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Abstract

Protein aggregation results in an array of different size soluble oligomers and

larger insoluble fibrils. Insoluble fibrils were originally thought to cause neuro-

nal cell deaths in neurodegenerative diseases due to their prevalence in tissue

samples and disease models. Despite recent studies demonstrating the toxicity

associated with soluble oligomers, many therapeutic strategies still focus on

fibrils or consider all types of aggregates as one group. Oligomers and fibrils

require different modeling and therapeutic strategies, targeting the toxic spe-

cies is crucial for successful study and therapeutic development. Here, we

review the role of different-size aggregates in disease, and how factors contrib-

uting to aggregation (mutations, metals, post-translational modifications, and

lipid interactions) may promote oligomers opposed to fibrils. We review two

different computational modeling strategies (molecular dynamics and kinetic

modeling) and how they are used to model both oligomers and fibrils. Finally,

we outline the current therapeutic strategies targeting aggregating proteins

and their strengths and weaknesses for targeting oligomers versus fibrils. Alto-

gether, we aim to highlight the importance of distinguishing the difference

between oligomers and fibrils and determining which species is toxic when

modeling and creating therapeutics for protein aggregation in disease.
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1 | INTRODUCTION

Protein aggregates are any protein species of a higher
molecular weight than the expected native species.

Unlike external pathogens, protein aggregation diseases
are caused by native proteins which have crucial func-
tions within cells. Through mutations, external factors
such as toxins or metals, post-translational modifications
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(PTMs), crowding, or a combination of effects, these
native proteins aggregate into a range of soluble and
insoluble species. We will refer to smaller soluble aggre-
gates as oligomers and larger insoluble aggregates as
fibrils since the latter species typically form β-sheet rich
strands (Sipe & Cohen, 2000).

In the context of disease, fibrils were originally
thought to be the toxic species since they were readily
identified in patient samples. However, it has since been
shown that fibril concentration does not correlate with
disease severity (Kuemmerle et al., 1999; Tiwari &
Kepp, 2016). Beginning in the 2000s, soluble oligomers
began to be investigated as the potential toxic species in
many protein aggregation diseases (A. K. R. Dasari
et al., 2019; Ferreira et al., 2007; Haass & Selkoe, 2007;
Lasagna-Reeves et al., 2013; Martinelli et al., 2019;
Proctor et al., 2016; C. Wells et al., 2021), whereas fibrils
were shown to either have a protective effect or no effect
(Congdon & Duff, 2008; Hnath & Dokholyan, 2022; Zhu
et al., 2018). Yet, the aggregation field still debates the
toxicity of oligomers versus fibrils, with many therapeutic
and biomarker strategies still targeting the fibrils (Alam

et al., 2019; Cascella et al., 2022; Stefani, 2010; Taneja
et al., 2015). Fibrils are visualized in tissue samples using
immunostaining, β-sheet binding dyes such as Congo red
and thioflavin T, or just by the naked eye in some cases
(Nilsson, 2004; Sipe & Cohen, 2000). Oligomers are diffi-
cult to identify in patient samples since they typically
cannot be visualized using β-sheet binding dyes and some
oligomer species are structurally independent from the
native protein structure and fibril structure, hence most
antibodies cannot detect them (Doig et al., 2017;
Hnath & Dokholyan, 2022). While the fibril secondary
structure is typically composed of β-sheets, α-helices have
been identified as a prominent structure component in
many disease-associated oligomers, and many disordered
proteins adopt helical-rich structures when in contact
with lipids or in specific environments (Figure 1;
D. Ghosh et al., 2015; Hnath & Dokholyan, 2022;
Pannuzzo et al., 2013). Most protein aggregation diseases
involve a toxic gain of function from aggregates develop-
ing aberrant interactions that are not present in the nor-
mal functional state of the proteins (Hoffner &
Djian, 2002; Rajagopalan & Andersen, 2001; Redler &

FIGURE 1 Different types of aggregating proteins. Intrinsically disordered proteins have unstable tertiary or secondary structures such

as Tau (PDB 2MZ7), Amylin (PDB 2KB8), Aβ (PDB 1IYT), and α-synuclein (PDB 1XQ8). Proteins with intrinsically disordered regions have

an unstable region that is prone to aggregation, additive mutations typically occur in this region (red region of proteins). Some examples of

IDRs are Huntingtin (PDB 6RMH), p53 (PDB 1T4W), PrP (PDB 1QLX), and RNA binding proteins such as FUS and TDP-43 (PDB 4BS2).

Ordered proteins have stable secondary structures which must be destabilized for aggregation to occur such as hexameric Serum Amyloid A

(PDB 4IP9, depicts a dimeric piece of the whole structure), tetrameric TTR (PDB 3TFB), dimeric SOD1 (PDB 1SPD), and dimeric antibody

light chain (PDB 1YUH).
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Dokholyan, 2012; Sharma et al., 2016) as opposed to a
toxic loss of function in which aggregates sequester the
proteins and prevent them from performing crucial jobs
(still observed in a few exceptions; Broeck et al., 2014;
Choi & Dokholyan, 2021).

In this review, we describe how different size protein
aggregates (oligomers vs. fibrils) are toxic or protective in
many diseases, and explain how factors that promote
aggregation (mutations, metals, PTMs, or lipid interac-
tions) may differentially promote oligomers or fibrils.
Additionally, we will outline computational modeling
and therapeutic strategies targeting different aggregate
sizes. Distinguishing whether oligomers or fibrils are
being targeted is crucial when modeling aggregation in
disease and designing therapeutics.

2 | PROTEIN AGGREGATION IN
DISEASE

There are three groups of proteins associated with disease
progression: intrinsically disordered proteins (IDPs), pro-
teins with intrinsically disordered regions (IDRs), and
ordered proteins which aggregate after the native form is
destabilized (Figure 1). IDPs are defined as a group of
proteins with unstable tertiary or secondary structures
under physiological circumstances and are represented
by a heterogeneous conformational ensemble (Wright &
Jane Dyson, 2015). The disorder may alternatively be lim-
ited to specific protein regions, which are called IDRs
(R. Lee et al., 2014). The amino acid compositions of
IDPs/IDRs are significantly different from those of struc-
tured globular proteins or regions in terms of hydropho-
bicity, charge, sequence complexity, and other properties
(Uversky et al., 2008). Although IDPs/IDRs are highly
flexible, some of them transition from the disordered to
an ordered state when interacting with partners
(Uversky, 2013). Misfolded IDPs/IDRs may aggregate and
form toxic species that cause neurodegenerative diseases,
diabetes, cardiovascular disease, and cancer (Martinelli
et al., 2019). In this section, we highlight some IDPs, pro-
teins with IDRs, and misfolded ordered proteins and their
aggregation associated with diseases.

