Skip to main content
. 2023 Jun 16;19:57. doi: 10.1186/s13007-023-01035-9

Table 7.

Sensitivity analysis of the input features on the seed yield of rapeseed

Algorithm Eliminated trait from inputs R2 RMSE MAE
MPLNN-Identity 0.838 0.270 0.214
DPM 0.804 0.297 0.231
PMB 0.833 0.275 0.218
PP 0.836 0.272 0.215
PAB 0.837 0.271 0.214
BP 0.838 0.271 0.214
NuSVR-QP 0.871 0.241 0.195
DPM 0.853 0.257 0.205
SP 0.862 0.249 0.197
FP 0.864 0.247 0.197
PP 0.867 0.245 0.197
TSW 0.867 0.245 0.197
MLR 0.846 0.263 0.208
DPM 0.810 0.292 0.231
PH 0.844 0.265 0.211
BP 0.845 0.265 0.209
PP 0.845 0.264 0.209
DSF 0.846 0.263 0.208

R2 determination coefficient, RMSE root mean square error, MAE mean absolute error, MLR multiple linear regression, NuSVR nu-support vector regression, MLPNN multilayer perceptron neural network, QP quadratic polynomial, PH plant height, PMB pods per main branch, PAB pods per axillary branches, PP pods per plant, BP branches per plant, DSF days to start of flowering, DPM days to physiological maturity, FP flowering period, TSW thousand seed weight, SP seeds per pod