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Abstract 

Background  Studying the relationships between rapeseed seed yield (SY) and its yield-related traits can assist rape-
seed breeders in the efficient indirect selection of high-yielding varieties. However, since the conventional and linear 
methods cannot interpret the complicated relations between SY and other traits, employing advanced machine 
learning algorithms is inevitable. Our main goal was to find the best combination of machine learning algorithms and 
feature selection methods to maximize the efficiency of indirect selection for rapeseed SY.

Results  To achieve that, twenty-five regression-based machine learning algorithms and six feature selection methods 
were employed. SY and yield-related data from twenty rapeseed genotypes were collected from field experiments 
over a period of 2 years (2019–2021). Root mean square error (RMSE), mean absolute error (MAE), and determination 
coefficient (R2) were used to evaluate the performance of the algorithms. The best performance with all fifteen meas-
ured traits as inputs was achieved by the Nu-support vector regression algorithm with quadratic polynomial kernel 
function (R2 = 0.860, RMSE = 0.266, MAE = 0.210). The multilayer perceptron neural network algorithm with identity 
activation function (MLPNN-Identity) using three traits obtained from stepwise and backward selection methods 
appeared to be the most efficient combination of algorithms and feature selection methods (R2 = 0.843, RMSE = 0.283, 
MAE = 0.224). Feature selection suggested that the set of pods per plant and days to physiological maturity along 
with plant height or first pod height from the ground are the most influential traits in predicting rapeseed SY.

Conclusion  The results of this study showed that MLPNN-Identity along with stepwise and backward selection 
methods can provide a robust combination to accurately predict the SY using fewer traits and therefore help optimize 
and accelerate SY breeding programs of rapeseed.
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Background
Rapeseed  (Brassica napus L.) is the second global oil-
seed production source after soybean, producing 13% 
of worldwide oil [1, 2]. The extensively cultivated dou-
ble-low rapeseed, also known as canola, contains a very 
low amount of saturated fatty acids, palmitic C16:0 and 
stearic C18:0 (about 7% in total), and rich amount of 
unsaturated fatty acids, oleic C18:1 (about 62%), linoleic 
C18:2 (20%), linolenic C18:3 (10%) and eicosenoic C20:1 
(1%) making it a healthy and nutritiously rich edible oil 
for humans [3, 4]. Owing to the energy crisis, rapeseed is 
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also increasingly considered as a promising green energy 
source with  minimal air pollution, and renewability [5–
7]. Due to the growing demand for rapeseed oil in the 
food and industrial sectors, attempts to increase its yield 
have become inevitable [8–11].

Increasing seed yield (SY) has always been one of the 
major aims of breeding programs [12]. However, meas-
uring SY in large breeding populations with thousands 
of genotypes is labor-intensive and time-consuming [13, 
14]. Controlled by various genes and greatly affected by 
the environment, seed yield breeding is a highly compli-
cated and nonlinear process [15, 16]. As a result, breed-
ing strategies based on secondary traits (e.g., yield-related 
traits) that are highly linked to a primary trait enable 
plant breeders to efficiently identify promising lines at 
early stages of growth [17].

Thus far, conventional statistical methods, for instance, 
correlation coefficient analysis, principle component 
analysis (PCA), path analysis, and multiple linear regres-
sion (MLR), have been widely used in rapeseed to eluci-
date relationships between SY and other traits [18–21]. 
Nonetheless, they presume a linear relationship between 
the variables  and are neither adequate nor comprehen-
sive in displaying the interactions of traits  and SY and 
would be incapable of analyzing  highly nonlinear and 
complicated relationships between SY and other traits 
[22].

Machine learning algorithms have been effectively 
applied  to optimization and prediction of  many  com-
plicated biological systems [23]. The use of nonlinear 
machine learning algorithms in yield component analy-
sis and indirect selection researches allows for a better 
understanding of nonlinear relations between yield and 
yield-related traits, and consequently, more precise yield 
prediction, which can efficiently improve breeding pro-
grams [24].

Lately, the multilayer perceptron neural networks 
(MLPNNs), one of the most well-known artificial neural 
networks (ANNs), has been widely employed for predic-
tion  and modeling complicated characteristics, such as 
yield, in several breeding programs and also other areas 
of plant sciences [17, 25]. This algorithm consists of vari-
ous highly interconnected functioning neurons that can 
be simultaneously employed to solve a particular prob-
lem. MLPNN algorithms can also realize the intrinsic 
knowledge in datasets and determine the interaction 
between output and input variables without prior physi-
cal considerations [25, 26].

Support vector machine (SVM) is another advanced 
and popular machine learning algorithm with the ability 
to find both linear and nonlinear relationships in data [12, 
27]. The benefits of employing SVMs are a large number 
of hidden units and better learning problem formulation, 

which leads to the quadratic optimization task [28]. Sup-
port Vector Regression (SVR) is the regression version 
of SVM and has recently been used to solve problems in 
agricultural and plant sciences fields [17, 25, 29–31]

Although some studies have used ANNs to predict the 
yield of rapeseed, they have been based on meteorologi-
cal data (air temperature and precipitation) and infor-
mation about mineral fertilization [4, 32, 33]. No study 
regarding the application of machine learning algorithms 
using agronomical yield-related traits has been con-
ducted to predict the SY of rapeseed and also introduc-
ing indirect selection criteria. Furthermore, apart from 
MLR, ANN and SVR algorithms there are other methods 
such as ridge regression (RR), stochastic gradient descent 
(SGD) and Bayesian regression, which have not been 
widely used to predict SY and have remained relatively 
unknown to scientists in plant breeding. Therefore, in 
the present study, we aimed to (a) develop and optimize 
regression-based machine learning algorithms to predict 
the SY of rapeseed, (b) introduce the most important 
indirect selection criteria for SY of rapeseed through fea-
ture selection methods, and (c) maximize the efficiency of 
indirect selection for SY of rapeseed by means of finding 
the best combination of regression-based machine learn-
ing algorithms and feature selection methods. According 
to the best of our knowledge, this study is the first com-
prehensive report on applying a diverse range of machine 
learning algorithms in the field of plant breeding.

Materials and methods
Plant material and field experiments
Field experiments were conducted in the research farm 
of Seed and Plant Improvement Institute (SPII), Karaj, 
Iran, in the 2019–2020 and 2020–2021 growing sea-
sons. Twenty genotypes were cultivated in the first year, 
and nineteen genotypes were cultivated in the second 
year (due to insufficient seed availability for one of the 
genotypes). The experiment carried out in a randomized 
complete block design (RCBD) with three replicates. The 
genotypes comprise 7 lines obtained from a pedigree 
experiment, a restorer line (R2000), 7 hybrids obtained 
from crosses between the 7 lines and R2000 and 5 cul-
tivars (Nilufar, Neptune, Nima, Okapi and Nafis). Each 
plot consisted of four rows with 4  m length and with 
30- and 5  cm between and within lines, respectively. 
Also, the distance between two plots was 60 cm. At the 
end of each growing season, seed yield (Kg per plot, SY) 
along with some important yield-related traits such as 
plant height (cm, PH), pods per main branch (number, 
PMB), pods per axillary branches (number, PAB), pods 
per plant (number, PP), branches per plant (number, BP), 
main branch length (cm, MBL), first pod height from the 
ground (cm, FPH), pod length (cm, PL), days to start of 
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flowering (number, DSF), days to end of flowering (num-
ber, DEF), days to physiological maturity (number, DPM), 
flowering period (number, FP), thousand seed weight (g, 
TSW), seeds per pod (number, SP) and stem diameter 
(mm, SD) were recorded using 10 randomly selected 
plants from two intermediate rows in each plot (to pre-
vent marginal effects) and their averages were used for 
training and testing datasets of algorithms.