α-Synuclein, an IDP with 140 amino acids commonly
studied in association with Parkinson disease (PD), is
encoded by the SNCA gene and widely exists in the pre-
synaptic terminals of neurons (Iwai et al., 1995).
α-Synuclein interacts with synaptic vesicle membranes
and plays an important role in synaptic vesicle homeosta-
sis and neurotransmitter release (Fortin, 2004). Mono-
meric α-synuclein has flexible structures and is
characterized by a heterogenous conformational ensem-
ble (J. Chen, Zaer, et al., 2021). Bartels et al. reported that

native α-synuclein isolated from various mammalian cell
lines, mouse brain tissue, and living human cells exists
primarily as a helically folded tetramer, while mono-
meric, dimeric, and trimeric forms were detected in small
amounts in certain cell types (Bartels et al., 2011). On the
contrary, using in-cell NMR, Binolfi et al. discovered that
native α-synuclein is predominantly monomeric and dis-
ordered inside intact Escherichia coli cells (Binolfi
et al., 2012). Due to these controversial findings, the most
abundant physiologic species of α-synuclein in vivo are
undetermined and need to be investigated thoroughly in
the future. α-Synuclein aggregates including toxic oligo-
mers and fibrils act as precursors in Lewy body forma-
tion, a hallmark in synucleinopathies (e.g., PD, multiple
system atrophy [MSA], and Lewy body dementia [LBD];
Alam et al., 2019). Although the specific toxic α-synuclein
species is still undetermined and debated, increasing
research suggests that soluble α-synuclein oligomers are
cytotoxic, whereas larger Lewy inclusions might be the
consequence of a protective response (Martinelli
et al., 2019).

Prion protein (PrP) is a glycoprotein abundantly pre-
sent on the outer surface of neurons (Kovač &
Šerbec, 2022). Accumulation of toxic prion aggregates in
the brain contributes to prion disease, also named as
transmissible spongiform encephalopathies, occurring in
several species including humans (C. Chen &
Dong, 2016), felines (Colby & Prusiner, 2011), cervids
(N. A. Rivera et al., 2019), cattle (G. A. H. Wells
et al., 1991), goats and sheep (Acín et al., 2021). PrP con-
sists of an intrinsically disordered N-terminal region and
a structured C-terminal portion comprised of three
α-helices and two β-sheets (Kovač & Šerbec, 2022). The
protein is localized on the cell membrane through a gly-
cosylphosphatidylinositol anchor at the C-terminus
(Kovač & Šerbec, 2022). The normal form of PrP has been
implicated in several important biological processes
including myelin maintenance, mitochondrial function,
metal ion homeostasis, circadian rhythm, intercellular
signaling, and neuroprotection (Castle & Gill, 2017;
Fevrier et al., 2004; Zamponi & Stys, 2009). This confor-
mation of prion protein converts into a β-sheet-rich struc-
ture, which stimulates autocatalytic transformation and
protein aggregation (Yamaguchi & Kuwata, 2018).
Although prion diseases have been associated with
abnormal protein aggregation, the molecular mechanism
underlying the conversion of prion protein from normal
to pathological forms and the development of prion dis-
ease are still poorly understood.

Proteins with prion-like amino acid composition or
prion-like domains induce aggregation, cause neurotoxic-
ity, spread between cells (Porta et al., 2018), and are asso-
ciated with many diseases, showing similar features as
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those of PrP (Feiler et al., 2015; Furukawa et al., 2011;
Laferrière et al., 2019; Nonaka et al., 2013). For instance,
RNA-binding proteins containing prion-like domains,
including fused in sarcoma (FUS), Ewing sarcoma break-
point region 1 (EWSR1), TAR DNA-binding protein
43 (TDP-43), TATA-binding protein associated factor
15 (TAF15), and heterogeneous nuclear ribonucleopro-
teins A1 and A2 (hnRNPA1 and hnRNPA2), are known
to generate pathological inclusions that are related to
neurodegenerative diseases, such as frontotemporal dis-
orders (FTD), multisystem proteinopathy (MSP), and
amyotrophic lateral sclerosis (ALS; Harrison &
Shorter, 2017). These proteins share a similar modular
architecture consisting of a disordered prion-like domain
and a structured RNA-recognition motif or other RNA-
binding domains (Sprunger & Jackrel, 2021). Prion-like
domains assist with the function of RNA-binding pro-
teins, while also increasing protein misfolding and aggre-
gation, which contributes to neurodegenerative diseases
(Harrison & Shorter, 2017).

Human p53 is a G1-S checkpoint transcription factor
playing essential roles in cell proliferation, apoptosis,
angiogenesis, senescence, and DNA repair. Pathological
aggregation of p53 has been discovered in tumors and is
proposed to cause functional alterations that finally influ-
ence tumor progression (Oliveira et al., 2020). P53 is com-
posed of 393 residues that can be divided into several
domains: an intrinsically disordered N-terminal transacti-
vation domain, a proline-rich domain, a structured DNA-
binding domain, and a structurally disordered C-terminal
(Cho et al., 1994; Clore et al., 1995; S. Fields &
Jang, 1990; Haupt et al., 1997; Honda et al., 1997;
Joerger & Fersht, 2008; W. Lee et al., 1994). The disor-
dered regions mediate interactions with partner proteins
and facilitate p53 function. Under physiological condi-
tions, p53 oligomerize through the oligomerization
domain at the C-terminal. Monomer and dimer of p53
distribute in the cytoplasm, while its tetramer localizes in
the nucleus and is responsible for transcriptional activa-
tion (Stommel, 1999). The most toxic aggregates of p53
are small prefibrillar aggregates and soluble oligomers
(Lasagna-Reeves et al., 2013). In contrast, large p53 amy-
loid aggregation is non-toxic and serves biological roles
for tumor cells (Ham et al., 2019; Xu et al., 2011). Mecha-
nisms of p53 aggregation are summarized by J. Li
et al. (2022).

Amylin, also known as islet amyloid polypeptide, is
an IDP with 37 amino acids. It is co-secreted with insulin
from the same pancreatic cells (Cooper et al., 1987;
Mosselman et al., 1988; Westermark et al., 1987). Amylin
aggregates are the major component of the amyloid
deposits in pancreatic islets, a hallmark feature of type
2 diabetes (Hieronymus & Griffin, 2015). Amylin

aggregation follows a sigmoidal formation curve (first-
order kinetics) with lag, log, and plateau phases
(Rhoades et al., 2000). The lag phase initiates by the
interaction of one structurally disordered monomer to
another, and further addition of more monomers to pro-
duce oligomers (Abedini et al., 2016). These oligomers
function as a seed to form higher-order oligomers and
fibrils. The formation of fibrils facilitates the production
of new fibrils, and the elongation of fibrils is accelerated
in this log phase (Padrick & Miranker, 2002; Patil
et al., 2011). Eventually, protein aggregation enters the
plateau phase wherein proto-fibrils and amyloid fibrils
rich in β-sheet structure are formed (Rambaran &
Serpell, 2008). At first, amylin fibrils were thought to be
the main cause of cytotoxicity. However, it was later
found that small oligomers were the most toxic species
among the various intermediates. Amylin misfolding and
aggregation are associated with a gradual loss of pancre-
atic cell function and mass in diabetic patients
(Bhowmick et al., 2022). It causes cytotoxicity by induc-
ing endoplasmic reticulum stress (C. Huang et al., 2007),
oxidative stress (Zraika et al., 2009), mitochondrial mal-
function (X.-L. Li, Chen, et al., 2011), inflammatory cyto-
kine release (Westwell-Roper et al., 2011), and autophagy
pathway disruption (J. F. Rivera et al., 2011).

