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Abstract 

Background  Genomics-informed pathogen surveillance strengthens public health decision-making, playing an 
important role in infectious diseases’ prevention and control. A pivotal outcome of genomics surveillance is the iden-
tification of pathogen genetic clusters and their characterization in terms of geotemporal spread or linkage to clinical 
and demographic data. This task often consists of the visual exploration of (large) phylogenetic trees and associated 
metadata, being time-consuming and difficult to reproduce.

Results  We developed ReporTree, a flexible bioinformatics pipeline that allows diving into the complexity of patho-
gen diversity to rapidly identify genetic clusters at any (or all) distance threshold(s) or cluster stability regions and to 
generate surveillance-oriented reports based on the available metadata, such as timespan, geography, or vaccination/
clinical status. ReporTree is able to maintain cluster nomenclature in subsequent analyses and to generate a nomen-
clature code combining cluster information at different hierarchical levels, thus facilitating the active surveillance of 
clusters of interest. By handling several input formats and clustering methods, ReporTree is applicable to multiple 
pathogens, constituting a flexible resource that can be smoothly deployed in routine surveillance bioinformatics 
workflows with negligible computational and time costs. This is demonstrated through a comprehensive benchmark-
ing of (i) the cg/wgMLST workflow with large datasets of four foodborne bacterial pathogens and (ii) the alignment-
based SNP workflow with a large dataset of Mycobacterium tuberculosis. To further validate this tool, we reproduced 
a previous large-scale study on Neisseria gonorrhoeae, demonstrating how ReporTree is able to rapidly identify the 
main species genogroups and characterize them with key surveillance metadata, such as antibiotic resistance data. By 
providing examples for SARS-CoV-2 and the foodborne bacterial pathogen Listeria monocytogenes, we show how this 
tool is currently a useful asset in genomics-informed routine surveillance and outbreak detection of a wide variety of 
species.

Conclusions  In summary, ReporTree is a pan-pathogen tool for automated and reproducible identification and 
characterization of genetic clusters that contributes to a sustainable and efficient public health genomics-informed 
pathogen surveillance. ReporTree is implemented in python 3.8 and is freely available at https://​github.​com/​insap​
athog​enomi​cs/​Repor​Tree.
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Background
Whole-genome sequencing (WGS) is the method with 
the highest resolution to discriminate and classify micro-
organisms (either at inter- or intra-species level) based 
on their genetic relatedness. Therefore, the implemen-
tation of genomics-informed surveillance systems able 
to track the circulation of pathogens and monitor their 
clinical and epidemiologically relevant features is essen-
tial for infectious diseases’ prevention and control and for 
a more informed public health decision-making.

Several bioinformatics solutions for the analysis of 
WGS data are currently available, with most workflows 
for genetic clustering determination ending up in the 
same key output: a phylogenetic tree or a tree-like rep-
resentation. This often corresponds to a minimum span-
ning tree (MST) or a dendrogram reflecting the allele 
distances that result from a core-genome (cg) or whole-
genome (wg) multilocus sequence type (MLST) analysis 
(commonly used approach for bacterial pathogens [1]) 
or to a rooted tree reflecting the single-nucleotide poly-
morphism (SNP) distances that result from a multiple 
sequence alignment (e.g., as routinely applied for viruses 
[2], such as SARS-CoV-2 or monkeypox virus). Subse-
quently, the identification and characterization of epide-
miologically/biologically relevant genetic clusters (e.g., 
clusters of outbreak-related strains) often consists of the 
visual exploration of these (large) phylogenetic trees and 
associated metadata, taking advantage of robust visuali-
zation tools, such as those provided by PHYLOViZ [3], 
GrapeTree [4], Nextstrain [5], Microreact [6], or Taxo-
nium [7]. As such, this task can be time-consuming and 
difficult to reproduce.

In this context, there is a continuous scientific effort to 
automate the identification of clusters at specific genetic 
thresholds [4, 8–14]  and develop dynamic cluster/line-
age nomenclature systems, such as the Pango system for 
SARS-CoV-2 [15] or the bacteria-oriented “SNP address” 
of SnapperDB, the HierCC of Enterobase, the “HashID” 
of chewieSnake, or the INNUENDO nomenclature sys-
tem [9, 10, 14, 16]. Still, the field would benefit from the 
development of automated and more flexible tools that 
can be used for a wide variety of species, not only to 
facilitate the detection of genetic clusters at any (or all) 
distance thresholds of a tree but also to automatically 
characterize them based on the available metadata vari-
ables of interest.