Data preprocessing
Data normalization is an essential preprocessing step for 
learning from data [34]. Moreover, when the numerical 
input variables have very varied scales, machine learning 
algorithms do not perform effectively because the algo-
rithms could be dominated by the variables with large 
values [35]. To address these issues, data were normal-
ized using Yeo-Johnson normalization method [36], and 
all the traits were scaled to a [0, 1] range using the Eq. (1):

where Xscaled is the scaled value for X input, Xmax and 
Xmin are the maximum and minimum values ofX , 
respectively.

Learning curve
A learning curve displays an algorithm’s validation and 
training scores for different numbers of training samples. 
It is a fundamental technique to determine how much we 
would benefit from including extra training data, and con-
sequently the optimal numbers  of a training set [37]. To 
achieve this, different number of samples (from 25 to 90) 
were entered into MLR and ridge regression algorithms as 
the training set. In order to evaluate each training sample 

(1)

Xscaled =

[
(X − Xmin)

(Xmax − Xmin)
× (Xmax − Xmin)

]
+ Xmin

number, a 5-folds cross-validation was implemented, and 
then mean and 95% confidence interval of mean square 
errors (MSEs) were calculated in both training and valida-
tion sets. The training and the validation scores in both of 
the algorithms converge to a value that is quite low with 
increasing size of the training set (Fig. 1). MSE of valida-
tion sets approximately reached its lowest value in training 
size = 80 with a confidence interval overlap with the train-
ing set. Thus, training size = 80 is the proper size for the 
training set, and there is no benefit of more training data. 
The dataset was randomly divided into two subsets with 81 
samples (70%) and 36 samples (30%) for training and test-
ing data, respectively.

Algorithm development
Multiple linear regression
Multiple linear regression (MLR) is a predictive technique 
based on linear and additive relationships of explanatory 
variables. MLR aims to describe the relationship between 
two or more explanatory variables and a dependent vari-
able by assuming a linear relationship [38]. MLR algorithm 
was developed according to Eq. (2).

where ŷ is the predicted SY, θ0 is the bias term, θ 1–θ n 
are the coefficients of regression (aka feature weights), 
x1 − xn are the input features (traits), and ε is the error 
associated with the ith observation. Equation  (2) can be 
concisely written in a vectorized form:

where θT is the transpose of the algorithm’s parameter 
vector ( θ ), containing the bias term θ0 and the feature 
weights θ 1 to θ n. X is the feature vector, containing x0 

(2)ŷ = θ0 + θ1x1 + θ2x2 + · · · + θnxn + ε

(3)ŷ = hθ (x) = θ .X = θTX

Fig. 1  Finding the proper number of training and testing datasets using learning curve. A. Multiple linear regression algorithm. B. Ridge regression 
algorithm
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to x0 , with x always equal to 1 and hθ is the hypothesis 
function, using the algorithm parametersθ . The error of 
the algorithm is:

where E(X , hθ ) is the error, m is the number of sam-
ples, and θTX (i) and y(i) denote the predicted and actual 
amounts of SY for the ith sample, respectively.

Ridge regression
Ridge regression (RR) is a regularized version of MLR. 
Compared to MLR, RR algorithm has an additional L2 
regularization term equal to α 1

2

∑n
j=1 θ

2
j  where α is a non-

negative hyperparameter that controls the regularization 
strength. The L2 regularization term is added to the error 
function and forces the learning algorithm to not only fit 
the data but also keep the algorithm weights as small as 
possible [35].

Stochastic gradient descent
Stochastic gradient descent (SGD) employs approximate 
gradients computed from subsets of the training dataset to 
update the parameters in real-time. The major  advantage 
of utilizing this strategy is that many of the feature weights 
will become zero throughout training. Another benefit is 
that it enables us to apply the L1 regularization, bypassing 
the need to update the weights of features that are not used 
in the current sample, resulting in substantially quicker 
training when the feature space dimension is large [39]. 
Equation 5 can be used to minimize the error of the SGD 
algorithm:

where yi and f (xi) are the actual and predicted amounts 
of SY, respectively. L  is a loss function that measures 
the algorithm fitting or mis-fitting and αR(θ)  is a regu-
larization term that penalizes the algorithm complexity. 
Squared error (Eq.  (6)), huber (Eq.  (7)), epsilon insensi-
tive (Eq. (8)), and squared form of epsilon insensitive are 
the loss functions that can be applied to SGD algorithm.

(4)E(X , hθ ) =
1

m

m∑

i=1

(
θTX (i) − y(i)

)2

(5)E(X , hθ ) =
1

m

m∑

i=1

L
(
yi, f (xi)

)
+ αR(θ)

(6)Squared Error : L
(
yi, f (xi)

)2
=

1

2

(
yi − f (xi)

)2

(7)

Huber: is equal to MLR’s cost function when
∣∣yi

− f (xi)
∣∣ ≤ ε and L (yi , f (xi)) = ε

∣∣yi − f (xi)
∣∣−

1

2
ε2 otherwise

Generalized linear model
Generalized Linear Model (GLM) is an extended form of 
MLR which uses a link function, and also its loss function 
can be differently computed based on the given distribu-
tion [40–42]. ŷ is calculated through ŷ = f (θTX + θ0) , 
where f  is the link function.

Bayesian ridge regression
Using Bayesian theory in linear regression helps an 
algorithm avoid overfitting and also leads to automatic 
methods of determining algorithm complexity using the 
training dataset alone [42]. Bayesian ridge regression 
(BRR) is similar to the RR method, except that BRR has 
an additional noise precision parameter ( � ) other than α . 
Both α and � are estimated concurrently when the algo-
rithm is fitting, and their priors are selected from the 
gamma distribution. The probabilistic model of y is:

and Gaussian prior of coefficients θ is:

A comprehensive description of Bayesian regression 
can be found in [42, 43].

Automatic relevance determination
Automatic relevance determination (ARD) (aka relevance 
vector machine) was first introduced by [44] and typi-
cally results in algorithms that are sparser, which allows 
for quicker performance on testing dataset while preserv-
ing the same generalization error. Similar to BRR, ARD 
is also based on Bayesian theory with the difference that 
each coefficient θi can itself be obtained from a Gaussian 
distribution, centered on zero and with a precision �i:

where A is a positive definite diagonal matrix with a 
diagonal equal to: � = {�1, . . . , �n} . More information on 
developing an ARD algorithm is available in [44, 45].