Alzheimer disease (AD) is the most common neuro-
degenerative disorder, responsible for 60%–70% of
dementia cases, which involves the aggregation of two
major kinds of IDPs, extracellular amyloid-β (Aβ) aggre-
gates and intracellular neurofibrillary Tau tangles. Both
types of aggregates form highly ordered cross-β structures
(Bulic et al., 2009). The major component of extracellular
aggregates is the Aβ peptide, a cleavage product of the
amyloid precursor protein. β-sheet-rich structures of Aβ
tend to associate with other monomers to aggregate into
oligomers and fibrils. Early studies suggested that Aβ
fibrils are the toxic agents that cause neuronal cell death
and other hallmarks of AD. Further studies have shown
that Aβ oligomers rather than Aβ fibrils are toxic to neu-
ronal cells (G. Chen et al., 2017; D. Y. Zhang et al., 2022).
Bernstein et al. determined that the aggregation prone
form of Aβ, Aβ42, has a different oligomer-size distribu-
tion than the more commonly found form, Aβ40
(Bernstein et al., 2009). The crystal structure of amyloid-
like fibrils revealed that the formation of highly ordered
parallel or antiparallel β-sheets and the steric zipper
interface between β-sheets are two essential elements of
amyloid fibril formation (Nelson et al., 2005). The major
component of the intracellular neurofibrillary is Tau,
which plays important roles in regulating microtubules,
neurite outgrowth, and axonal transport. Tau adopts
β-sheet structures resulting in a highly ordered morphol-
ogy of paired helical filaments.
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Huntington disease is an incurable late-onset and
progressive neurodegenerative disorder caused by a
mutation in the IT-15 gene, which encodes a 350 kDa
protein of unknown function, huntingtin (Ross &
Poirier, 2004). One of the hallmarks of Huntington dis-
ease is the aggregation of mutant huntingtin protein
(Bonfanti et al., 2019; Khare et al., 2005; Lakhani
et al., 2010). The mutant huntingtin protein which con-
tains an IDR of expanded polyglutamine from CAG tri-
nucleotide expansion in the gene is prone to misfolding
and aggregating. The amyloid of mutant huntingtin pro-
tein, β-sheet structures tightly held together by hydrogen
bonds, is considered a main cause of Huntington disease
pathogenesis, causing dysfunction and death of neurons
(S. Kim & Kim, 2014). Oligomeric Htt residue in the cyto-
plasm translocates to the nucleus in neurons as well as in
the cytosol in non-neurons. The huntingtin oligomers
affect motor function and cognition (C. Wells
et al., 2021). There are over 900 protein interactions
involving oligomeric Htt with a major role of interfering
with nuclear transport (Woerner et al., 2016). Oligomers
may play a pivotal and toxic role in Huntington disease
and several studies have shown that fibril formation pre-
vents cell death, similarly to other neurodegenerative dis-
eases (Arrasate et al., 2004; Leitman et al., 2013).

Unlike IDPs, the three main proteins associated with
systemic amyloid diseases (amyloidosis; Eisele
et al., 2015); transthyretin (TTR), antibody light chain,
and serum amyloid A, all have ordered structures that
are necessary for the proteins' primary functions. Trans-
thyretin is a tetrameric protein responsible for the trans-
port of retinol and the thyroid hormone thyroxine to the
liver (Saelices et al., 2015), antibody light chain is a two-
part small polypeptide subunit of an antibody (Blancas-
Mejia et al., 2018), and serum amyloid A is a hexameric
apolipoprotein responsible for the transport of lipids and
the recruitment of immune cells (J. Lu et al., 2014). Dis-
sociation of each protein's primary conformation is a nec-
essary first step for aggregation. The location of protein
aggregates in the body dictates how the disease presents,
with aggregate presentation typically leading to the
affected organ failing (Eisele et al., 2015). Soluble oligo-
mers of transthyretin have been shown to be more toxic
than fibrils (A. K. R. Dasari et al., 2019), but the toxicity
of different size aggregates of antibody light chain and
serum amyloid A are still undetermined (Allen
et al., 2012; Blancas-Mejia et al., 2018).

Superoxide dismutase-1 (SOD1) is a 32-kDa homodi-
meric antioxidant enzyme, binding copper and zinc ions
(Ding et al., 2012; Khare et al., 2003, 2004, 2005). SOD1
was the first genetic factor associated with ALS, a fatal
neurodegenerative disease characterized by the loss of
motor neurons, leading to paralysis and eventual death

(Redler & Dokholyan, 2012). The main known function
of SOD1 is as a dismutase that removes dangerous super-
oxide radicals by metabolizing them into molecular oxy-
gen and hydrogen peroxide (Nguyen et al., 2021). SOD1
dimer dissociation and loss of metals are necessary pre-
cursors for aggregation to occur (Khare et al., 2004;
Wilcox et al., 2009). SOD1 apo-monomers were shown to
aggregate into large insoluble fibrils or competing toxic
trimers (Hnath & Dokholyan, 2022; Redler et al., 2011,
2014). Toxic trimeric SOD1 is structurally different from
other larger aggregates, presenting a new therapeutic tar-
get for ALS (Hnath & Dokholyan, 2022; Proctor
et al., 2016; Zhu et al., 2018).

Protein aggregation diseases are complex and not
fully understood; many lack a known cure (Croce &
Yamamoto, 2021). Cell mechanisms for maintaining pro-
teostasis exist, but misfolded proteins take on aberrant
functions or loss of function that manifests clinically
(Hegde et al., 2023). In many aggregation-related diseases
smaller soluble oligomers are beginning to be identified
as the toxic species while larger insoluble fibrils may be
protective. IDPs proteins with IDRs are affected by pro-
cesses promoting aggregation (mutations, metals, or
PTMs) in different ways than ordered proteins which
misfold prior to aggregation.

3 | PROCESSES PROMOTING
AGGREGATION

3.1 | Mutations

Most mutations that promote aggregation do so by either
increasing the length or hydrophobicity of the prion-like
region. Length-increasing mutations can occur in three
main ways; repeats in a specific amino acid (Huntington
disease and Ataxias), repeats of a specific domain (Tau
and c9orf72), or increasing the length of a tail region
(Aβ42). Huntington disease is caused by an expanded
CAG trinucleotide repeat in the Huntingtin gene. This
trinucleotide repeat region is typically repeated 10–26
times in healthy individuals but is repeated over 40 times
in individuals with Huntington disease (Barton
et al., 2007; Bates et al., 2015; Budworth &
McMurray, 2013; Lakhani et al., 2010). Similarly, spino-
cerebellar ataxias also occur due to CAG trinucleotide
repeats in the long polyglutamine track of ataxin proteins
(Fan et al., 2014). Insertion mutations in prion protein
cause additional copies of an octapeptide repeat domain
at the N-terminus of the protein; there are typically five
copies of the octapeptide repeat, but mutations insert up
to eight additional domains (Kov�acs et al., 2002). Half of
the known tau mutations have their primary effect at the
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RNA level. Some of these mutations increase the splicing
of exon 10, overproducing four-repeat tau which is more
prone to aggregation (Goedert, 2005; Panda et al., 2003).
A hexanucleotide repeat expansion in chromosome
9 open reading frame 72 (c9orf72), found in 40%–50% of
familial ALS patients and 5%–10% of sporadic ALS
patients, produces a glycine-arginine repeat protein that
promotes the aggregation of TDP-43 (Cook et al., 2014;
Gitler & Tsuiji, 2016; Umoh et al., 2016). Finally, the
aggregation-prone form of amyloid beta (Aβ42) has a lon-
ger tail and is formed due to mutations in the amyloid
precursor protein (Finder & Glockshuber, 2007). An
increased number of inserted repeats in a protein directly
correlates with decreased solubility and rate of aggrega-
tion (Adegbuyiro et al., 2017; Yu et al., 2007). Ordway
et al. demonstrated that even inserting a glutamine
repeat in a protein not associated with disease (hypoxan-
thine phosphoribosyl transferase) could induce neurolog-
ical symptoms, shorten the lifespan, and trigger cerebral
inclusions in mice (Brais et al., 1998; Ordway et al., 1997;
Perutz, 1999). Expanding the length of a protein through
insertion mutations promotes aggregation, increasing the
formation of oligomers and fibrils.