Here, we present ReporTree, an automated surveil-
lance-oriented resource that allows diving into the com-
plexity of pathogen diversity to rapidly identify genetic 
clusters at any distance thresholds between samples and 
further characterize them according to any relevant epi-
demiological indicator in a reproducible manner. Repor-
Tree’s flexibility, reproducibility, and performance make 

it an innovative resource to enhance existing genomics 
surveillance systems, with potential benefits at multiple 
pathogen levels.

Implementation
ReporTree is a command-line tool implemented in 
python 3.8 that represents a flexible solution to obtain 
clustering information at any sample distance thresholds 
(partitions) either for species that require a cg/wgMLST 
analysis or for those that rely on SNPs/multiple sequence 
alignments for tree reconstruction. As shown in Fig.  1, 
ReporTree pipeline can be divided into three major steps:

Input processing
The methodology used for WGS data analysis varies from 
species to species. For this reason, ReporTree was care-
fully designed to accept multiple input formats (Table 1), 
being suitable for application in a wide variety of patho-
gens. Besides SNP/allele matrices and trees/dendrograms 
in Newick format, ReporTree accepts other input formats 
such as multiple sequence alignments, VCF files, or dis-
tance matrices. For instance, when a multiple sequence 
alignment is provided, ReporTree runs the script align-
ment_processing.py (also available in standalone mode) to 
clean the alignment according to the user’s specifications 
and to convert it into a SNP matrix that will be used in 
the remaining steps. Moreover, when sample genetic var-
iability is provided in the format of multiple VCF files or 
a list of mutations (variant sites), ReporTree uses vcf2mst 
[17] to do this format conversion. Besides the input trans-
formation, ReporTree’s input processing step can also 
involve the filtration of the input files to (i) remove sam-
ples with excess of missing data (e.g., samples with less 
than 95% of cgMLST loci called), (ii) remove informative 
sites/loci from the SNP/allele matrices (e.g., wgMLST loci 
called in less than 98% samples), and (iii) analyze a subset 
of samples fulfilling the metadata parameters specified by 
the user (e.g., samples from a given sequence type [ST] 
or year) (Fig. 1). This dynamic approach allows maximiz-
ing the loci/positions shared by a subset of samples, thus 
contributing to an increased resolution power and, con-
sequently, a higher confidence in the clustering analysis, 
aligned with a previously explored rationale [14].

Clustering
Cluster detection
Once the input files have been processed, ReporTree 
determines genetic clusters at all user-defined partition 
thresholds. When the input file corresponds to a phylo-
genetic tree, ReporTree runs the script partitioning_tree-
cluster.py (also available in standalone mode), which takes 
advantage of TreeCluster [8] to automatically determine 
the genetic clusters using one or several of the different 
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algorithms provided by this tool. For all the other input 
types (except for the distance matrix which can only be 
used with a hierarchical clustering (HC) approach), the 
user can choose between genetic clustering using a Gra-
peTree or a HC algorithm (Fig.  1). When a GrapeTree 
algorithm is requested (MSTreeV2 or goeBURST [4, 18]), 
ReporTree runs the script partitioning_grapetree.py (also 
available in standalone mode), which uses a modified 
version of this program [19], to obtain the MST and all 
the genetic clusters. When a HC algorithm is requested, 
ReporTree runs the script partitioning_HC.py (also 

available in standalone mode), which calculates pairwise 
Hamming distances with cgmlst-dists [20] and deter-
mines the genetic clusters using one or several of the 
different algorithms provided by SciPy [21]. The main 
output of each of these three clustering options is always 
a so-called partitions table with clustering information 
for each sample at all the distance thresholds and cluster-
ing algorithms requested by the user. Additionally, if the 
user provides a list of samples of interest (e.g., outbreak-
related or newly sequenced samples), ReporTree can 
automatically apply the above-mentioned dynamic 

Fig. 1  Schematic representation of the three main steps of ReporTree pipeline. Blue background highlights the alternative input types, green 
background highlights the alternative clustering modules, and pink background highlights the main outputs of ReporTree. Arrows indicate the 
alternative workflows for each input. Single asterisk, only output when a sequence alignment is provided. Double asterisks, exclusive output of MST 
and HC analysis. Triple asterisks, output of an optional step (comparing partitions) not represented in the figure
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approach by additionally running a high-resolution anal-
ysis for every cluster including samples of interest and/or 
for the subset of the “N” most closely related samples to 
the samples of interest.