Support vector regression
In linear support vector regression (LSVR) we aim to 
minimize the Eq. (11):

(8)
Epsilon Insensitive : L(yi , f (xi)) = max

(
0,
∣∣yi − f (xi)

∣∣− ε
)

(9)p
(
y(i)|X (i), θ ,α

)
= N

(
y(i)|θTX (i),α

)

(10)p(θ , �) = N (θ |0, �−1I)

p(θ , �) = N
(
θ |0,A−1

)

(11)

min
θ ,b

1

2
θT θ + C

∑

i=1

max(0,
∣∣∣y(i) −

(
θT∅

(
x(i)

)
+ b

)∣∣∣− ǫ)
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where b represents bias, C  is regularization parameter 
and ∅ is the loss function (epsilon insensitive and squared 
epsilon insensitive can be applied).

Epsilon support vector regression (ESVR) is another 
form of SVR employed in this study. ESVR should be 
trained in such a way that the following statement would 
be minimized:

In this case, we penalize samples whose predictions 
are at least ǫ off from their real target. In accordance with 
whether or not their predictions are placed above or below 
the ǫ tube, these samples penalize the objective by ζi or ζ∗i  
(Fig. 2A). As having high dimensional data causes complex 
computational possess, it is usually more advantageous to 
apply the dual problem to reduce the features from N to S. 
The dual problem is:

where e is the vector of all ones, Q is a n by n positive 
semidefinite matrix, and Qis = K (xi, xs) is the kernel 

min
θ ,b,ζ ,ζ ∗

1

2
θT θ + C

m∑

i=1

(ζ i + ζ ∗i )

subject to yi − θT∅

(
x(i)

)
− b ≤ ǫ + ζi,

−

(
yi − θT∅

(
x(i)

)
− b

)
≤ ǫ + ζ ∗i ,

(12)ζi, ζ
∗
i ≥ 0, i = 1, . . . ,m

min
α,α∗

1

2

(
α − α∗

)T
Q
(
α − α∗

)
+ ǫ

m∑

i=1

(
αi + α∗

i

)
+

m∑

i=1

y(i)
(
αi − α∗

i

)

SubjecttoeT
(
α − α∗

)
= 0

(13)0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , m

function. Here training vectors are implicitly mapped 
into a higher (maybe infinite) dimensional space by the 
function ∅ . Equation (14) shows the estimation function 
of ESVR algorithm.

Different kernel functions Eqs.  (15), (16), (17), and 
Eq. (18)) can be employed to ESVR algorithm.

where γ and r are hyperparameters, and d specifies the 
degree of the polynomial kernel function. Nu-Support 
Vector Regression (NuSVR) adopts a similar approach to 
ESVR with an additional Nu hyperparameter which con-
trols the number of support vectors.

Multilayer perceptron neural network
The MLPNNs, one of the most well-known forms of ANNs, 
comprise an input layer, one or more hidden layers, and an 
output layer (Fig. 2B). A MLPNN algorithm uses Eq.  (19) 
as loss function, which should be minimized through the 
training process.

(14)
m∑

i=1

(
α∗
i − αi

)
K(xi, x)+ b

(15)Linear : K (xi, xs) = xTi xs

(16)
RadialBasisFunction(RBF) : K (xi, xs) = exp

(
−γ ||xi − xs||

2
)

(17)Sigmoid : K (xi, xs) = tanh
(
γ xTi xs + r

)

(18)Polynomial : K (xi, xs) = (γ xTi xs + r)
d

(19)

Loss
(
ŷ, y, θ

)
=

1

2m

m∑

i=0

(ŷ(i) − y(i))
2
+

α

2m

n∑

j=1

θj

Fig. 2  The schematic view of A. SVR, and B. MLPNN algorithms
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To compute the ŷ  in the MLP with u neurons in 
the hidden layer and z output features, the Eq.  (20) is 
implemented:

where xi denotes the ith input feature, wj indicates the 
weighted input data into the jth hidden neuron, wij 
shows the weight of the direct association between input 
neuron i and the hidden neuron j , wj0 represents the bias 
for node jth , w0 denotes the bias related to the neuron of 
output, and g is the activation function and can be one 
the following items:

Hyperparameter optimization
In order to find the optimized values of the hyperpa-
rameters, a cross-validation method was implemented. 
The training dataset was first shuffled and then ran-
domly split into train (70%), and validation (30%) sets 
with 150 replications, and as a result, 150 independ-
ent train-validation sets were developed. To find the 
optimized value of a hyperparameter in an algorithm, 
we first set aside the validation sets. Then we trained 
algorithms on train sets using a range of values for a 
specific hyperparameter. The trained algorithms were 
applied to validation sets, and the average error of each 
hyperparameter value was calculated. Finally, the value 
with the minimum amount of error was considered as 
the optimized value of the hyperparameter.

As hyperparameter optimization of MLPNN algo-
rithms is computationally intensive, a five-fold cross-
validation was used to optimize the hyperparameters 
and also the numbers of hidden layers and neurons 
in each hidden layer of MLPNN algorithms. We first 
divided the training dataset into five groups (folds). 
We then fitted MLPNN algorithms using four folds 
and then applied the algorithm to the remaining fold, 
and measured the error. We repeated this procedure 
for each of the five folds in turn. Over the 5 folds, the 

(20)ŷ =

u∑

j=1

wj .g(

z∑

i=1

wjixi + wj0)+ w0

(21)Identity : g(x) = x

(22)Logistic : g(x) =
1

(1+ exp(−x))

(23)Tanh : g(x) = tanh(x)

(24)Relu : g(x) = max(0, x)

optimized hyperparameters were selected based on the 
minimum average of error.

Algorithm performance
The algorithm performance to predict desired output 
was calculated using three statistical quality parameters, 
including root mean square error (RMSE), mean abso-
lute error (MAE), and determination coefficient (R2) as 
follows:

where m is the number of data, Oi is the observed values, 
Pi is the predicted values, and the bar denotes the mean 
of the feature.

Feature selection and sensitivity analysis of input features
Different methods, including principle component anal-
ysis (PCA), forward selection (FS), backward selection 
(BS), stepwise selection (SS) [46], Pearson correlation 
coefficient, and lasso [47] were used to reduce the num-
ber of the yield-related traits and find the most effective 
traits which can justify the SY variance. Figure 3 presents 
a general illustration of the connection between different 
stages in this study. A sensitivity analysis was also per-
formed to study the effects of various independent traits 
on the output and provides insight into the helpfulness 
of individual traits. FS, BS, and SS were conducted using 
caret (version 6.090) and leaps (version 3.1) packages in R 
(version 4.1), and other feature selection methods, algo-
rithm development, sensitivity analysis, and visualiza-
tion were conveniently implemented in Python (version 
3.7.7). Trait clustering was carried out via cluster package 
(version 2.1.4) in R.