In addition to insertion mutations, point mutations
also promote aggregation by increasing the hydrophobic-
ity of prion regions leading to both mislocalization and
aggregation. TDP-43 (TARDBP), FUS, and other RNA
binding proteins naturally contain low complexity
domains contributing to liquid–liquid phase separation
and the formation of aggregated RNA granules. RNA
granules need to be dynamic for normal cell function; the
granules must be stable enough to facilitate RNA trans-
port and other cellular processes, but flexible enough to
dissociate when necessary. ALS-related mutations in
TARDBP and FUS promote highly stable aggregates
which affect the necessary dynamics of RNA granules
(Maziuk et al., 2017). Some ALS mutations to TARDBP
have even been observed to disrupt RNA granules, form-
ing smaller oligomers instead (Conicella et al., 2016; Fang
et al., 2014; B. S. Johnson et al., 2009). TDP-43 and FUS
are both nuclear-localized proteins, but point mutations
to the C-terminus region affect their nuclear localization
signal causing them to enter the cytoplasm (H. Deng
et al., 2014; Prasad et al., 2019). Further, point mutations
in α-synuclein (Srinivasan et al., 2021), TARDBP (Prasad
et al., 2019), and FUS (H. Deng et al., 2014) all increase
the hydrophobicity of the N-terminus, promoting aggre-
gation. α-Synuclein point mutations, which result in the
most severe dopaminergic loss in the substantia nigra,
promote oligomer formation and toxic interactions with
membranes (Winner et al., 2011). While mutations in
aggregating proteins are associated with diseases, there

are other factors that promote aggregation without the
need for mutations.

3.2 | Metals

Protein-metal interactions either promote or prevent
aggregation. The copper and zinc ions in functional
SOD1 are necessary for the superoxide function of the
protein, loss of the metals destabilize the dimer interface
leading to aggregation (Ding & Dokholyan, 2008; Khare
et al., 2004; Khare & Dokholyan, 2006). Similarly, copper
and zinc binding to the octapeptide repeat domain of
prion protein partially fold the domains preventing aggre-
gation (Inanami et al., 2005; Jackson et al., 2001; Leclerc
et al., 2006). Alternatively, metal binding to the prion
domains of α-synuclein (Hillmer et al., 2010; Rasia
et al., 2005; Uversky et al., 2001; Yamin et al., 2003), Aβ
(Bolognin et al., 2011; Sarell et al., 2010; Tõugu
et al., 2011), tau (Yamamoto et al., 2004; Yang
et al., 2010), and ataxin (Ricchelli et al., 2007; Stawoska
et al., 2009) increase the hydrophobicity of the proteins
and promote aggregation. The binding of different metals
affects whether soluble oligomers or large insoluble
fibrils are formed, the soluble forms are typically more
toxic while the large insoluble fibrils are less toxic
(Breydo & Uversky, 2011; Drago et al., 2008; T. D. Kim
et al., 2000; B. Liu et al., 2011; Miyake et al., 2011). The
differing effects of different metals on what type of aggre-
gates are formed (oligomers versus fibrils), along with the
high concentrations of zinc and copper at synapses may
be a contributing factor to why many aggregating pro-
teins contribute to neurodegeneration (E. P.
Huang, 1997; L. Wang et al., 2020).

3.3 | Post-translational modifications

PTMs are a common cause of protein aggregation, specif-
ically in the context of traumatic injuries and age-related
neurodegenerative disorders. PTMs are broadly defined
as any covalent attachment of a functional group or tar-
geted cleavage that occurs to a protein following its syn-
thesis. While over 600 PTMs have been described
(Bradley, 2022), only a subset have been experimentally
confirmed to play a role in protein aggregation. In broad
terms, PTMs influence protein aggregation similarly to
mutations and metals, primarily by modifying protein
folding or altering solubility. Shaffert and Carter have
recently reviewed the influence of PTMs on aggregation
and their role in neurodegenerative diseases (Schaffert &
Carter, 2020). Here we provide a brief overview of the
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most well-characterized PTMs and their role in protein
aggregation.

Protein phosphorylation is defined as the covalent
addition of a phosphate group to a receiving protein, a
process typically catalyzed by a kinase. Physiologically,
phosphorylation is utilized by cells to transfer and store
energy, activate or deactivate a protein through a confor-
mational change, and transmit information through sig-
naling pathways. Aberrant phosphorylation occurs when
kinase function becomes dysregulated, frequently due to
a genetic error, trauma, or other causes of cellular stress
(Gendron & Petrucelli, 2009; Giasson & Mushynski,
1996; Perluigi et al., 2016). Proteins that have been shown
to aggregate upon phosphorylation include Aβ (Jamasbi
et al., 2017; Kumar & Walter, 2011), tau (Buée
et al., 2000; G. V. W. Johnson & Stoothoff, 2004; Lippens
et al., 2007), α-synuclein (Fujiwara et al., 2002; Samuel
et al., 2016), TDP-43 (Carlomagno et al., 2014; Hasegawa
et al., 2008), and PrPc (Giannopoulos et al., 2009). How-
ever, the phosphorylation of these proteins does not
always result in aggregate formation. Numerous groups
have demonstrated that the phosphorylation of certain
residues in Aβ (Kumar et al., 2016), tau (W. Hu
et al., 2016), and TDP-43 (Brady et al., 2011; H.-Y. Li,
Yeh, et al., 2011) do not promote aggregation. Phosphory-
lation of different residues could also contribute to
whether oligomers or fibrils are formed (Kumar
et al., 2016).

While phosphorylation is perhaps the most well-
studied PTM that leads to pathologic protein aggregation,
other pathways have been implicated in the formation of
aggregates. Oxidation has been shown to promote aggre-
gate formation by altering kinase function (T. Zhang
et al., 2015), as well as disrupting the structural confor-
mation of proteins and damaging genetic elements that
disrupt protein structure after translation (Butterfield &
Kanski, 2001). Specifically, the oxidation of α-synuclein
(El-Agnaf & Brent Irvine, 2000) and Aβ (Oda et al., 1995)
are well characterized. Nitration has also been demon-
strated to increase aggregate formation in multiple neu-
rodegenerative disorders (Hyun et al., 2004;
Ischiropoulos & Beckman, 2003; Reynolds et al., 2007;
Uversky et al., 2005).