As a complement, ReporTree can optionally identify 
ranges of distance thresholds associated with cluster 
stability, i.e., subsequent partition thresholds in which 
clustering composition is similar. This kind of analy-
sis can be useful for the user in future pathogen-specific 
nomenclature design. If requested by the user, ReporTree 
determines those “stable” regions by running a modi-
fied version of the code of the Comparing Partitions tool 
[22, 23]. This new version [24] takes as input the “parti-
tions table” with clustering information at all possible 
thresholds and assesses several metrics (Simpson’s Index 
of Diversity, Adjusted Rand and Adjusted Wallace coeffi-
cient) to compare the clustering information at consecu-
tive partitions (from “n + 1” to “n”). Based on a previously 
described approach [22, 25], ReporTree then uses the 
neighborhood Adjusted Wallace coefficient (nAWC) to 
ultimately determine regions of cluster stability [14, 26].

Cluster nomenclature system
ReporTree includes a nomenclature system that can act 
in two different but complementary ways, namely by (i) 
maintaining cluster nomenclature at any or all distance 
thresholds over time and (ii) providing a nomenclature 
code for each sample that combines clustering informa-
tion at different hierarchical levels. For the first approach, 
the intended usage is to provide as input a “partitions 
table” containing the cluster names at any or all dis-
tance thresholds of a previous ReporTree run, which will 
then be used to (re)name the clusters (for the respective 
thresholds) of the current run. With this approach, clus-
ters that do not change their composition or just acquire 
new samples (most expected scenario in a context of 

continuous surveillance) maintain their name. Moreover, 
if a previous cluster (e.g., cluster_1) is split into several 
new clusters in the new run, it will also keep the name by 
adding an additional suffix (e.g., cluster_1.1, cluster_1.2, 
etc.). New cluster names will be attributed in some situ-
ations, such as the merge of previous clusters, singletons 
that integrate clusters, and clusters exclusively com-
posed by new samples. ReporTree keeps track of all these 
changes in cluster composition and nomenclature in a 
comprehensive tabular output. To increase the flexibility 
of the nomenclature system, ReporTree also allows the 
users to change the regular expression for cluster nomen-
clature (i.e., starting with “cluster_” or “singleton_”) by 
other nomenclature of interest (e.g., ECDC EpiPulse clus-
ter ID, other official codes for outbreaks, genogroups, 
etc.), which will be kept afterwards.

Towards the simplification of the system, ReporTree 
can provide a short nomenclature code for each sample 
representing a combination of its clustering at different 
hierarchical levels, following the rationale behind “SNP 
address” and INNUENDO nomenclature systems [9, 
14]. For example, if “150,30,7” thresholds are indicated, a 
combining code of cluster names at these levels will be 
generated by the same order: C3-C2-C1. In ReporTree, 
these levels are not predefined by default but instead 
must be indicated by the user, making it suitable for 
application to multiple pathogens and easily adaptable to 
the dataset diversity. ReporTree also opens the possibil-
ity to add an extra layer of information to this code with 
the inclusion of information of a given metadata variable 
(e.g., C3-C2-C1-CountryA, if country is added to the 
code).

Summary report
The final step of ReporTree is the generation of summary 
reports with the metadata_report.py script (also available 

Table 1  Summary of ReporTree input types and respective clustering options, with indication of the main outputs provided by this 
tool

Inputs Metadata and (phylo)genetic data Clustering options Main outputs

- Multiple sequence alignment (e.g., core SNP 
alignment)
- SNP/allele matrix (e.g., derived from cg/wgMLST 
analysis)
- List of mutations or VCFs
- Pairwise distance matrix (only for HC)

Minimum spanning tree (using GrapeTree) - Genetic clusters at any (or all) possible distance 
threshold(s) (partitions table)
- Updated metadata table with clustering informa-
tion (and nomenclature)
- Summary reports with the statistics/trends for 
the derived genetic clusters
- Nomenclature history (record of changes in 
cluster composition and codes between runs)
- Summary reports and in-depth cluster analysis for 
samples of interest
- Count/frequency matrices for the derived genetic 
clusters or for any other indicated grouping variable
- Regions of cluster stability
- Newick tree (when applicable)

Hierarchical clustering (using several 
methods, such as single-linkage)

- Newick tree (e.g., SNP-scaled tree or dendrogram) Distance between leaves and root or 
between tree nodes (using TreeCluster)
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in standalone mode). Following the user’s specifications, 
this script can perform cluster characterization accord-
ing to any relevant epidemiological indicator present in 
the metadata (e.g., source, vaccination status, antibiotic 
resistance phenotype). Similar summary reports can be 
generated to assess the distribution of any (and as many) 
user-specified variables of interest (e.g., ST distribution 
by year). When the time variable “date” is provided in 
the metadata, ReporTree automatically infers other time 
units (ISO week and ISO year) and metrics (e.g., cluster 
timespan) relevant for surveillance purposes. Moreover, 
ReporTree can provide count/relative frequency reports 
for any grouping variable, such as the relative frequency 
of the different (sub-)lineages/clusters circulating in 
the country over time. Noteworthy, ReporTree allows 
requesting specific reports for sample(s) of interest, as 
well as the application of filters in the metadata table to 
select subsets of samples that will be included in the anal-
ysis/report (without the need of generating a new sub-
set metadata table). Moreover, when the “nomenclature 
code” was requested, summary reports of this variable 
are automatically provided, facilitating cluster tracking 
and characterization.