Results
Seed yield prediction using all measured traits
A total of 25 algorithms were developed and optimized 
to predict the SY of rapeseed. All measured yield-related 
traits were entered into the algorithms as inputs and 
their performances were evaluated using R2, RMSE, and 
MAE values (Tables  1, 2). According to the results, the 

(25)RMSE =

√∑m
i=1 (Oi − Pi)

2

m

(26)MAE =
1

m

m∑

i=1

|Oi − Pi|

(27)R2 =

∑m
i=1

(
Oi − O

)(
Pi − P

)
√∑m

i=1 (Oi − O)
2∑m

i=1 (Pi − P)
2



Page 7 of 22Shahsavari et al. Plant Methods           (2023) 19:57 	

Fig. 3  The schematic diagram of implementing and evaluating regression-based machine learning algorithms and feature selection methods

Table 1  The performance of the algorithms to predict the SY of rapeseed using all measured traits

R2 determination coefficient, RMSE root mean square error, MAE Mean absolute error

Algorithm Kernel function /Loss function Training Testing

R2 RMSE MAE R2 RMSE MAE

Multiple Linear Regression (MLR) – 0.856 0.247 0.191 0.786 0.329 0.254

Ridge Regression (RR) – 0.843 0.258 0.198 0.830 0.294 0.234

Bayesian Ridge Regression (BRR) – 0.846 0.255 0.196 0.825 0.298 0.236

Automatic Relevance Determination (ARD) – 0.842 0.259 0.205 0.834 0.290 0.227

Generalized Linear Model (GLM) – 0.849 0.253 0.194 0.809 0.311 0.243

Stochastic Gradient Descent (SGD) Squared Error (SE) 0.809 0.285 0.222 0.839 0.286 0.224

Huber 0.788 0.299 0.232 0.791 0.325 0.251

Epsilon Insensitive (EI) 0.814 0.281 0.218 0.832 0.292 0.227

Squared Epsilon Insensitive (SEI) 0.818 0.277 0.216 0.841 0.284 0.223

Nu-Support Vector Regression (NuSVR) Linear 0.841 0.259 0.195 0.823 0.300 0.237

Radial Basis Function (RBF) 0.847 0.255 0.194 0.841 0.284 0.219

Sigmoid 0.813 0.282 0.213 0.809 0.312 0.246

Quadratic Polynomial (QP) 0.861 0.243 0.194 0.860 0.266 0.210

Cubic Polynomial (CP) 0.826 0.271 0.210 0.851 0.275 0.227

Epsilon Support Vector Regression (ESVR) Linear 0.836 0.263 0.204 0.815 0.307 0.242

Radial Basis Function (RBF) 0.819 0.277 0.211 0.841 0.284 0.223

Sigmoid 0.685 0.366 0.273 0.738 0.356 0.259

Quadratic Polynomial (QP) 0.848 0.253 0.193 0.846 0.279 0.220

Cubic Polynomial (CP) 0.834 0.265 0.198 0.843 0.282 0.232

Linear Support Vector Regression (LSVR) Epsilon insensitive (EI) 0.842 0.258 0.191 0.813 0.308 0.238

Squared Epsilon Insensitive (SEI) 0.843 0.258 0.197 0.830 0.294 0.232
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least amounts of RMSE and the highest R2 values were 
achieved using the NuSVR algorithm with quadratic pol-
ynomial kernel function (NuSVR-QP) in both training 
and testing stages (Fig. 4A, B), followed by the MLPNN 
algorithm with tanh activation function (MLPNN-Tanh) 
and the NuSVR algorithm with Cubic polynomial kernel 
function (NuSVR-CP) in the training and testing data-
sets, respectively. The least amounts of training MAE 
were seen in the MLPNN algorithm with tanh and relu 
activation functions, respectively. MLPNN algorithm 
with logistic activation function (MLPNN-Logistic) had 
the least testing MAE value (Fig. 4D) prior to NuSVR-QP. 

The least accuracy of the algorithms was achieved by 
ESVR algorithm with sigmoid kernel function (ESVR-
Sigmoid) in all statistical criteria and both training and 
testing datasets (Fig. 4E, F), followed by MLPNN-Logistic 
in the training stage and MLR in the testing stage. The 
predicted and measured values of SY in both training and 
testing datasets were presented and contrasted as box 
plots to provide a better understanding of the data distri-
bution and the effectiveness of algorithms to predict SY 
(Fig. 5).

In the present study, the reduction of R2 value and the 
increase of RMSE and MAE amount between testing and 

Table 2  The performance of the MLPNNs to predict the SY of rapeseed using all measured traits

R2 determination coefficient, RMSE root mean square error, MAE mean absolute error

Algorithm Activation 
function

Best hidden layers 
topology

Training Testing

R2 RMSE MAE R2 RMSE MAE

Multilayer Perceptron Neural 
Network (MLPNN)

Identity 5 0.840 0.260 0.200 0.832 0.292 0.233

Logistic 5 0.760 0.319 0.244 0.816 0.306 0.208

Tanh 4–5–5 0.857 0.246 0.188 0.827 0.295 0.234

Relu 2-5-4-2  0.855 0.247 0.190 0.820 0.302 0.237

Fig. 4  Scatter plots of measured and predicted SY of rapeseed using all measured traits as inputs. A, C, E. Training stage. B, D, F. Testing stage. 
NuSVR-QP nu-support vector regression with quadratic polynomial kernel function, MLPNN-Logistic multilayer perceptron neural network with 
logistic activation function, ESVR-Sigmoid epsilon support vector regression with sigmoid kernel function
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training datasets of MLR (with R2
Test–R2

Train = −  0.07, 
RMESTest–RMSETrain = 0.082, MAETest–MAETrain = 0.063) 
demonstrated that MLR is the most overfitted algorithm 
followed by GLM algorithm (with R2

Test–R2
Train = − 0.04, 

RMESTest–RMSETrain = 0.058, MAETest–MAETrain = 0.049). 
It has also been shown in the scatter plot of the MLR and 
GLM algorithms (Fig. 6A, B, E, F) that they fit very well in 
the training stage; however, they have not been capable of 
repeating the same performance in the testing stage.

