generated using the wave function-
based localized molecular orbital analysis in Multiwfn.
A table of PDB IDs, dipoles, and resulting ΔGelec are
found in Table S5. When a structure was a dimer or tri-
mer, the calculation was repeated for each active site and
averaged.
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2.5 | Cavity volume calculation

We used the Mole2.0 software package to calculate the
cavity volume of SAM-binding pocket (Sehnal
et al., 2013). A truncated version of each cavity was cre-
ated by selecting residues containing at least one heavy
atom that is within 8 Å of a heavy atom in SAM. Volume
was calculated a total of 378 times for each cavity with
the outer probe radius ranging from 3.0 to 6.5 Å by 0.3 Å,
inclusive, and with inner probe values of 1.0–2.0 Å by
0.05 Å, inclusive. Coverage of SAM by each parameter set
was calculated by exporting the cavity to a mesh and then
counting the number of heavy atoms whose centers are
inside the mesh using the pyvista python module. Each
cavity was assigned the lowest volume with coverage
greater than 0.95 or with the max coverage if none were
greater than 0.95. When an enzyme was a dimer or tri-
mer, this procedure was repeated for each cavity and the
result was averaged.

3 | RESULTS AND DISCUSSION

We curated 91 SAM MTases for analyses of enzyme inte-
rior EF and cavity size of active site. These two character-
istics were chosen as they broadly describe enzyme
substrate specificity and can be readily calculated in a
high-throughput manner.

EF strength plays a critical role in breaking the
sulfur–carbon (S–C) bond of SAM via electrostatic stabili-
zation energy (ΔGelecÞ. As seen in Scheme 2a,
ΔGelec ¼�EF

�!
SCμ

!
SC, where EF

�!
SC and μ

!
SC are the EF

and dipole moment of the system measured along the S–
C bond, respectively. Our study uses RESP charges from
the AMBER force field to calculate EF

�!
SC. Both quantities

are taken at the center of the S–C bond. The lower elec-
tronegativity of C versus S results in SAM's dipole point-
ing from the donor methyl to the S atom (Scheme 1b).
Following the convention of starting the dipole vector at
the δ- atom, μ!SC gets a positive sign. A positive value for
EF
�!

SC results in a negative ΔGelec, which favors the
breaking of SAM's S–C. A positive value for EF

�!
SC yields

a positive ΔGelec, disfavoring bond-breakage. Changes in
EF
�!

SC quantitatively impact ΔGelec. We calculated the S–
C dipole moments for the binding SAM cofactor in 10 rep-
resentative MTases in our data set. A change of 10 MV/cm
resulted in an average change of 0.4 kcal/mol (Table S5).
The change is expected to be even greater for transition
state with a breaking, elongated S–C bond.

Cavity volume measures the size of the active site and
provides information on how each enzyme geometrically
accommodates its target substrate. Exact substrate orienta-
tions and conformations are not known for each of the
selected structures and are generally difficult to determine.
We also observed that active sites were relatively rigid. The
average normalized B-factor of active site residues is �0.3
versus 0.1 for the rest of enzyme excluding SAM (Table S6).
Bnorm values were calculated using Equation (1), where B
and σB refer to the average and standard deviation of
B values, respectively (Barthels et al., 2021):

Bnorm ¼ B�B
� �

σB
ð1Þ

SCHEME 2 Measuring electric field (EF) strength and cavity volume. Visualized by the blue arrow in (a), EF is measured along the S–C
bond axis at the center point of the bond. Charges and atom locations for the EF calculation are derived from the minimized AMBER

structure. Inlay (b) shows a sample mesh from Mole2.0 used to calculate the cavity volume. Coverage denotes the percentage of SAM's heavy

atoms whose centers are inside the mesh.
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This lack of substrate information combined with the
relative rigidity of active sites observed in both this data
set and others led us to measure cavity volume statically
(Bartlett et al., 2002). We employed the Mole2.0 software
package to calculate cavity volumes, running the soft-
ware on truncated cavities using a robust set of parame-
ters. Meshes from Mole2.0 were extracted and used for
volume determination. Further details are provided in
the Computational Methods Section.