Besides these main reports (Fig.  1), ReporTree gener-
ates multiple parallel outputs that enable a fine explo-
ration of intermediate data (e.g., pairwise distance 
matrices, filtered alignments, trees/dendrograms), 
while rendering standardized formats that can be easily 
explored through multiple compatible visualization tools. 
For instance, users can interactively visualize and explore 
the ReporTree derived clusters by uploading an updated 
metadata table (with cluster information) together with 
the original/derived Newick MST/dendrogram to inter-
active tools, such as auspice.us [5], Microreact [6], or 
GrapeTree [4]. In particular, ReporTree outputs can also 
be uploaded to GrapeTree-GIS [27] to get an interactive 
visualization of a MST together with temporal and geo-
graphical data.

ReporTree is available as a github repository [28, 29] or 
as a docker image [30].

Results and discussion
Benchmarking
cg/wgMLST workflow
ReporTree benchmarking for the cg/wgMLST workflow 
was performed in a laptop [Intel Core i5(R)] with 16 GB 
of RAM using four different datasets of distinct food-
borne bacterial pathogens: Listeria monocytogenes (1874 
isolates [31]), Salmonella enterica (1434 isolates [32]), 
Escherichia coli (1999 isolates [33]), and Campylobacter 
jejuni (3076 isolates [34]). Each of these datasets consists 
of a collection of genome assemblies and respective allelic 
profiles of isolates with public sequencing data (deposited 

in SRA/ENA) that were carefully selected to cover a wide 
genetic diversity (assessed in terms of ST or serotype, 
depending on the species). Details on the methodology 
used for the isolates’ selection and dataset curation can 
be found in each dataset repository [31–34]. Briefly, the 
genome assemblies were performed with Aquamis v1.3.9 
[35] using default parameters. cg/wgMLST profiles were 
determined with chewBBACA v2.8.5 [36] using the 1748-
loci Pasteur cgMLST schema for L. monocytogenes [37], 
the 8558-loci INNUENDO wgMLST schema for S. enter-
ica, the 7601-loci INNUENDO wgMLST schema for E. 
coli, and the 2794-loci INNUENDO wgMLST schema 
for C. jejuni [14]. All these schemas were retrieved from 
chewie-NS [38] in May/June of 2022. As there was the 
need to determine a set of core loci for S. enterica, E. 
coli, and C. jejuni datasets, three sets of core loci were 
obtained for each species with ReporTree by setting dis-
tinct “--site-inclusion” thresholds: 0.95, 0.98, and 1.0 (i.e., 
only keep loci called in at least 95%, 98%, and 100% of the 
dataset samples). This resulted into cgMLST schemas 
with 3261, 3179, and 874 loci for S. enterica, 2826, 2704, 
and 465 loci for E. coli, and 1012, 987, and 29 loci for C. 
jejuni, at 0.95, 0.98, and 1.0 thresholds, respectively. As 
for each of these species, the values obtained at 0.95 and 
0.98 were relatively similar, and in the range of what was 
previously determined for other datasets of the same 
species [14], the benchmarking proceeded with the loci 
obtained at the 0.98 threshold.

To assess the time performance of ReporTree with dif-
ferent dataset sizes, for each species, we generated sub-
datasets of randomly selected isolates. The size of these 
sub-datasets varied between 200 and the maximum num-
ber of isolates of the respective dataset (in a 200-isolates 
step), with ten replicates being run per sub-dataset size. 
ReporTree was run for each replicate setting “--loci-
called 0.95” (i.e., including only samples with at least 95% 
of loci called) and requesting summary reports at all pos-
sible partition levels obtained with (i) GrapeTree analysis 
(MSTreeV2 algorithm) and (ii) HC analysis (single-link-
age algorithm). Additional runs were performed for each 
dataset using all isolates but requesting summary reports 
only for thresholds of “stability” regions (using nAWC, as 
described above) or at potential “outbreak” level (accord-
ing to previously described cutoffs) [14, 39].