There is emerging evidence that methylation
(Balmik & Chinnathambi, 2021) and ubiquitination pro-
mote aggregation in specific contexts (Berke &
Paulson, 2003; Dantuma & Bott, 2014); however, these
PTMs may affect other proteins in unique ways. Simi-
larly, multiple groups have described how the addition of
long-chain functional groups result in aggregate forma-
tion. Acetylation of tau (S. I. A. Cohen et al., 2013; Cook
et al., 2014) and TDP-43 (T. J. Cohen et al., 2015), glyca-
tion of tau (K. Liu et al., 2016), glycosylation of tau

(F. Liu et al., 2002), and SUMOylation of tau (X. Chen,
Zhang, et al., 2021; Luo et al., 2014) all result in protein
aggregation. Glutathionylation of SOD1 destabilizes the
dimer leading to aggregation (Redler et al., 2011). While
decades of research have dissected individual modifica-
tions and their role in the overall aggregate formation,
research has only recently begun to investigate how these
modifications affect oligomers versus fibrils (Barrett &
Timothy Greenamyre, 2015; Ercan-Herbst et al., 2019;
Kumar et al., 2016).

3.4 | Lipid interactions

Protein–lipid interactions promote aggregation and con-
tribute to cell death in many aggregation-related diseases.
One of the key factors contributing to Aβ toxicity in AD
is the interaction between the cell membrane and Aβ.
There are several ways in which the lipid membrane
interacts with Aβ (Arispe et al., 1993). For instance,
membranes can act as a surface for Aβ to adsorb onto,
leading to increased concentration and proximity which
affects aggregation (Yanagisawa et al., 2011). Certain
lipid components, such as cholesterol and sphingolipids,
can promote the formation of Aβ oligomers by altering
the physical properties of the lipid membrane, modifying
the conformation of Aβ and forming ion channels. More-
over, the membrane can also serve as a nucleation site
for Aβ aggregation, promoting the formation of toxic olig-
omers and fibrils (Vetrivel & Thinakaran, 2010). Aβ pep-
tides can insert themselves into the lipid bilayer and
disrupt the normal structure and function of the mem-
brane, leading to increased membrane permeability and
cellular dysfunction. In addition, the membrane can facil-
itate the interaction between Aβ and other proteins on
the membrane, such as Apolipoprotein E. The interaction
between the membrane and Aβ can also activate intracel-
lular signaling pathways that affect Aβ toxicity (Reed-
Geaghan et al., 2009).

α-Synuclein and lipid interactions play essential roles
in both maintaining normal physiological functions as
well as contributing to the pathogenesis of several neuro-
degenerative diseases, termed as synucleinopathies
(Runwal & Edwards, 2021). α-Synuclein monomers and
oligomers bind to lipid membranes through electrostatic
interactions between the negatively charged lipid head-
groups and the positively charged lysine-rich N-terminus
of α-synuclein (Galvagnion, 2017; Grey et al., 2011;
Rooijen et al., 2008). Both monomeric and oligomeric
forms of α-synuclein have a high binding affinity to
loosely packed membranes and small unilamellar vesicles
with high surface curvature (Middleton & Rhoades, 2010;
Ouberai et al., 2013). Among all different species of
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α-synuclein, the oligomeric forms cause neurotoxicity
and are likely responsible for the onset and development
of disease (Lashuel et al., 2013). The cytotoxic effects of
α-synuclein oligomers are attributed to the interactions
with lipid membranes, deteriorating membrane integrity
and impairing cellular homeostasis (Alam et al., 2019;
Fusco et al., 2017; Iyer & Claessens, 2019; Killinger
et al., 2019). Several scenarios have been proposed to
explain the cellular toxicity caused by α-synuclein
oligomer–membrane interactions; including bilayer thin-
ning, detergent-like solubilization, and pore and nano-
disc formation, which have been summarized by
Musteikytė et al. (2021). On the other hand, several stud-
ies found that lipid membranes could trigger α-synuclein
aggregation and oligomer formation in vivo (Bae
et al., 2013; Galvagnion, 2017; Näsström et al., 2011).
Assayag et al. reported that alterations in the level of
polyunsaturated fatty acids on lipid membrane induced
cytotoxic α-synuclein oligomer formation in the cyto-
plasm, which preceded Lewy-like inclusions in dopami-
nergic cells (Assayag et al., 2007).

Aβ and α-synuclein lipid interactions are the most
widely studied, but there is also evidence that Tau oligo-
mers and misfolded SOD1 can interact with, and may dis-
rupt, mitochondrial membranes (Abbasabadi et al., 2013;
Britti et al., 2020; Camilleri et al., 2020; H.-X. Deng
et al., 2006; Lin & Flint Beal, 2006). Mitochondrial dys-
function and energy deficiency are established compo-
nents of many neurodegenerative diseases (Cozzolino &
Carrì, 2012; Johri & Flint Beal, 2012; X. Wang
et al., 2014). Overall, lipid interactions contribute to pro-
tein aggregation and maybe a central component of cell
death in some diseases (Gonzalez-Garcia et al., 2021).

4 | MODELING PROTEIN
AGGREGATION

4.1 | Molecular dynamics modeling of
protein aggregation

Protein aggregation is involved in many neurodegenera-
tive diseases, and research on the mechanism of protein
aggregation will aid the development of therapeutic inter-
ventions that modulate protein aggregation. Although
known aggregated proteins have different sequences,
many of them adopt β-sheet-rich structures in coinci-
dence for aggregation. One of the hypotheses is that
hydrogen-bond interactions unrelated to amino acid side
chains play a key role in the process of protein aggrega-
tion. The validation of this hypothesis and the explora-
tion of other mechanisms of protein aggregation rely on
wet-lab experiments. However, many proteins that

aggregate are disordered in nature and only form specific
three-dimensional structures transiently, which makes
studying them experimentally very hard. An alternative
approach is to resort to computational molecular dynam-
ics (MD) simulation. Here we review computational stud-
ies of the aggregation of Aβ, α-synuclein, and SOD1 with
all-atom MD simulations as well as coarse-grained molec-
ular dynamics. More research on the aggregation of other
proteins can be found in the reviews of Kulkarni et al.
(2022) and Thirumalai (2003).

Extensive modeling of Aβ monomers, intermediates,
and fibrils has been performed by multiple groups.
Sanches et al. utilized the energy landscape visualization
method (ELViM) to analyze coarse-grained simulations
of normal Aβ-40 and Aβ-42 monomers, along with six
single-point mutations associated with early-onset dis-
ease. They found that the aggregation rate is correlated
with the β-strand content of the monomers, and most of
the contacts necessary to seed the aggregation have
already been formed in Aβ42 monomers and the mono-
mers of less soluble mutants, while the monomers of
Aβ40 need to unfold some helical structure before aggre-
gating (Sanches et al., 2022). Baumketner et al. per-
formed both ion mobility mass spectrometry and
theoretical modeling to study the conformational states
of the monomeric Aβ42 peptide. Their simulations
revealed that Aβ42 in aqueous solution adopts both
extended chains as well as collapsed-coil structures. Aβ42
did not display a unique fold like a typical protein, but
rather a mixture of rapidly interconverting conforma-
tions. They analyzed the secondary structure and found
that Aβ42 peptide conformations are dominated by loops
and turns but show some helical structure in the
C-terminal hydrophobic tail (Baumketner, 2006). Klimov
and Thirumalai conducted a series of MD simulations for
Aβ and found that Aβ16–22 peptides form antiparallel
β-sheet structures, and α-helical intermediates are tran-
siently populated. They proposed that Aβ forms by fibrils
maximizing the number of salt bridges and hydrophobic
interactions, and the oligomers must have a high
α-helical content (Klimov & Thirumalai, 2003). Studying
monomers and fibril intermediates gives some informa-
tion on the structure of oligomeric intermediates, but fur-
ther simulations expand on the structure of specific-size
oligomers.