Feature selection and SY prediction using selected traits
In order to reduce the dimensions of the data and find 
the most important variables in predicting SY in rape-
seed genotypes, 6 different feature selection methods 
including Pearson correlation coefficient, principal 
component analysis (PCA), stepwise selection (SS), for-
ward selection (FS), backward selection (BS), and lasso 
were used in this study. To avoid overfitting in the SS, 
FS, and BS methods, leaps and caret packages in R with 
a five-fold cross-validation were employed to create 

Fig. 5  Box plots of measured and predicted SY of rapeseed using all measured traits as inputs. Algorithms are sorted based on the highest to 
lowest R2 value from left to right. A. Training stage. B. Testing stage. MLR multiple linear regression, BRR Bayesian ridge regression, ARD automatic 
relevance determination, GLM generalized linear model, SGD stochastic gradient descent, NuSVR nu-support vector regression, ESVR epsilon support 
vector regression, LSVR linear support vector regression, MLPNN multilayer perceptron neural network, RBF radial basis function, QP quadratic 
polynomial, CP cubic polynomial, EI epsilon insensitive, SEI squared epsilon insensitive



Page 10 of 22Shahsavari et al. Plant Methods           (2023) 19:57 

10 trait subsets. The first subset included the first trait 
selected by each method, and in the following subsets, 
one trait was added to the previous trait(s). Based on 
the R2, RMSE and MAE values of the cross-validation 
stage, the best subsets were achieved using PP, FPH, 
and DPM in the SS and BS methods and PP, PH, and 
DPM in the FS method (Table 3).

Using the ability of the lasso method to effectively 
reduce the number of features by giving zero coeffi-
cients to less important variables led to the Eq. (28)

where the SY is seed yield, the PH is plant height, the PP 
is pods per plant, and the DPM is days to physiological 
maturity. As can be seen from the results of FS and lasso 
methods, both had the same traits as output.

Since having 3 traits in all variable selection meth-
ods could enable us to compare the methods with the 

(28)
SY = 0.736+ 0.608PH + 2.055PP + 0.409DPM

same number of variable subsets, three traits were also 
selected in Pearson correlation coefficient and PCA 
methods. The results of the Pearson correlation coef-
ficient showed that PP, PAB, and SD had the highest 
positive correlations with SY of rapeseed genotypes 

Fig. 6  Scatter plots of measured and predicted SY of rapeseed using MLR and GLM algorithms. A, C, E, G. Training stage. B, D, F, H. Testing stage. FS 
forward selection, SS stepwise selection, BS backward selection

Table 3  The output of stepwise selection, forward selection, and 
backward selection methods

PP: pods per plant, FPH first pod height from the ground, DPM days to 
physiological maturity, PH plant height, R2 determination coefficient, RMSE root 
mean square error, MAE mean absolute error

Method Most efficient subset R2 RMSE MAE

Stepwise Selection PP, FPH, DPM 0.810 0.288 0.224

Forward Selection PP, PH, DPM 0.816 0.281 0.219

Backward Selection PP, FPH, DPM 0.808 0.291 0.227

Fig. 7  Pearson correlation coefficients of yield-related traits and seed 
yield in rapeseed genotypes. PP pods per plant, PAB pods per axillary 
branches, SD stem diameter, BP branches per plant, PH plant height, 
PMB pods per main branch, DPM days to physiological maturity, MBL 
main branch length, DSF days to start of flowering, DEF days to end 
of flowering, PL pod length, FPH first pod height from the ground, FP 
flowering period, SP seeds per pod, TSW thousand seed weight
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(Fig. 7). PP, PAB, and BP were the selected traits based 
on PCA results (Table 4).

The traits given by feature selection methods were 
applied to the algorithms developed in the ‘‘Seed yield 
prediction using all measured traits’’ Sect as inputs to 
estimate the power of feature selection methods and 
find the most compatible algorithms to predict the SY 
of rapeseed genotypes using fewer traits. Additional 
file  1 displays the performance of the algorithms using 
the traits obtained from each feature selection method 
and a summarized table has been presented in Table  5. 
The best training performance was seen in the NuSVR 
algorithm with RBF kernel function and SS/BS meth-
ods (NuSVR-RBF-SS/BS) (Fig. 8C). Also, using the same 
algorithm with lasso/FS methods (NuSVR-RBF-lasso/
FS) resulted in the least amount of MAE in the test-
ing dataset (Fig. 8D). The highest R2 value of the testing 
dataset was seen in the MLPNN algorithm with identity 
activation function and SS/BS methods (MLPNN-Iden-
tity-SS/BS) (Fig. 8B). Using SS/BS methods along with 3 
algorithms including GLM and MLPNN with tanh and 
identity activation functions showed the least amount of 

testing RMSE simultaneously (Table 5). The ESVR algo-
rithm with cubic polynomial kernel function and SS/BS 
methods (ESVR-CP-SS/BS) had the worst performance 
in all three statistical criteria of both training and test-
ing datasets (Fig. 8E, F). A comparative box plot has been 
presented in Fig.  9 that shows the obvious difference 
between the performance of algorithms.

Some algorithms were differentially performed using 
all measured traits or selected traits as inputs.  For 
instance, NuSVR and ESVR algorithms with QP and CP 
kernel functions performed well when all measured traits 
were used as inputs; however, applying selected traits 
by feature selection methods led to lower performance 
(Fig. 10). Nevertheless, there was no noticeable difference 
in the performance of NuSVR and ESVR algorithms with 
linear kernel function, nor in LSVR algorithms when all 
measured traits or selected traits were applied as inputs 
(Fig.  11). Likewise, using all measured traits or select-
ing traits by feature selection methods as inputs did not 
significantly affect the performance of regularized linear 
algorithm (ridge, BRR, ADR, and SGD) (Fig.  12). Com-
pared to using all measured traits as inputs, MLPNN 

Table 4  Principal component analysis of yield-related traits in rapeseed genotypes

PC principal component, PH plant height, PMB pods per main branch, PAB pods per axillary branches, PP pods per plant, BP branches per plant, MBL main branch 
length, FPH first pod height from the ground, PL pod length, DSF days to start of flowering, DEF days to end of flowering, DPM days to physiological maturity, FP 
flowering period, TSW thousand seed weight, SP seeds per pod, SD stem diameter, EVR explained variance ratio

Trait PH PMB PAB PP BP MBL FPH PL DSF DEF DPM FP TSW SP SD EVR%

PC1 0.27 0.19 0.44 0.47 0.37 0.21 0.01 0.02 0.25 0.31 0.11 0.05 − 0.16 − 0.02 0.30 35.64

PC2 0.23 − 0.02 − 0.23 − 0.24 -0.44 0.12 0.12 − 0.07 0.36 0.51 0.16 0.14 − 0.39 0.07 − 0.12 16.50

Table 5  The performance of machine learning algorithms using selected traits by feature selection methods as inputs

FS forward selection, SS stepwise selection, BS backward selection, R2 determination coefficient, RMSE root mean square error, MAE mean absolute error

Algorithm Feature 
selection 
method

Training Testing

R2 RMSE MAE R2 RMSE MAE

Multiple Linear Regression (MLR) Lasso/FS 0.833 0.266 0.207 0.828 0.295 0.225

Ridge Regression (RR) Lasso/FS 0.829 0.269 0.208 0.837 0.288 0.224

Generalized Linear Model (GLM) SS/BS 0.834 0.265 0.212 0.842 0.283 0.225

Nu-Support Vector Regression (NuSVR)/Radial Basis Function (RBF) SS/BS 0.845 0.256 0.200 0.830 0.293 0.228