As shown in Fig.  2A, for each dataset, ReporTree 
running time increases linearly with the number of 
samples, with GrapeTree MSTreeV2 algorithm taking 
slightly more time than HC single-linkage. Moreover, as 
expected, a higher number of loci also led to an increased 
running time. An interesting observation regards the 
comparison of S. enterica and E. coli results. Indeed, 
although the E. coli analysis involved a lower number 
of loci and only a slightly higher number of samples, its 
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Fig. 2  Results of ReporTree benchmarking of the cg/wgMLST workflow using datasets for four different species: L. monocytogenes (Lm), S. enterica 
(Se), E. coli (Ec), and C. jejuni (Cj). A ReporTree running times for the 10 replicates of each subset of L. monocytogenes (top left), S. enterica (top right), 
E. coli (bottom left), and C. jejuni (bottom right), where the flag “all” indicates subsets for which ReporTree obtained clusters at all possible thresholds, 
the flag “outbreak” indicates subsets for which ReporTree obtained clusters at potential outbreak level (7 allelic differences for L. monocytogenes, 14 
(0.43%) for S. enterica, 9 (0.34%) for E. coli, and 6 for (0.59%) for C. jejuni [14, 38]), and the flag “stability” indicates subsets for which ReporTree obtained 
clusters at all possible thresholds but only generated reports for those corresponding to stability regions. B Number of clusters generated at all 
possible distance thresholds for each dataset. C Comparison of running times when ReporTree obtained clusters at potential outbreak level
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running times were higher than those observed for S. 
enterica. This is related to a consistent higher number 
of clusters in E. coli than S. enterica dataset at the same 
threshold (Fig. 2B), showing that, as expected, the dataset 
diversity also impacts ReporTree running times. Overall, 
using the whole dataset, ReporTree identified and char-
acterized clusters determined at all possible distance 
thresholds with single-linkage and MSTreeV2 in around 
5 and 6 min for L. monocytogenes, 10 and 11 min for S. 
enterica, 18 and 20 min for E. coli, and 5 and 7 min for 
C. jejuni, respectively. Nevertheless, in a routine surveil-
lance scenario in which genetic clusters are obtained at a 
single or very small number of distance thresholds (e.g., 
thresholds for potential outbreak detection), ReporTree 
running times considerably decreased in all the species 
(also using the whole dataset) to less than 45 s with the 
HC algorithm and less than 1 min and 30 s with the Gra-
peTree algorithm (Fig. 2C), reinforcing its suitability for 
implementation in routine surveillance.

ReporTree represents an integrative workflow from a 
flexible input to a dynamic reporting of cg/wgMLST data 
(Fig. 1), with clustering being the central step in the anal-
ysis. As such, ReporTree offers widely used and validated 
algorithms (HC, goeBURST/MSTree, and MSTreeV2) 
for clustering purposes [4, 21]. Nevertheless, as alter-
native software for this step is also available, here, we 
compare ReporTree cgMLST clustering workflows with 
pHierCC [16], another commonly used method for rou-
tine surveillance and outbreak detection (implemented 
in Enterobase [40]). Our results (detailed in Additional 
file 1: Fig. S1.1 to S1.4) show that despite the conceptual 
differences of the tested algorithms, in general, the three 
clustering methods implemented in ReporTree yielded 
cluster number and composition highly congruent with 
pHierCC using the four foodborne bacteria datasets 
described above.

Additionally, in order to assess ReporTree perfor-
mance in a different context, such as the identification 
of main populations (or lineages) in a dataset, we have 
also compared ReporTree with PopPUNK, a k-mer-based 
clustering tool that relies on machine learning to clus-
ter genomes [41]. As recommended by the respective 
authors, PopPUNK was applied to assign the genomes 
of the E. coli dataset to genetic clusters using the exist-
ing E.  coli reference database (https://​www.​bacpop.​org/​
poppu​nk/, assessed on April 24, 2023) with the best fit-
ting model. PopPUNK identified 366 clusters, which 
were found to be highly congruent with ReporTree cg/
wgMLST clustering results at 642 (for MSTree and HC 
single-linkage) and 724 (for MSTreeV2) allele differences 
thresholds, with Adjusted Rand coefficients of 0.995 in 
both cases (Additional file  1: Fig. S2.1). These thresh-
olds fall within one of the stability regions identified by 

ReporTree, reinforcing the applicability of the nAWC 
component of ReporTree to detect low-resolution geno-
groups/lineages for longitudinal surveillance or popula-
tion structure evaluation.

