Skip to main content
. 2023 Jun 16;19:57. doi: 10.1186/s13007-023-01035-9

Table 1.

The performance of the algorithms to predict the SY of rapeseed using all measured traits

Algorithm Kernel function /Loss function Training Testing
R2 RMSE MAE R2 RMSE MAE
Multiple Linear Regression (MLR) 0.856 0.247 0.191 0.786 0.329 0.254
Ridge Regression (RR) 0.843 0.258 0.198 0.830 0.294 0.234
Bayesian Ridge Regression (BRR) 0.846 0.255 0.196 0.825 0.298 0.236
Automatic Relevance Determination (ARD) 0.842 0.259 0.205 0.834 0.290 0.227
Generalized Linear Model (GLM) 0.849 0.253 0.194 0.809 0.311 0.243
Stochastic Gradient Descent (SGD) Squared Error (SE) 0.809 0.285 0.222 0.839 0.286 0.224
Huber 0.788 0.299 0.232 0.791 0.325 0.251
Epsilon Insensitive (EI) 0.814 0.281 0.218 0.832 0.292 0.227
Squared Epsilon Insensitive (SEI) 0.818 0.277 0.216 0.841 0.284 0.223
Nu-Support Vector Regression (NuSVR) Linear 0.841 0.259 0.195 0.823 0.300 0.237
Radial Basis Function (RBF) 0.847 0.255 0.194 0.841 0.284 0.219
Sigmoid 0.813 0.282 0.213 0.809 0.312 0.246
Quadratic Polynomial (QP) 0.861 0.243 0.194 0.860 0.266 0.210
Cubic Polynomial (CP) 0.826 0.271 0.210 0.851 0.275 0.227
Epsilon Support Vector Regression (ESVR) Linear 0.836 0.263 0.204 0.815 0.307 0.242
Radial Basis Function (RBF) 0.819 0.277 0.211 0.841 0.284 0.223
Sigmoid 0.685 0.366 0.273 0.738 0.356 0.259
Quadratic Polynomial (QP) 0.848 0.253 0.193 0.846 0.279 0.220
Cubic Polynomial (CP) 0.834 0.265 0.198 0.843 0.282 0.232
Linear Support Vector Regression (LSVR) Epsilon insensitive (EI) 0.842 0.258 0.191 0.813 0.308 0.238
Squared Epsilon Insensitive (SEI) 0.843 0.258 0.197 0.830 0.294 0.232

R2 determination coefficient, RMSE root mean square error, MAE Mean absolute error