Non-SAM substrates were not explicitly considered in
the following EF

�!
SC calculations. Substrate effects are

known to play a role in SAM MTase mechanisms, with
hydrogen bonds often forming between SAM and nucleic
acid targets, for example, Yang et al. (2019). Therefore,
these effects are expected to exist in the “uncatalyzed”
background reactions in water and are not considered in
this analysis. Difficulties in proper substrate positioning
further complicate the inclusion of substrates for both
low- and high-throughput works. We are investigating
methods for high-throughput reactive docking tech-
niques. Doing so will enable accurate, automated posi-
tioning of substrates in enzyme active sites.

The curated SAM MTases involve a diverse range of
substrate specificity (Figure 1a) with nucleic acids and
histones being the most abundant, representing 55.0%
and 23.1% of the data set, respectively. MTases catalyzing
small molecules (i.e., molecular weight ≤582.9 g/mol),
proteins, and catechol each contribute 11.0%, 7.7%, and
3.3% of the structures, respectively. We isolated catechol

from the small molecule category because of its high
abundance and well-established existing studies elucidat-
ing its mechanism (Jindal & Warshel, 2016; Kulik
et al., 2016; Männistö & Kaakkola, 1999; Patra
et al., 2016; Roca & Williams, 2020; Ruggiero et al., 2004;
Yang et al., 2019; Zhang et al., 2015). The distributions of
cavity volumes and EF values are displayed in Figure 1b.
Cavity volumes range from 498.0 to 1494.7 Å3, with a
median value of 859.6 Å3. Kernel density estimation
(KDE) of cavity volume generates a distribution with a
single peak around 806.3 Å3 and a small shoulder around
1400.0 Å3. SAM has a volume of 295.2 Å3, meaning that
the median cavity volume has space of approximately
twice the size of SAM to accommodate methyl-acceptor
substrate.

EF strengths range from �306.2 to 190.7 MV/cm,
with a median of 13.8 MV/cm. This result indicates that a
large number of SAM MTases have positive EF strength
although a substantial number have negative strength
values. KDE estimation of EF generated a distribution
with two peaks, one around �89.5 MV/cm and another
around 93.0 MV/cm. While the median EF is on average
slightly positive, KDE analysis indicates a wide distribu-
tion of EF strength in specific MTases. EF direction is
generally orthogonal to the S–C bond with an average
angle between r

!
i and r

!
SC of 87.2�. Direct alignment or

opposition of r
!
i and r

!
SC is not common with 19.0% and

17.1% of active sites having r
!

i� r
!

SC angles on the ranges
of [0�, 60�) and [120�, 180�), respectively. Proximal

FIGURE 1 A survey of the compiled SAM MTase data set. The pie chart (a) on the left shows the functional breakdown of the MTases.

Classifications are based on the EC number when available and are derived from the original publication if no EC number was supplied.

The contour plot (b) on the right shows the distributions of cavity volume and electric field for all 91 MTases. The center of (b) shows a

topographical view of the values in two dimensions and the margins show one-dimensional kernel density estimation plots of each

respective dimension.
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residues have larger average contribution to EF strength,
although the large quantity of distal residues has mean-
ingful cumulative contribution. Residues within 5Å have
an average EF strength magnitude contribution of 75.3
MV/cm whereas those 5–10, 10–15, and> 15Å have aver-
age magnitude contributions of 14.0, 7.9, and 1.5 MV/cm,
respectively. Polar residues also contribute 5.3 MV/cm to
EF strength magnitude on average whereas non-polar
residues only contribute 1.1 MV/cm, respectively. Distri-
butions of these values are available in the Supporting
Information (Figure S3). Scheme 3 provides an

illustrative example of EF strength generation for a typi-
cal structure, FtsJ RNA MTase (PDB ID: 1eiz). Cavity vol-
ume and EF strength have low correlation with an R2 of
only 0.01. The lack of correlation implies the two proper-
ties are independent and EF strength does not directly
depend on binding cavity size.