Alignment‑based core‑SNP workflow
ReporTree benchmarking for the alignment-based SNP 
workflow was performed in a laptop [Intel Core i7(R)] 
with 16  GB of RAM using a publicly available diverse 
dataset of Mycobacterium tuberculosis [42, 43], which 
is a bacterial pathogen with a large genome (approxi-
mately 4.4 Mb) for which such a workflow is starting to 
be routinely applied for surveillance. As input for this 
benchmarking, we used a filtered alignment compris-
ing the maximum number of informative sites (a total 
of 88,562 nucleotide sites with at least one mutation 
in a given sequence) observed in the comparison of 
1788 M. tuberculosis genomes (Fig. 3). Similar to the cg/
wgMLST workflow, we generated sub-datasets of ran-
domly selected isolates with between 200 and the maxi-
mum number of isolates in a 200-isolates step, with ten 
replicates per sub-dataset size, and requesting summary 
reports at all possible partition levels with (i) GrapeTree 
analysis (MSTreeV2 algorithm) and (ii) HC analysis (sin-
gle-linkage algorithm). Additional runs with all isolates 
and requesting summary reports at potential transmis-
sion chain resolution (12 SNPs) and at stable regions 
were also performed. Running time was assessed using 
“--site-inclusion” of 1.0 (true core alignment, i.e., only 
ATCG) and 0.95 (core alignment tolerating 5% of unde-
fined nucleotides per site), as a way to simulate two likely 
applications of ReporTree. The first one more likely suits 
clustering of large and diverse datasets, while the second 
one is more likely to be applied when fine resolution is 
needed (e.g., to enhance the resolution in clusters identi-
fied with less discriminatory genotyping methods).

ReporTree running time in the alignment-based core 
SNP analysis increases with the number of samples, 
linearly for “site-inclusion 1.0” and exponentially for 
“site-inclusion 0.95” (Fig.  3A). The considerably higher 
running times observed in “site-inclusion 0.95” were 
expected as this workflow requires a demanding clean-
ing step in which each variant site in the alignment has 
to be screened for the amount of missing data. We have 
also assessed how the time performance correlates with 
the number of informative sites used for clustering. In 
the “site-inclusion 1.0” workflow, for the same number of 
samples, having more variant sites has a minimal impact 
on time (Fig. 3B). On the other hand, in the “site-inclu-
sion 0.95”, time is a function of both the number of sam-
ples and number of sites in the sense that, as expected, 
adding more samples introduces more variant sites to 
be screened for missing data. In summary, the running 

https://www.bacpop.org/poppunk/
https://www.bacpop.org/poppunk/


Page 8 of 12Mixão et al. Genome Medicine           (2023) 15:43 

times were satisfactory for the main purpose of each con-
dition, with the “site-inclusion 1.0” workflow taking less 
than 6 min in all tested situations and the “site-inclusion 
0.95” workflow taking less than 10 min for datasets with 
less than 400 isolates (Fig. 3A). Of note, given the main 
goal of this benchmarking (considerably scale up the 
number of variant sites for clustering when comparing 
with the cg/wgMLST workflow), we used an alignment 
containing the maximum number of informative sites 

in the dataset. In a simulated scenario in which Repor-
Tree would instead take the full genome alignment (i.e., 
4.4 Mb) as input, as removing gaps and non-variable sites 
is less demanding than handling the “site-inclusion” argu-
ment, the time performance with the current dataset 
would range between 3 and 22 min for a “site-inclusion 
1.0” and 12  min and 4  h and 15  min for “site-inclusion 
0.95”, depending on the dataset size (200 and 1788 iso-
lates, respectively).

Fig. 3  Results of ReporTree benchmarking of the alignment-based core SNP workflow using a multi-sequence alignment of 1788 M. tuberculosis 
samples and 88,562 informative nucleotide positions. A ReporTree running times for the 10 replicates of each sample subset with a site inclusion of 
1.0 (left) and 0.95 (right), where the flag “all” indicates subsets for which ReporTree obtained clusters at all possible thresholds, the flag “single_thr” 
indicates subsets for which ReporTree obtained clusters at potential “transmission chain” level (12 SNP differences), and the flag “stability” indicates 
subsets for which ReporTree obtained clusters at all possible thresholds but only generated reports for those corresponding to stability regions. B 
ReporTree running times according to the number of variant sites obtained after alignment cleaning and that were used for clustering. Technical 
notes: 1. The “site-inclusion” argument defines informative nucleotide sites to be kept in the alignment based on the minimum proportion of 
samples per site without missing data (e.g., 1.0 reflects a “true” core alignment with all variant sites having exclusively ATCG, and 0.95 reflects a core 
alignment tolerating 5% of undefined nucleotides per site). 2. The M. tuberculosis dataset used in this benchmarking is described at [42]
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The alignment-based core SNP workflow available in 
ReporTree is designed to facilitate the routine assessment 
of bacteria genetic relatedness at different levels of res-
olution, either as an alternative or a complement to cg/
wgMLST data (e.g., to increase the resolution at outbreak 
level). As demonstrated in the previous benchmarkings, 
ReporTree relies on widely used and validated methods 
that ensure input flexibility, clustering reliability, and 
turn-around times compatible with routine purposes. 
Still, core SNP-based analyses are also often applied for 
the identification of main bacterial populations (or lin-
eages) towards the reconstruction of pathogen evolu-
tionary history or species-level population structure. As 
such, we sought to assess how ReporTree-derived clus-
tering compares with the lineages/populations obtained 
through a traditional typing method and also through 
a Bayesian analysis of population structure (BAPS). To 
this end, we not only took advantage of the lineage infor-
mation of the M. tuberculosis dataset (inferred using 
Tb-profiler v4.4.1. [44]) but also ran FastBAPS [45] on 
its multi-sequence alignment using default parameters 
(details in Additional file  1). Similar to the cg/wgMLST 
benchmarking (previous subsection), clusters were iden-
tified at all possible thresholds with ReporTree using 
MSTreeV2 method. We found that the levels with highest 
congruence either with M. tuberculosis main lineages or 
with FastBAPS fall within ReporTree-determined stabil-
ity regions for this dataset (details in Additional file  1), 
again demonstrating the alternative utility of ReporTree 
to get insight on bacterial population structure.

