Table 1.
Algorithm | Kernel function /Loss function | Training | Testing | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | ||
Multiple Linear Regression (MLR) | – | 0.856 | 0.247 | 0.191 | 0.786 | 0.329 | 0.254 |
Ridge Regression (RR) | – | 0.843 | 0.258 | 0.198 | 0.830 | 0.294 | 0.234 |
Bayesian Ridge Regression (BRR) | – | 0.846 | 0.255 | 0.196 | 0.825 | 0.298 | 0.236 |
Automatic Relevance Determination (ARD) | – | 0.842 | 0.259 | 0.205 | 0.834 | 0.290 | 0.227 |
Generalized Linear Model (GLM) | – | 0.849 | 0.253 | 0.194 | 0.809 | 0.311 | 0.243 |
Stochastic Gradient Descent (SGD) | Squared Error (SE) | 0.809 | 0.285 | 0.222 | 0.839 | 0.286 | 0.224 |
Huber | 0.788 | 0.299 | 0.232 | 0.791 | 0.325 | 0.251 | |
Epsilon Insensitive (EI) | 0.814 | 0.281 | 0.218 | 0.832 | 0.292 | 0.227 | |
Squared Epsilon Insensitive (SEI) | 0.818 | 0.277 | 0.216 | 0.841 | 0.284 | 0.223 | |
Nu-Support Vector Regression (NuSVR) | Linear | 0.841 | 0.259 | 0.195 | 0.823 | 0.300 | 0.237 |
Radial Basis Function (RBF) | 0.847 | 0.255 | 0.194 | 0.841 | 0.284 | 0.219 | |
Sigmoid | 0.813 | 0.282 | 0.213 | 0.809 | 0.312 | 0.246 | |
Quadratic Polynomial (QP) | 0.861 | 0.243 | 0.194 | 0.860 | 0.266 | 0.210 | |
Cubic Polynomial (CP) | 0.826 | 0.271 | 0.210 | 0.851 | 0.275 | 0.227 | |
Epsilon Support Vector Regression (ESVR) | Linear | 0.836 | 0.263 | 0.204 | 0.815 | 0.307 | 0.242 |
Radial Basis Function (RBF) | 0.819 | 0.277 | 0.211 | 0.841 | 0.284 | 0.223 | |
Sigmoid | 0.685 | 0.366 | 0.273 | 0.738 | 0.356 | 0.259 | |
Quadratic Polynomial (QP) | 0.848 | 0.253 | 0.193 | 0.846 | 0.279 | 0.220 | |
Cubic Polynomial (CP) | 0.834 | 0.265 | 0.198 | 0.843 | 0.282 | 0.232 | |
Linear Support Vector Regression (LSVR) | Epsilon insensitive (EI) | 0.842 | 0.258 | 0.191 | 0.813 | 0.308 | 0.238 |
Squared Epsilon Insensitive (SEI) | 0.843 | 0.258 | 0.197 | 0.830 | 0.294 | 0.232 |
R2 determination coefficient, RMSE root mean square error, MAE Mean absolute error