Urbanc et al. studied the formation of Aβ dimer by
discrete molecular dynamics (DMD) (Urbanc
et al., 2004). They first studied the formation of the Aβ
dimer through coarse-grained simulations and then stud-
ied the thermodynamic properties through all-atom sim-
ulation. They found that the free energy of the dimer is
generally higher than that of the monomer, and there is
no significant difference in the free energy of the Aβ42
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dimer and Aβ40 dimer. Barz et al. utilized transition net-
works derived from all-atom molecular dynamics to
determine that the oligomer size distribution is different
between Aβ42 and Aβ40 due to higher solvent exposure
of hydrophobic residues in Aβ42. Additionally, dimers
and tetramers of Aβ42 and Aβ40 were structurally differ-
ent which could contribute to their differences in aggre-
gation (Barz et al., 2018). Ma and Nussinov simulated the
stabilities of oligomeric AGAAAAGA and AAAAAAAA
(A8) with MD simulations and found these two peptides
are stable in aggregates of 6–8 monomers, providing
insight into the mechanism of seed growth with a multi-
layer β-sheet model (Ma & Nussinov, 2009). They further
studied the oligomers of Aβ fragments 16–22, 16–35, and
10–35. Their simulations indicated that the antiparallel
β-sheet orientation is the most stable for the Aβ16-22, in
agreement with a solid state NMR-based model (Ma &
Nussinov, 2002). In addition, recent crystal structures of
Aβ16-22 suggest that the region 16–22 can form multiple
polymorphs, with variations in their molecular struc-
ture, hydrogen-bonding network, and conformational
dynamics (Colvin et al., 2016; S. Dasari & Mallik, 2020;
J.-X. Lu et al., 2013; Qiang et al., 2017; Tycko, 2015;
Wälti et al., 2016). The structural diversity of these poly-
morphs may contribute to the heterogeneity of Alzhei-
mer disease and its clinical subtypes. Zhang et al. have
performed MD simulations to computationally investi-
gate the interactions between Aβ and GM1, a member of
the ganglion series of gangliosides. They performed
100 ns MD simulations for GM1 membranes and five
Aβ42 monomers and found that GM1 tightly binds
Aβ42. They found that the fifth residue (arginine, R5) of
Aβ is within 1–2 Å from GM1, suggesting that R5 stably
binds GM1. They further computationally substituted
R5 to glycine, and they found that the average distance
between G5 and GM1 increased to >10 Å and was
within a binding distance (<2 Å) for as little as 2% of the
time, indicating that the R5G mutation disrupted the
tight binding interaction between the fifth residue and
GM1. Thus, the fifth residue in Aβ42 plays a critical role
in the direct binding between AC and GM1 (D. Y. Zhang
et al., 2022). The recently-solved cryo-EM structures of
Aβ have provided valuable insights into the molecular
architecture of amyloid fibrils and their role in the path-
ogenesis of Alzheimer disease (Fitzpatrick et al., 2017;
Gremer et al., 2017; Q. Li et al., 2021; R. Zhang
et al., 2009). These structures can enable researchers to
perform detailed molecular dynamics simulations to bet-
ter understand the dynamics and stability of the fibrils.
It is important to model different size Aβ oligomers to
be able to determine the toxicity of different oligomers.
More MD research on Aβ can be found in the review by
Nasica-Labouze et al. (2015).

Chen et al. used inter-dye distance distributions from
bulk time-resolved Förster resonance energy transfer as
constraints in DMD simulations to map the conforma-
tional space of α-synuclein monomers (J. Chen, Zaer,
et al., 2021). They found that some conformations of
α-synuclein are surprisingly stable, exhibiting conforma-
tional transitions in milliseconds. Their comprehensive
analysis of conformational ensembles revealed funda-
mental structural properties and underlying conforma-
tions that facilitate their various functions in membrane
interactions or oligomer and fibril formation. By integrat-
ing cross-linking mass spectrometry with DMD simula-
tions, the same group utilized cross-linking data as
constraints to simulate the dimer structures of
α-synuclein. They identified one compact and stable
dimer structure where tyrosine 39 is sufficiently close to
forming a dityrosine covalent bond, which may be
involved in α-synuclein amyloid fibril formation (Zamel
et al., 2019).

To computationally propose potential SOD1 trimer
structures, DMD was used to simulate several nanosec-
onds of SOD1 trimer trajectory. To obtain constraints for
certain interatomic distances and to narrow the struc-
tural search space, Proctor et al. applied limited proteoly-
sis to SOD1 trimers and used mass spectrometry to
identify likely solvent-exposed sites on the surface of the
trimer. A custom bias potential was designed iteratively
so that the experimentally deduced solvent-exposed sites
were solvent-exposed in the DMD simulations (Proctor
et al., 2016).

DMD has proven to be a useful tool for the investiga-
tion of protein aggregation. DMD applies discrete step
function potentials to define interatomic interactions
rather than continuous potentials widely adopted in tra-
ditional molecular dynamics simulations (Brodie
et al., 2019; Dokholyan et al., 1998; Proctor et al., 2011;
Shirvanyants et al., 2012). This innovative application
greatly reduces calculations and therefore enhances sam-
pling and allows DMD to achieve protein folding, espe-
cially for smaller oligomers, in a practical time scale
(Ding et al., 2008; Dokholyan et al., 1998). For intrinsi-
cally disordered proteins, to the best of our knowledge no
experimental technique characterizes their conforma-
tional ensembles at the atomic level. Therefore, experi-
mentally guided DMD simulations provide the best
solution. DMD simulations are combined with various
experimental technologies, such as FRET, Mass Spec-
trometry, which have been demonstrated by previous
studies (J. Chen, Zaer, et al., 2021; Proctor et al., 2016;
Zamel et al., 2019). Protein structures predicted by DMD
simulations that are guided and validated by experimen-
tal data are more accurate than those predicted solely by
computational methods (J. Chen, Zaer, et al., 2021;
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Seffernick & Lindert, 2020) making DMD a crucial tool
to observe complex conformational changes in the mono-
meric, oligomeric, and aggregated forms of Aβ, α-synu-
clein, and SOD1.