Reproducing a large‑scale study on genetic clustering 
and linkage to antibiotic resistance data in Neisseria 
gonorrhoeae
Our team has recently performed an extensive genom-
ics analysis of the bacterial pathogen Neisseria gonor-
rhoeae [46]. In this study, 3791 N. gonorrhoeae genomes 
from isolates collected across Europe were analyzed 
with a cgMLST approach. Genetic clusters were deter-
mined with the goeBURST algorithm implemented in 
PHYLOViZ [3, 12, 18, 47] for all possible allelic distance 
thresholds (partitions). Cluster concordance between 
subsequent distance thresholds was assessed with the 
nAWC in order to determine regions of cluster stabil-
ity [14, 22, 25, 26] that were used for nomenclature pur-
poses and identification of genogroups. The association 
between metadata and genetic clusters was then per-
formed by time-consuming table handling with a spread-
sheet program. This corresponded to a non-automated 
workflow and, in the particular case of the cluster congru-
ence analysis and the integration of genetic and clinically 
or epidemiologically relevant data, it represented a highly 
demanding process difficult to be applied in real-time 

pathogen surveillance. As such, to validate ReporTree 
and demonstrate how it can enhance bacterial pathogens’ 
surveillance and research, we used the same dataset as in 
the previous study [46] and attempted to reproduce the 
main study outputs with this tool. As shown in Repor-
Tree’s Wiki [48], using the allele matrix with 822 loci [49] 
and the associated metadata (available in Supplemen-
tary material 1 of Pinto et  al. [46]) as input, ReporTree 
automatically identified the genetic clusters at all pos-
sible partition thresholds of the generated MST, identi-
fied the same regions of cluster stability, and replicated 
the hierarchical nomenclature applied by Pinto et al. [46]. 
Moreover, it provided an updated metadata table with 
clustering information at the first partition of each stabil-
ity region and of the derived nomenclature code, which 
could be used as input for visualization in GrapeTree [4]. 
Furthermore, summary reports with statistics/trends 
associated with each genetic cluster of low and high lev-
els of stability (i.e., 40 allele differences at the lower level 
and 79 allele differences at the higher level, similarly to 
what was found by Pinto et al.) were reported. Of note, 
the high level of stability identified by ReporTree matches 
the lineages identified by PopPUNK with the same data-
set (details in Additional file  1: Fig. S2.2), supporting 
that this resolution level reflects N. gonorrhoeae popula-
tion structure. Finally, ReporTree was able to associate 
and report the distribution of genetic determinants of 
antimicrobial resistance in N. gonorrhoeae for the differ-
ent genetic clusters. Importantly, this example allowed a 
clear validation of the tool by rigorously reproducing the 
data presented, for example, in Figure 1a, 1b and 3 and in 
Tables 1 and 2 of the previous publication [46]. All these 
outputs (and additional ones) are available for consulta-
tion at ReporTree github repository [28]. Noteworthy, 
this proof of concept was made with a single ReporTree 
command line that ran for approximately 2 min and 2 s in 
a laptop [Intel Core i5(R)] with 16 GB of RAM.

ReporTree and its application to genomics‑informed 
routine surveillance (e.g., SARS‑CoV‑2) and outbreak 
detection (e.g., Listeria monocytogenes)
ReporTree’s versatility and broad functionalities make it 
suitable for different applications and integration in dif-
ferent research or surveillance contexts (from the usage of 
specific functionalities to the whole pipeline implementa-
tion). Here, we provide two examples of the integration 
of this tool, at different scales, in established workflows of 
genomic surveillance.