Next, we investigated the electrostatic mediation of
MTases on SAM co-factor with substrates containing dif-
ferent methyl-accepting polar atoms. We observe statisti-
cally significant differences in the distribution of EF
strengths for O- and N-targeting MTases (Figure 2, left).

SCHEME 3 Illustrative example of contribution to electric field (EF) strength and local geometry of active site for FtsJ RNA MTase

(PDB ID: 1eiz). (a) The residues are colored-coded by the magnitude of the EF contribution with very positive and very negative

contributions being shown in red and blue, respectively. The middle image (b) shows polar residues in magenta and non-polar residues in

gray. A zoomed-in view of the active site is shown in (c), where the surface of the active site has been selected. A residue is considered

buried when <10% of its surface area is a solvent-accessible surface area (SASA).

FIGURE 2 Distributions of measured electric field (EF) strength and cavity volume as a function of target heteroatom. The left and

right plots show strip plots with the EF and cavity volume measurements for oxygen (O) and nitrogen (N), respectively. The bars for each

data series represent the mean value for that subset. Average values and standard deviations are shown at the top of each subplot. Carbon-

targeting MTases do exist in the data set but have been omitted from this figure as only five data points exist.
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The EF strengths of O-targeting MTases are on average
136.0 MV/cm more negative than those targeting nitro-
gen. Using student's t-test, the EF distributions are statis-
tically significant with a p-value of 2.0 � 10�6. The
average EF of 20.0 MV/cm for N-targeting MTases is
62.1% more positive than the 13.8 MV/cm average field
for the broader data set. The results show that the protein
scaffolds of N-targeting MTases have more positive EFs
than O-targeting MTases. We believe these EFs likely
help to overcome the lower electronegativity of nitrogen,
in turn making it a better acceptor of SAM's methyl
group. Oxygen's stronger electronegativity makes it a nat-
urally stronger methyl group acceptor, and therefore,
MTases have taken fewer efforts to evolve their interior
EFs. Notably, these analyses only reflect a general trend
because the specific functional groups under each
heteroatom-targeting category involve large disparities of
methyl-accepting ability (e.g., hydroxyl versus carboxyl).

The distributions of EF strength for both O- and
N-targeting MTases show considerable variation. We
attribute this variation in field strength to the underlying
substrate diversity seen for these categories of MTases.
The substrates for 55.6% and 52.4% of the O- and
N-targeting MTases are RNA/DNA, respectively.
RNA/DNA substrates are structurally and electrostati-
cally diverse. Targeting different sequences or nucleotide
atoms requires significant adjustment to the local sub-
strate environments, resulting in noticeable EF strength
variation.

In contrast, differences in cavity volumes for O- and
N-targeting MTases are not statistically significant. Cavity
volumes only differ by 70.8 Å3 on average (Figure 2b),
which is considerably smaller than the standard devia-
tions of 262.0 and 185.0 Å3 for O- and N-targeting target-
ing MTases, respectively. Using the student's t-test, the

cavity volume distributions are not considered to be sta-
tistically significant with a p-value of 0.2. The upper and
lower limits of cavity volumes for both heteroatom target-
ing enzymes are also comparable (i.e., �550
to �1425 Å3), further suggesting that the enzymes do not
directly adjust their volumes to accommodate different
heteroatoms.

The inverse relationship between EF and electronega-
tivity of the target atom is conserved when looking only
at MTases targeting RNA/DNA (Figure 3). The MTases
targeting carbon atoms are also included in this compari-
son. O-targeting MTases have the most negative EF
strength with an average value of � 166.5 MV/cm. N-
targeting MTases still have negative EF strength with an
average of �11.4 MV/cm, but it is much less negative
than those of O-targeting counterparts. C-targeting is the
least electronegative of the three elements and has the
most positive EF strength with an average of 83.2
MV/cm, which is almost four times higher than the
median seen across the larger MTase data set. This obser-
vation is consistent with our hypothesis that MTases tar-
geting atoms of a weaker electronegativity experience a
stronger evolutionary pressure for accelerating the
methyl transfer reactions. As such, they evolve to pro-
duce more positive EFs in order to enhance the cleavage
of S–C bond for methyl donation.