4.2 | Kinetic models of protein
aggregation

Without detailed knowledge of a protein's structure in
the aggregated state, it is still possible to propose systems
of ordinary differential equations (ODEs) that model the
formation of aggregates of various size (Hall et al., 2005,
2015; Hirota et al., 2019). Toy models of protein aggrega-
tion proposed by Knowles, Dobson, Vendruscolo, Hall,
Hirota, and others use physical reasoning to propose rea-
sonable systems of ODEs and predict the relative abun-
dances of the various sizes of amyloid as a function of
initial conditions, particularly the size of the initial nucle-
ation site (Hirota et al., 2019; Hall et al., 2005, 2015;
Knowles & Buehler, 2011; Knowles et al., 2007; 2009).
Such modeling often uses simplifying assumptions, such
as irreversible misfolding of the protein upon aggrega-
tion, and roughly spherical shapes for the protein; how-
ever, the results are flexible enough to fit a wide variety
of time-dependent concentration signals.

An extensive accounting of protein aggregation in
humans and other organisms is found in the review by
Chiti and Dobson (2006). Important factors in aggrega-
tion include increased hydrophobicity of amino acid side
chains and neutral total protein charge, as aggregates are
energetically favored in proteins with these properties.
Investigation into Aβ42 aggregates has shown that the
major factor for formation and growth is the presence of
existing fibrils (S. I. A. Cohen et al., 2013), which is
termed a secondary nucleation process. Since Aβ mono-
mer is known to be an intrinsically disordered protein
(Uversky et al., 2008), the assumptions made in ODE
modeling of aggregation are thought to hold, since there
is no preferred native monomer structure that would bias
the aggregation pathways. Additionally, metal-binding
may play an important role in aggregate nucleation and
growth, since Aβ plaques found in Alzheimer disease are
enriched in copper and zinc (Faller et al., 2014).

Proteins can exist in different structural states, includ-
ing ordered and intrinsically disordered forms. The
mechanisms of protein aggregation for these two forms
are distinct from each other. In the case of ordered pro-
teins, they need to undergo a destabilization of their
unique structures to form amyloidogenic intermediates.
This process is typically referred to as denaturation and
misfolding, which can eventually lead to the formation of
amyloid fibrils. On the other hand, IDPs require at least

partial folding to form amyloidogenic or aggregation-
prone species (Uversky & Fink, 2004). It has been shown
that IDPs can aggregate in the absence of a well-defined
tertiary structure and that the nature of the disordered
regions can influence the kinetics and thermodynamics
of the aggregation process (Avni et al., 2019;
Uversky, 2014; W. Wang et al., 2010). Therefore, under-
standing the differences in the mechanisms of protein
aggregation for ordered and intrinsically disordered pro-
teins is important for developing effective strategies to
prevent or treat protein misfolding diseases.

Recently, it has been determined that the formation
of superoxide dismutase-1 (SOD1) trimers implicated in
the development of amyotrophic lateral sclerosis form
off-pathway from the larger aggregates (Khare &
Dokholyan, 2006; Proctor et al., 2016; Zhu et al., 2018).
The theoretical justification for this result was that the
model from Hall and Hirota predicts that off-pathway tri-
mer pathway aggregation results in a strong correlation
between the decrease in trimer with an increase in aggre-
gate (Hirota et al., 2019), which was observed in SOD1
aggregation data (r = �0.78 to 0.98, p < 0.001). Despite
the exact structures of the SOD1 trimer and larger aggre-
gates being unknown at present, there is indirect evi-
dence that SOD1 trimers form off-pathway (Hnath &
Dokholyan, 2022).

Efforts to understand the formation of Aβ from both
the computation (Auer et al., 2007; Blondelle et al., 1997)
and experiments (Fandrich, 2002; X. Hu et al., 2009;
Nelson et al., 2005; Serio et al., 2000) point to a nucleated
growth mechanism, in which high concentrations of pro-
tein are needed for the initial formation of misfolded
seeds, before a first-order kinetic process results in the
exponential growth of Aβ fibrils (Ding et al., 2005). How-
ever, it is currently unknown how nucleation occurs,
since the concentration needed for the misfolded seeds to
form are in the mM range (Auer et al., 2007; Ilie &
Caflisch, 2019), whereas Aβ is physiologically found at
nM to μM concentrations, both in cerebrospinal fluid
(Andreasen et al., 1999) and neuronal tissue (Gong
et al., 2003; Lazarevic et al., 2017). Recently, it has been
proposed that Aβ may interact with the plasma mem-
brane to form seeds (D. Y. Zhang et al., 2022), with the
GM1 ganglioside serving as a catalyst that binds and
localizes Aβ monomer.

5 | THERAPEUTIC STRATEGIES
TO TREAT PROTEIN AGGREGATION

Four main therapeutic strategies are used to target differ-
ent stages of protein aggregation in disease; protein
reduction, aggregation inhibition, breaking down

10 of 24 HNATH ET AL.



aggregates or preventing toxic interactions (Figure 2). For
most of these strategies, it is necessary to know the native
function, toxic aggregate size and structure, and mecha-
nism of cell death of the aggregating proteins, of which
parts remain unknown for most diseases associated with
aggregating proteins. Very few therapeutics targeting pro-
tein aggregations have been successful in clinical trials
(Doig et al., 2017; Lang, 2010; Petrov et al., 2017).

Crowding and increased protein concentration con-
tribute to protein aggregation (Munishkina et al., 2004);
for example, copy number gains of α-synuclein are regu-
larly seen in Parkinson disease (Mokretar et al., 2018). To
combat overexpression and prevent aggregation many
different methods have been tested to reduce the level of
aggregation-prone proteins. Antisense oligonucleotide
therapy uses short strands of modified nucleotides to tar-
get RNA and reduce the protein expression (Kuijper

et al., 2021). This therapy is currently being tested to
reduce SOD1 (Meyer et al., 2023; Miller et al., 2022), tau
(Mummery et al., 2021), huntingtin (Smith &
Tabrizi, 2020), amylin (Novials et al., 1998), α-synuclein
(Alarc�on-Arís et al., 2018), FUS (Korobeynikov
et al., 2022), and TTR (Teresa Coelho et al., 2013) with
various degrees of success in clinical trials. To reduce the
amount of Aβ, strategies focus on decreasing the activity
of β and γ-secratases (A. K. Ghosh & Osswald, 2014). Pro-
tein reduction is only a feasible therapeutic strategy for
protein aggregates with a toxic gain of function. Another
issue with this strategy is that many aggregating proteins
have crucial native roles in the body, decreasing the over-
all level of some proteins causes a different phenotype
due to a toxic loss of function. Protein reduction strate-
gies need to carefully reduce the expression level of
aggregating proteins without losing the native function,

FIGURE 2 Therapeutic strategies for protein aggregation diseases. The four current strategies for targeting aggregating proteins are

through (1) overall protein reduction, (2) inhibiting aggregation using small molecules or chaperones to block protein interactions or

stabilizing the native form, (3) breaking down formed aggregates using antibodies or disaggregases, or (4) preventing toxic interactions by

blocking the interaction or promoting non-toxic aggregates.
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and the dosing may not transfer from person to person
due to natural differences in protein expression levels
(Southwell et al., 2012). Since this strategy is aimed at
reducing all aggregation instead of just targeting fibrils it
may be helpful against oligomers.