Lasso/FS 0.833 0.266 0.201 0.837 0.288 0.219

Epsilon Support Vector Regression (ESVR)/Linear Lasso/FS 0.828 0.269 0.209 0.839 0.286 0.224

Epsilon Support Vector Regression (ESVR)/Sigmoid SS/BS 0.504 0.459 0.347 0.541 0.483 0.376

Epsilon Support Vector Regression (ESVR)/Cubic Polynomial SS/BS 0.245 0.566 0.430 0.311 0.592 0.488

Lasso/FS 0.417 0.497 0.380 0.570 0.468 0.387

Multilayer Perceptron Neural Network (MLPNN)/Identity SS/BS 0.827 0.270 0.219 0.843 0.283 0.224

Lasso/FS 0.826 0.272 0.210 0.838 0.286 0.224

Multilayer Perceptron Neural Network (MLPNN)/Tanh SS/BS 0.834 0.265 0.211 0.842 0.283 0.229

Lasso/FS 0.828 0.269 0.208 0.839 0.286 0.224

Multilayer Perceptron Neural Network (MLPNN)/Relu SS/BS 0.839 0.261 0.209 0.833 0.291 0.231
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Fig. 8  Scatter plots of measured and predicted SY of rapeseed using selected traits as inputs. A, C, E. Training stage. B, D, F. Testing stage. 
MLPNN-Identity multilayer perceptron neural network with identity activation function, NuSVR-RBF nu-support vector regression with radial basis 
function kernel function, ESVR-CP epsilon support vector regression with cubic polynomial kernel function, SS stepwise selection, BS backward 
selection, FS forward selection

Fig. 9  Box plots of measured and predicted SY of rapeseed using selected traits as inputs. Algorithms are sorted based on the highest to lowest R2 
value from left to right. A. Training stage. B. Testing stage. MLR multiple linear regression, GLM generalized linear model, NuSVR nu-support vector 
regression, ESVR epsilon support vector regression, MLPNN multilayer perceptron neural network, RBF radial basis function, CP cubic polynomial, FS 
forward selection, SS stepwise selection, BS backward selection
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algorithm with identity, tanh, and relu activation func-
tions demonstrated better testing performance when 
selected traits by SS, FS, BS, and lasso methods were 
entered into these algorithms as inputs (Fig. 13).

In order to assess the efficiency of feature selec-
tion methods and compare them with using all meas-
ured traits as inputs to the algorithms, the mean of 
algorithms performance using all measured traits and 
selected traits by feature selection methods was cal-
culated in both training and testing stages (Table  6). 
According to the results, using all measured traits as 
inputs to predict the SY of rapeseed genotypes resulted 
in highest R2 value and least amount of RMSE and 
MAE. Among the feature selection methods, the best 

performance in all 3 statistical criteria was achieved 
using the lasso and FS methods in both training and 
testing datasets, while PCA exhibited the worst. More-
over, based on the testing R2 and RMSE values, the 
most efficient algorithms  with selected traits by cor-
relation and PCA as inputs ranked  thirty-fifth and 
forty-fifth among all combinations of the algorithms 
and feature selection methods, respectively (Additional 
file 1).

Sensitivity analysis
To find the most important input traits affecting the SY 
of rapeseed, sensitivity analysis was conducted using the 
MLPNN algorithm with identity activation function, 

Fig. 10  Performance comparison of NuSVR and ESVR using all measured traits and selected traits as inputs. A. Training stage. B. Testing stage. 
NuSVR nu-support vector regression, ESVR epsilon support vector regression, QP quadratic polynomial, CP cubic polynomial, FS forward selection, SS 
stepwise selection, BS backward selection, PCA principal component analysis
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NuSVR algorithm with quadratic kernel function, and 
MLR algorithm. The results of sensitivity analysis showed 
that the highest RMSE and MAE, and the lowest R2 were 
achieved without DPM in all 3 algorithms (Table 7). The 
PP was also among the first 4 traits, which its elimination 
from the 3 algorithms caused an increase in RMSE and 
MAE, as well as a reduction in R2 value. Figure 14 shows 
the status of high and low-yielding genotypes from the 
perspective of DPM and PP traits.

Discussion
Increasing SY has always been a central objective in 
breeding programs [12]. However, assessing SY in large 
populations of diverse genotypes is a laborious and time-
consuming task [13, 14]. Due to the intricate interaction 
of genetic and environmental factors, seed yield breed-
ing is a complex and nonlinear process [15, 16]. Conse-
quently, breeders have adopted strategies that employ 
secondary traits closely associated with the primary trait 
to efficiently identify promising genotypes at early growth 
stages [17]. While conventional statistical methods have 
been widely used in rapeseed research to explore the 
relationships between SY and other traits, their assump-
tion of linear relationships falls short in capturing the 
interactions and highly nonlinear associations between 
SY and other traits [18–22]. In contrast, the application 
of machine learning algorithms has proven effective in 
optimizing and predicting complex biological systems 

and, therefore, can be employed to facilitate more precise 
yield prediction and enhance the efficiency of breeding 
programs [23, 24].

Polynomial kernels of SVR algorithms: efficient tools for SY 
prediction using all traits as inputs
SY is a quantitative and complex trait with a nonlinear 
and complicated relationship with other yield-related 
traits [9, 22]. Applying linear algorithms cannot fully 
show the relationship between SY and other traits. Using 
nonlinear methods such as polynomial regression can be 
a solution to this issue. Polynomial regression involves 
including polynomial terms (quadratic, cubic, etc.) in a 
regression equation and, as a result making new com-
binatorial features and allowing learning of nonlinear 
models [48]. However, there is a problem with polyno-
mial regression; it is too slow and computationally inten-
sive [35]. To address that, polynomial kernel functions in 
the SVR algorithms could be employed, which performs 
operations in the original dimension without adding any 
combinatorial feature and subsequently is much more 
computationally effective [35]. In the present study, the 
NuSVR and ESVR algorithms with the QP and CP kernel 
functions were the first four most efficient algorithms in 
the testing stage based on R2 and RMSE values (Table 1, 
Fig.  5B), which proved the high capability of SVR algo-
rithms in combination with polynomial kernel functions 
to predict a complex trait such as SY in rapeseed.