We investigated how interior EF and cavity volumes
of N-targeting MTases vary with respect to target atom
geometry. We highlighted the N-targeting MTases for
RNA/DNA and histones because they are the two largest
substrate types in the data set with 50 and 21 enzymes
catalyzing for these reactants, respectively. Nucleic acids
are more diverse, containing nitrogen in both sp2 and sp3

hybridization states (Figure 4b). Note that the sp2 hybrid-
ized cyclic -NH2 groups are conjugated and will exist in a

FIGURE 3 Distributions of

measured electric field

(EF) strength for MTases

targeting RNA or DNA

substrates. Values are grouped

by target atom with oxygen,

nitrogen, and carbon being

represented by O, N, and C,

respectively. The black line for

each category represents the

average EF and the average for

each atom type plus or minus

the standard deviation. Averages

and standard deviations for each

atom are listed above their

respective distribution plots.
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mixed sp2/sp3 state. For the purposes of formal classifica-
tion, we consider them to be sp3. We have also performed
an alternative analysis with cyclic -NH2 groups placed
into a separate sp2/sp3 mixed group (Figure S4). Histone
MTases target nitrogen on lysine residues in sp3 hybridi-
zation only. Notably, the amine group with sp3 N can
also have varying protonation states depending on local
chemical environment. Wide distribution of EF strengths
along the S–C bonds mirror this diversity, with
RNA/DNA and histone MTases having standard devia-
tions of 121.4 and 55.3 MV/cm, respectively (Figure 4a).
RNA/DNA and histone targeting MTases have average
EFs of �31.7 and 68.6 MV/cm, respectively. We believe
the stronger EF for histone MTases may be due to the
protonation state of the terminal nitrogen. In biological
pH ranges, it will be in an NH3

+ state, meaning the
methyl-accepting lone pair on the nitrogen is occupied.
We hypothesize that the stronger EF strength aids in
deprotonating the nitrogen, allowing methylation to
occur. This notion is supported by the differences in EF
strength for sp2 and sp3-targeting RNA/DNA MTases
which have averages of �65.6 and 52.9 MV/cm, respec-
tively. This result demonstrates there is a clear trend
between EF strength and the hybridization state of the
target atom. The trend remains consistent even by the
classification of cyclic -NH2 groups into a separate sp2/
sp3 mixed group (Figure S4).

Cavity volume spreads repeat the trend seen with EF
spreads with RNA/DNA and histone MTases having
standard deviations of 231.0 and 162.9 Å3, respectively.

We believe the increased variation in volume for
RNA/DNA targeting enzymes reflects the geometric
diversity seen in nucleic acid substrates. Target atoms in
nucleic acid substrates have diverse locations within their
respective residues and have both sp2 and sp3 hybridiza-
tion, whereas all histone targets have the same sp3

hybridization.
Finally, we investigated how the presence of metal

ions mediate interior EF of MTases (Figure 5). A total of
19 enzymes have a metal ion present, with 2 having mag-
nesium, and 17 having zinc. The average distance from
zinc ions to the S–C midpoint is 30.6 Å, whereas the mag-
nesium ions are only 5.1 Å away, on average. Looking at
electrostatics, for 17 of the 19 structures the metal ion
makes the EF along SAM's S–C bond more negative by
an average of � 55.5 MV/cm. Metal ions do not typically
enhance the EF strength for the purpose of methyl dona-
tion, but their corresponding host protein scaffolds work
to offset these effects. MTases with metal ions have an
average EF of 58.8 MV/cm versus the average of �20.1
MV/cm for those without metals (Figure 5a). Given the
largely negative contributions of metal ions to EF
strength, MTases containing metals feature extremely
positive contributions from protein scaffold alone.
Instead of directly aiding the transfer of SAM's methyl
group, these binding metal ions likely contribute by stabi-
lizing the enzyme structure or mediating protein dynam-
ics. Many of the zinc-containing enzymes have zinc
fingertips which stabilize distal regions of enzyme struc-
ture (Bogani et al., 2013; Klug & Schwabe, 1995). In