Genomics-informed surveillance of SARS-CoV-2 has 
had an important role in worldwide public health and 
political decision-making in the last 2 years. In Portugal, 
weekly reports of nationwide sequencing surveys are pro-
vided to public health authorities and the general public 
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describing important indicators and trends of the evolu-
tion and geotemporal spread of the virus [50]. Therefore, 
after ReporTree validation, we implemented this tool 
in the routine genomics surveillance of SARS-CoV-2 in 
the country with the objective of speeding up the asso-
ciation between genomic and epidemiological data and 
the generation of the surveillance-oriented reports. For 
instance, besides its comprehensive usage for calculating 
the relative frequency of variants of concern (VOCs) at 
regional and national levels, ReporTree is often applied 
to identify clusters of high-closely related viruses (e.g., 
using TreeCluster [8] max-clade or avg-clade models at 
high resolution levels) that may represent local transmis-
sion networks or even super-spreading events. Examples 
of ReporTree application in the context of SARS-CoV-2 
genomic epidemiology are provided at ReporTree’s Wiki 
[48]. To further demonstrate its utility and performance 
for this purpose, we ran ReporTree over the public Tax-
onium (https://​cov2t​ree.​org/) [7] tree with more than 6 
million SARS-CoV-2 sequences (details in Additional 
file 1). ReporTree is able to cut this massive tree, identify-
ing all clusters of close-related sequences (e.g., avg-clade 
at 2 SNP differences), and extract valuable information 
(timespan, country dispersion, etc.) for the clusters iden-
tified in a given lineage, country, or period of time.

Regarding the full implementation, one of the most 
direct and intuitive applications is the analysis of cg/
wgMLST data for outbreak investigation, namely for 
foodborne bacterial pathogens (as shown in the Bench-
marking section), as this subtyping method delivers 
sufficiently high-resolution and epidemiological concord-
ance [51]. In ReporTree’s Wiki [48], it is provided a sim-
ple simulated example in which, with a single command 
line, ReporTree builds an MST from cgMLST data and 
automatically extracts and reports genetic clusters of L. 
monocytogenes at high-resolution levels commonly used 
for outbreak detection (≤ 4 and ≤ 7 allelic differences, 
[39]), keeping the cluster nomenclature of the previous 
run, as routinely performed in Portugal. These two exam-
ples show that ReporTree is a useful asset to rapidly gen-
erate summary reports with key data (pathogen genetic 
clusters) and statistics/trends for routine surveillance and 
outbreak investigation.

Conclusions
ReporTree represents an automated and flexible pipe-
line that can be used for a wide variety of species and 
that facilitates the detection of genetic clusters and their 
linkage to epidemiological data, in a concept aligned 
with “One Health” perspectives. Here, we presented the 
proof of concept of this tool, showing its ability to quickly 
report a comprehensive WGS-based genogroup assign-
ment for N. gonorrhoeae, based on the identification of 

the discriminatory genetic thresholds reflecting cluster 
stability, and the rapid correlation of these genogroups 
(representing main circulating lineages) with any data of 
interest, such as antimicrobial resistance data. Further-
more, we have shown how its flexibility contributed to 
speed up SARS-CoV-2 and L. monocytogenes genomics-
informed surveillance in Portugal, facilitating and accel-
erating the production of surveillance-oriented reports. 
ReporTree benchmarking ultimately demonstrated that 
this tool can be smoothly implemented in routine surveil-
lance bioinformatics workflows, with negligible computa-
tional and time costs. Although ReporTree is currently 
available as a command line tool, this resource can easily 
be integrated in start-to-end platforms for genomics/epi-
demiological analysis (for instance, it will be soon inte-
grated in the COHESIVE Information System [52] and 
INSaFLU platform [53]), thus contributing to a sustain-
able and efficient public health genomics-informed path-
ogen surveillance.

Availability and requirements
Project name: ReporTree.

Project home page: https://​github.​com/​insap​athog​
enomi​cs/​Repor​Tree

Project Wiki: https://​github.​com/​insap​athog​enomi​cs/​
Repor​Tree/​wiki

Record of the home page and Wiki at the time of publi-
cation: https://​doi.​org/​10.​5281/​zenodo.​77726​40

Operating system(s): Unix.
Programming language: Python 3.8
Other requirements: Biopython 1.77, Pandas 1.1.3, 

Ete3, TreeCluster 1.0.3, GrapeTree 2.1, cgmlst-dists, and 
vcf2mst.

License: GPL 3.0
Any restrictions to use by non-academics: none.
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