Fig. 11  Performance comparison of SVR algorithms using all measured traits and selected traits as inputs. A. Training stage. B. Testing stage. NuSVR 
nu-support vector regression, ESVR epsilon support vector regression, LSVR linear support vector regression, EI epsilon insensitive, SEI squared 
epsilon insensitive, FS forward selection, SS stepwise selection, BS backward selection
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Hyperparameter optimization: the first approach to avoid 
overfitting
Overfitting is one of the major issues in the machine 
learning area, which occurs when an algorithm fails to 
generalize successfully from observed data to new data. 
Due to the presence of overfitting, the algorithm per-
forms flawlessly on the training set while fitting badly on 
the testing set [49]. MLR and GLM algorithms with all 
measured traits as inputs appeared to be the most over-
fitted algorithm in this study (Table 1, Fig. 6A, B, E, F). 
Algorithm training is actually a process of hyperparam-
eter optimization. Well-optimized parameters make a 
good balance between training accuracy and regularity 

and then inhibit the effect of overfitting. Regularization-
based algorithms help us distinguish noises, meaning 
and meaningless features, and assign different weights to 
them [49–51]. In this study, MLR was the only algorithm 
without any hyperparameter. Hyperparameter opti-
mization led to a better performance in the rest of the 
algorithms. As a result, using regularization-based algo-
rithms with hyperparameter optimization can be a solu-
tion to overcome overfitting in rapeseed SY prediction. 
One of the most important advantages of these results is 
the reduction of required time for optimizing predictive 
algorithms and therefore expediting the rapeseed breed-
ing programs.

Fig. 12  Performance comparison of regularized linear algorithms using all measured traits and selected traits as inputs. A. Training stage. B. Testing 
stage. BRR Bayesian ridge regression, ARD automatic relevance determination, SGD stochastic gradient descent, EI epsilon insensitive, SEI squared 
epsilon insensitive, FS forward selection, SS stepwise selection, BS backward selection
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Feature selection
Stepwise selection is widely used to find the most impor-
tant traits related to SY in plant breeding. However, dis-
covering the best subset of the traits is an issue because 
all subset regression methods (SS, FS and BS) are in-
sample methods for assessing and tuning models. Con-
sequently, model selection may suffer from overfitting 
(fitting the noise in the data) and may not perform as well 
on new data [48]. To avoid this, we validated the models 
by using cross-validation. In accordance with the results 
of the SS, BS, and FS methods (Table 3), previous studies 
which used stepwise regression have demonstrated that 
pods per plant, growth duration, and pods on the main 
raceme [52], and pods per plant, number of branches, and 
duration of flowering [21] had significant effects on the 
SY in rapeseed genotypes. There are similarities between 
the result of the correlation analysis (Fig.  7) and other 
studies which have reported a positive and significant 

correlation between SY and pods per plant [18–20, 53–
57], branch number [18, 55, 58, 59] and plant height [18, 
54, 58] in rapeseed genotypes. Branch per plant and pods 
per plant were also reported as the effective traits in the 
first principal component associated with the yield of 
rapeseed accessions [19]. TSW and SP were not selected 
by any feature selection method and also showed a nega-
tive correlation with SY (Fig. 7). It indicates that they are 
not suitable indirect criteria for rapeseed SY breeding. 
Similar to our results, some studies reported a negative 
correlation between SY and TSW [15, 52, 54, 57, 59] and 
SP [15, 55].

Our findings would seem to demonstrate that correla-
tion and PCA are not efficient methods to find proper 
indirect selection criteria for SY of rapeseed (Table  6). 
To provide a better understanding of how the traits were 
selected by feature selection methods, the measured 
traits were clustered using the Euclidean distance  and 

Fig. 13  Performance comparison of MLPNN algorithms using all measured traits and selected traits as inputs. A. Training stage. B. Testing stage. 
MLPNN multilayer perceptron neural network, FS forward selection, SS stepwise selection, BS backward selection

Table 6  The mean of R2, RMSE and MAE values of machine learning algorithms with different inputs

R2 determination coefficient, RMSE root mean square error, MAE mean absolute error, FS forward selection, SS stepwise selection, BS backward selection, PCA principal 
component analysis

Inputs Training Testing

R2 RMSE MAE R2 RMSE MAE

All measured traits 0.826 0.269 0.206 0.823 0.298 0.232

Selected traits by SS/BS 0.775 0.300 0.237 0.784 0.322 0.253

Selected traits by Lasso/FS 0.787 0.295 0.226 0.800 0.314 0.242

Selected traits by PCA 0.720 0.344 0.272 0.761 0.346 0.272

Selected traits by correlation 0.724 0.341 0.269 0.782 0.332 0.264



Page 17 of 22Shahsavari et al. Plant Methods           (2023) 19:57 	

ward method (Fig. 15). The results showed that all traits 
selected by correlation and PCA methods were in the 
first cluster, while SS, BS, FS, and lasso chose the traits 
from three different clusters, which has resulted in more 
efficient performance. The lack of considering the com-
bined effects of the traits could be one of the factors 
that caused the inefficiency of the correlation and PCA 
methods. Unlike these two methods, in SS, BS, and Lasso 
methods, the combined effect of features is taken into 
account, and the combination with the best fit is chosen 
[35, 46].

Feature selection: the second approach to avoid overfitting
Results from additional file  1 and Table  5 can be com-
pared with the data in Table 1, which shows that feature 
selection methods could positively affect the overfit-
ted algorithms. Compared to using all measured traits 
as inputs, when the traits selected by feature selection 
methods were applied, the amount of overfitting in the 
MLR algorithm was reduced, and the testing perfor-
mance of the GLM algorithm dramatically improved 
and became among the best testing performance results 

which indicates an improvement in the performance of 
these algorithms if fewer inputs are used (Fig. 6C, D, G, 
H).

Evaluating algorithms with all and selected traits: 
the influence of feature selection
Although using all measured traits as inputs in NuSVR 
and ESVR algorithms with QP and CP kernel functions 
led to efficient performances (Table  1, Fig.  5), applying 
selected traits by feature selection methods reduced their 
performance (Fig.  10). This revealed that the complex 
essence of polynomial algorithms is helpful when the 
data is dimensional and also nonlinear and complex rela-
tionship exists between dependent and independent vari-
ables. Nonetheless, the RBF kernel function in NuSVR 
and linear kernel function in ESVR showed an effective 
performance with selected traits by feature selection 
(Table  5). Therefore, one of the benefits of NuSVR and 
ESVR algorithms is their ability to work with different 
kernel functions that can provide them a flexible charac-
teristic with different inputs. In contrast to polynomial 
kernel functions, no considerable difference was seen in 
the performance of NuSVR and ESVR algorithms with 
linear kernel function and also LSVR algorithms using 
all measured traits or selected traits as inputs (Fig.  11). 
Similarly, the performance of the other regularized linear 
algorithms (ridge, BRR, ADR and SGD) did not signifi-
cantly change using all measured traits or selected traits 
by feature selection methods (Fig. 12). One of the major 
advantages of regularized linear algorithms is their abil-
ity to systematically weigh the more important features 
through the training process [60] and therefore, showing 
relatively similar performance with or without using fea-
ture selection.