FIGURE 4 Electric field strength and cavity volume data for N-targeting MTases stratified by target substrate type. Target substrates are

determined by enzyme commission number and the subplots in (a) show actual data points overlaid onto boxplots. They are color-coded by

formal hybridization classification with blue corresponding to substrates with the target atom in a sp2 hybridization state and orange

corresponding to when the target atom is in a sp3 hybridization state. On the right (b), the substrates are shown with target atoms

highlighted in red. Substrates with sp2 and sp3 target atoms have blue and orange backgrounds, respectively.
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COMT, the magnesium ion stabilizes the catecholate
intermediate although it directly worsens the EF
strength. Similar to heteroatom-based stratifications,
there is an observed upper limit of EF near �200 MV/cm
for both metal and non-metal MTases. The lower bound
for non-metal MTases is �306.2 versus �254.9 MV/cm
for metal MTases. The consistently tighter EF strength
spread and higher range of metal-containing MTases
indicates that MTases have consistently evolved to
directly offset the negative EF strength contribution of
the metal ions contained within.

4 | CONCLUSION

We carried out a high-throughput analysis of 91 SAM
MTase structures focusing on how these enzymes have
achieved enzymatic efficiency across a wide range of sub-
strates. First, we calculated cavity volume and EF
strength values for each structure and then determined
the catalytic function of each protein. When looking at
O- and N- targeting MTases, we found there was not a
significant difference in cavity volumes but that distribu-
tions for EF strength differed at a statistically significant
level. This trend was also conserved when looking only at
MTases that target RNA or DNA substrates, including a
small number of C-targeting MTases. Comparing values
for MTases targeting RNA/DNA and histones, we
observed variations in both EF strength and cavity vol-
ume between these categories. More variation was seen
in the EF strength and cavity volume values for
RNA/DNA-targeting MTases than histone-targeting
MTases which mirrors the associated diversity within
each class of substrates. We observed that MTases

targeting sp3 hybridized atoms have more positive EF
strengths than those targeting sp2 atoms. In the case of
histone targeting MTases, we hypothesize that the stron-
ger EF helps prepare nitrogen centers to accept a methyl
group. Lastly, we investigated the role of metal ions and
found that they largely have a negative contribution to
EF strength and that the sequences of metal-containing
enzymes appear to offset this effect.

We view this work as an extension of previous studies
which compared computational predictions among smaller
data sets (Horowitz et al., 2013; Yang et al., 2019). Previous
studies used more expensive techniques less amenable to
an HTP approach. Still, we believe this work demonstrates
the feasibility of larger-scale analyses as well as the insights
that can be gained. We look forward to applying higher
precision techniques to data sets of similar size in the
future. From a computational perspective, the use of RESP
charges in the calculation of EF strength cannot reflect the
impact of charge transfer and polarization on the reaction.
Given the reported role of charge transfer in SAM mecha-
nisms (Yang et al., 2019), we plan to employ more precise
QM/MM methods or polarizable force fields to investigate
these aspects through HTP studies in the future.

ACKNOWLEDGMENTS
The authors thank Qianzhen Shao and Prof. Jens Meiler
for their suggestions and comments. This research was
supported by the startup grant from Vanderbilt Univer-
sity. Christopher Jurich is supposed by Vanderbilt
Chemistry-Biology Interface Training Grant
(T32GM065086). Zhongyue J. Yang is supported by the
National Institute of General Medical Sciences of the
National Institutes of Health under award number
R35GM146982 and Rosetta Commons Seed grant.

FIGURE 5 Distributions of
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ions. The plot on the left
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dots and box plots in gray. Inlay

(b) shows an example of a

structure with three metal ions

where two provide negative EF

contribution. The transparent

amino acids are colored red and

blue when they contribute >5.0

and < �5.0 MV/cm to the EF,

respectively. Inlay (c) shows a

structure that has no metal ions

present. SAM is rendered as gray

spheres in both (b and c).
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