Table 7.
Algorithm | Eliminated trait from inputs | R2 | RMSE | MAE |
---|---|---|---|---|
MPLNN-Identity | – | 0.838 | 0.270 | 0.214 |
DPM | 0.804 | 0.297 | 0.231 | |
PMB | 0.833 | 0.275 | 0.218 | |
PP | 0.836 | 0.272 | 0.215 | |
PAB | 0.837 | 0.271 | 0.214 | |
BP | 0.838 | 0.271 | 0.214 | |
NuSVR-QP | – | 0.871 | 0.241 | 0.195 |
DPM | 0.853 | 0.257 | 0.205 | |
SP | 0.862 | 0.249 | 0.197 | |
FP | 0.864 | 0.247 | 0.197 | |
PP | 0.867 | 0.245 | 0.197 | |
TSW | 0.867 | 0.245 | 0.197 | |
MLR | – | 0.846 | 0.263 | 0.208 |
DPM | 0.810 | 0.292 | 0.231 | |
PH | 0.844 | 0.265 | 0.211 | |
BP | 0.845 | 0.265 | 0.209 | |
PP | 0.845 | 0.264 | 0.209 | |
DSF | 0.846 | 0.263 | 0.208 |
R2 determination coefficient, RMSE root mean square error, MAE mean absolute error, MLR multiple linear regression, NuSVR nu-support vector regression, MLPNN multilayer perceptron neural network, QP quadratic polynomial, PH plant height, PMB pods per main branch, PAB pods per axillary branches, PP pods per plant, BP branches per plant, DSF days to start of flowering, DPM days to physiological maturity, FP flowering period, TSW thousand seed weight, SP seeds per pod