The use of all measured traits as inputs to the MLPNN 
algorithm with identity, tanh, and relu activation 

Table 7  Sensitivity analysis of the input features on the seed 
yield of rapeseed

R2 determination coefficient, RMSE root mean square error, MAE mean absolute 
error, MLR  multiple linear regression, NuSVR nu-support vector regression, 
MLPNN multilayer perceptron neural network, QP quadratic polynomial, PH 
plant height, PMB pods per main branch, PAB pods per axillary branches, PP 
pods per plant, BP branches per plant, DSF days to start of flowering, DPM days 
to physiological maturity, FP flowering period, TSW thousand seed weight, SP 
seeds per pod

Algorithm Eliminated trait 
from inputs

R2 RMSE MAE

MPLNN-Identity – 0.838 0.270 0.214

DPM 0.804 0.297 0.231

PMB 0.833 0.275 0.218

PP 0.836 0.272 0.215

PAB 0.837 0.271 0.214

BP 0.838 0.271 0.214

NuSVR-QP – 0.871 0.241 0.195

DPM 0.853 0.257 0.205

SP 0.862 0.249 0.197

FP 0.864 0.247 0.197

PP 0.867 0.245 0.197

TSW 0.867 0.245 0.197

MLR – 0.846 0.263 0.208

DPM 0.810 0.292 0.231

PH 0.844 0.265 0.211

BP 0.845 0.265 0.209

PP 0.845 0.264 0.209

DSF 0.846 0.263 0.208

Fig. 14  Three-dimensional figure of DPM and PP traits in high and 
low-yielding genotypes of rapeseed
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functions caused overfitting of these algorithms, while 
the reduction of inputs by applying feature selection 
methods prevented overfitting or significantly reduced 
it (Fig.  13). Furthermore, they showed better testing 
performance using selected traits by SS, FS, BS, and 
lasso methods compared to utilizing all measured traits 

(Fig.  13). [61, 62] have also mentioned the crucial role 
of feature selection in the performance of neural net-
works and removing the overfitting effect. Comparing 
the performance of the MLPNNs with other algorithms 
when selected traits by feature selection methods were 
used, indicated that the performance of MLPNNs with 

Fig. 15  Clustering the measured traits of rapeseed genotypes using ward method. A. clusters demonstrated by heatmap. B. clusters demonstrated 
by PCA biplot. PH plant height, PMB pods per main branch, PAB pods per axillary branches, PP pods per plant, BP branches per plant, MBL main 
branch length, FPH first pod height from the ground, PL pod length, DSF days to start of flowering, DEF days to end of flowering, DPM days 
to physiological maturity, FP flowering period, TSW thousand seed weight, SP seeds per pod, SD stem diameter, SY seed yield, PCA principal 
component analysis, SS stepwise selection, FS forward selection, BS backward selection
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fewer number of traits was more efficient than other 
algorithms (Table  5). Moreover, the insignificant reduc-
tion of the performance of MLPNN-Identity with traits 
obtained from SS and BS methods as inputs compared 
to the most efficient algorithm using all measured traits 
as inputs (NuSVR-QP) (Tables 1, 5) shows that the com-
bination of MLPNN-Identity and SS and BS methods is 
an efficient approach for precise SY prediction using a 
much smaller number of traits (three instead of fifteen). 
It can greatly help breeders to effectively and simply 
select high-performance plants in the SY breeding pro-
grams of rapeseed since the direct selection or indirect 
selection via many traits for SY is practically impossi-
ble when it comes to using thousands of genotypes in a 
breeding program. While this paper focuses on the devel-
opment of specific artificial neural networks, MLPNNs, 
it is important to mention that there are a diverse range 
of ANN algorithms beyond those presented here. Deep 
neural network genomic prediction (DNNGP) is a nota-
ble example, particularly in the field of plant genomic 
prediction, where it has been recently utilized with great 
success. [63].

Indirect selection criteria
The results of sensitivity analysis (Table 7) were fully con-
sistent with the results of feature selection since DPM 
and PP were the mutual traits in SS, FS, BS and lasso as 
the efficient feature selection methods. Rapeseed geno-
types can be divided into two almost distinct groups in 
such a way that high-yielding genotypes has a greater 
number of pods per plant and longer physiological matu-
rity time than low-yielding genotypes (Fig. 14), which is 
another indication that selection based on these traits 
can be effective in developing rapeseed varieties with 
higher SY performance. Comparing the results of sen-
sitivity analysis and feature selection also indicated that 
DPM and PP along with PH or FPH are the most impor-
tant combination traits that can greatly affect the SY of 
rapeseed, and as a result, can be considered as the most 
important indirect indicators in the breeding programs 
to increase rapeseed SY. Many studies have noted the 
direct positive effect of pods per plant on SY [19–21, 
54, 59]. Increasing the number of pods per plant is the 
strategy that rapeseed plants employ to enhance the SY 
rather than improving the number or weight of seeds per 
pod [15]. Likewise, nitrogen availability increases the SY 
of rapeseed through producing more pods compared to 
influencing seed or pod weight [15, 64]. The direct posi-
tive effect of plant height on SY was reported by [20, 59]. 
This is also an indirect contribution of PP to increase the 
SY because a taller plant usually has more pods and thus 
a higher yield [18]. [65]  reported that delayed maturity 

was a contributing factor to SY increasing, and the high 
potential crops for high SY had late maturity. Similarly, 
[18] observed a direct connection between maturity time 
and SY in some of their experiments.

Conclusion
Nonlinear and complex relations between SY and yield-
related traits is one of the main issues that has limited 
the application of conventional multivariate models 
to find the most effective traits for indirect selection. 
Regression-based machine learning algorithms along 
with feature selection methods, can provide a robust 
solution for accurate SY prediction and also introduc-
ing effective indirect selection criteria. To achieve that, 
different regression-based machine learning algorithms 
and feature selection methods were used in the present 
study. NuSVR and ESVR algorithms with polynomial 
kernel functions had the best performance when all the 
measured yield-related traits were used as inputs to pre-
dict the SY of rapeseed. It revealed the high potential of 
SVR algorithms in interpreting the nonlinear relations 
of dimensional data in complex biological processes. 
Although polynomial kernels are not proper options 
when fewer features are supposed to enter the SVR algo-
rithms as inputs, RBF (with NuSVR) and linear (with 
ESVR) kernel functions showed effective performance 
with selected traits by feature selection. It showed the 
flexibility of NuSVR and ESVR to efficiently work with 
different inputs. Employing feature selection methods 
to find the most effective traits on the SY and using the 
selected features as inputs to the algorithms showed that 
the MLPNN algorithm with identity activation func-
tion is the most efficient and compatible algorithm with 
selected traits by SS and BS methods. MLPNNs are well-
known and powerful algorithms, however they are sensi-
tive to the input variables, and employing them together 
with proper feature selection methods would result in 
efficient performance. Regularized linear algorithms 
are effective to overcome overfitting as one of the main 
issues in regression and also are capable of maintaining a 
stable performance using numerous or selected features 
as inputs. According to the results of feature selection 
methods and sensitivity analysis, DPM, PP, and PH or 
FPH were the most important traits that greatly affected 
the SY of rapeseed. As optimizing and finding the most 
efficient algorithms for predicting complex biological 
processes is a time-consuming and challenging proce-
dure, the optimized algorithms of this study can be used 
to have quicker and more efficient SY breeding programs 
of rapeseed, one of the most important oil crops.
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