Another strategy for preventing or slowing aggregation
is using small molecules or chaperones to inhibit aggrega-
tion. For ordered proteins such as SOD1 and TTR, small
molecule therapeutics focus on stabilizing the dimer or tet-
ramer interfaces to prevent the native proteins from disso-
ciating (Amporndanai et al., 2020; Capper et al., 2018;
T. Coelho et al., 2012; Cotrina et al., 2020; Tojo
et al., 2006). For IDPs like amylin (L�opez et al., 2016) and
α-synuclein (C. R. Fields et al., 2019), small molecule ther-
apeutics target the prion-like region to prevent aggrega-
tion. The same strategy of blocking the aggregating region
is accomplished using chaperone proteins such as heat
shock protein (Klucken et al., 2004; Webster et al., 2019)
or other engineered chaperones (Ferretti et al., 2022).
While this strategy may be effective against both oligomers
and fibrils it relies on treating patients early in disease pro-
gression before the aggregates have spread and done
extensive damage, which is difficult since most of the
above-mentioned diseases do not have early biomarkers to
test for the disease before the symptoms have progressed.
More extensive descriptions of small molecule aggregation
inhibitors are reviewed by Malik and Wiedau (2020), Jokar
et al. (2019), and Pena-Diaz et al. (2020).

Once aggregates have already formed, antibodies or
disaggregases modulate them or direct them to proteosta-
sis machinery for sequestration or degradation. Both
active and passive immunotherapy techniques have been
tested to treat protein aggregation-related diseases with
mixed results. Vaccines of small surface-exposed regions
of the toxic forms of protein aggregates (active immuno-
therapy) or monoclonal/ polyclonal antibody treatments
which target specific regions of toxic aggregates (passive
immunotherapy) have recently begun evaluation in clini-
cal trials (Eisele et al., 2015; Vassilakopoulou et al., 2021).
In the past year, two different monoclonal antibody treat-
ments targeting Aβ oligomers were given emergency
FDA approval to treat AD (Aducanumab and Lecane-
mab; Marsool et al., 2023; Perneczky et al., 2023; Rahman
et al., 2023; Vitek et al., 2023). The key difference
between new immunotherapy methods and past methods
is immunotherapy is now being designed to target smal-
ler soluble oligomers of proteins or specific misfolded
regions found in larger aggregates, as opposed to the pre-
vious strategy of designing antibodies that only detect
large insoluble aggregates. In-depth descriptions of failed
and new immunotherapy methods to treat different dis-
eases were reviewed by Reiss et al. (2021), Schwab et al.
(2020), Gittings and Sattler (2020), and Villoslada et al.

(2008). Disaggregases are a category of chaperone pro-
teins that help break down or remove aggregated proteins
(Mogk & Bukau, 2004); Skd3 (Caseinolytic peptidase B
protein homolog; Rizo et al., 2019) and heat shock pro-
teins (specifically Hsp70 [Gao et al., 2015; Thackray
et al., 2022], Hsp104 [Shorter & Southworth, 2019], and
Hsp110 [O'Driscoll et al., 2015]) are the two groups of dis-
aggregases typically studied. Small molecule treatments
are also being investigated to promote the cell's own deg-
radation processes to break down aggregates. For exam-
ple, rapamycin has been shown to increase the clearance
of α-synuclein due to its inhibition of mTOR, inducing
autophagy (Maiese et al., 2013; Sarkar et al., 2007). Rapa-
mycin and many of these degradation-enhancing small
molecules have many other off-target effects (such as act-
ing on other essential pathways involved in immunosup-
pression; Abraham & Wiederrecht, 1996), for this
strategy to be effective different small molecules with
fewer off-target effects need to be tested. Small soluble
oligomers are beginning to be identified as the toxic spe-
cies in many protein aggregation diseases (A. K. R. Dasari
et al., 2019; Lasagna-Reeves et al., 2013; Martinelli
et al., 2019; Proctor et al., 2016; C. Wells et al., 2021),
while larger aggregates are protective (Ham et al., 2019;
Hnath & Dokholyan, 2022; Leitman et al., 2013; Xu
et al., 2011; Zhu et al., 2018). Strategies that target and
break down larger aggregates may be increasing toxicity
by undoing the sequestration of smaller oligomers and
increasing the abundance of the toxic species. Antibody
strategies have therapeutic potential if they are highly
specific for the toxic forms of aggregates, but the debate
is ongoing to determine what the primary toxic species
are for most protein aggregation diseases.

The last therapeutic strategy in development to treat
protein aggregation-related diseases is in the initial
phases of exploration. Most protein aggregation diseases
involve a toxic gain of function (Hoffner & Djian, 2002;
Rajagopalan & Andersen, 2001; Redler &
Dokholyan, 2012; Sharma et al., 2016), meaning the
toxic aggregates interact with another protein or mem-
brane in a way they should not be. To combat this,
researchers are inhibiting the toxic interaction either by
blocking the binding site (Akhtar et al., 2021; Choi &
Dokholyan, 2021; with specific antibodies or small mol-
ecules) or by using chaperones to promote non-toxic
aggregate formation (promote fibrils). Since the struc-
tures and toxic interactions of protein aggregates are
largely unknown this strategy is in the early stages.

Many protein aggregation diseases occur in the cen-
tral nervous system (Alzheimer, Parkinson, and Hunting-
ton diseases), so these therapeutic strategies have the
added challenge of crossing the blood–brain barrier to be
effective. Additionally, these strategies cannot reverse
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tissue damage, so early diagnosis is crucial for any of the
strategies to have any effect. Other therapies are in devel-
opment that focus on treating cellular damage after it
occurs instead of preventing it by targeting the protein
aggregation (Poppe et al., 2014; Srivastava et al., 2021).
Preventing aggregate formation from the beginning,
either through reducing the overall amount of protein or
the addition of small molecules/ chaperones, has the
potential to prevent both oligomer and fibril formation if
biomarkers are discovered which allows patients to be
treated earlier in disease progression. Breaking down
aggregates is one of the most widely used current thera-
peutic strategies, despite the dangerous possibility of
increasing toxic species by breaking down protective
fibrils. Targeting toxic interactions has the potential to be
an effective therapeutic once more work is done to deter-
mine the proteins or membranes being affected during
the toxic gain of function. Many drug design strategies
that attack aggregation have failed in the past due to
administration too late in disease progression or targeting
the wrong size aggregate. Therapeutic strategies become
not just ineffective but dangerous by not considering the
toxicity of oligomers versus fibrils in different diseases.

6 | CONCLUSION

Protein aggregates are still studied as one group, despite
soluble oligomers and insoluble fibrils having drastically
different toxicities and structures. Aggregation of IDPs,
proteins with IDRs, or ordered proteins all contribute to
a variety of diseases, the majority form into toxic oligo-
mers that begin a gain of function while insoluble fibrils
have protective effects. Modifications to aggregation-
prone proteins by mutations, metal interactions/ loss of
metals, PTMs, or lipid interactions contribute to the rate
of aggregation and what size aggregates are formed. Due
to the span of sizes and structural conformations of
aggregates, different computational methods need to be
utilized to study oligomers and fibrils. Finally, many dif-
ferent therapeutic strategies have been attempted to tar-
get aggregated proteins in disease, but more research
needs to be done into the actual toxic interactions instead
of just breaking apart aggregates and potentially increas-
ing toxic oligomers. Overall, it is crucial to determine
what size aggregate is toxic in each disease. Specifically
targeting the toxic size can increase the effectiveness of
protein aggregation modeling and therapeutic strategies
to treat protein aggregation-related diseases.
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