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Abstract

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus 
responsible for the coronavirus disease 2019 pandemic, is capable of infecting a variety of 
wildlife species. Wildlife living in close contact with humans are at an increased risk of SARS-
CoV-2 exposure and, if infected, have the potential to become a reservoir for the pathogen, 
making control and management more difficult. The objective of this study is to conduct SARS-
CoV-2 surveillance in urban wildlife from Ontario and Québec, increasing our knowledge of the 
epidemiology of the virus and our chances of detecting spillover from humans into wildlife.

Methods: Using a One Health approach, we leveraged activities of existing research, 
surveillance and rehabilitation programs among multiple agencies to collect samples from 776 
animals from 17 different wildlife species between June 2020 and May 2021. Samples from 
all animals were tested for the presence of SARS-CoV-2 viral ribonucleic acid, and a subset 
of samples from 219 animals across three species (raccoons, Procyon lotor; striped skunks, 
Mephitis mephitis; and mink, Neovison vison) were also tested for the presence of neutralizing 
antibodies.

Results: No evidence of SARS-CoV-2 viral ribonucleic acid or neutralizing antibodies was 
detected in any of the tested samples.

Conclusion: Although we were unable to identify positive SARS-CoV-2 cases in wildlife, 
continued research and surveillance activities are critical to better understand the rapidly 
changing landscape of susceptible animal species. Collaboration between academic, public 
and animal health sectors should include experts from relevant fields to build coordinated 
surveillance and response capacity.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global 
coronavirus disease 2019 (COVID-19) pandemic and has been maintained through human-to-human 
transmission. However, humans are not the only species susceptible to infection. Over the course of 
the current pandemic, a range of domestic and wild animal species have been reported to either be 
naturally infected with SARS-CoV-2 or susceptible to the virus in experimental infections (1–4). As of 
April 30, 2022, 36 countries have reported positive SARS-CoV-2 cases in 23 different animal species 
to the World Organisation for Animal Health (5). Other species have been identified as potential 
hosts based on sequence analysis of the host cell receptor of SARS-CoV-2, angiotensin 1 converting 
enzyme 2 and predicted binding affinity (6,7).
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Many wild animal species, such as raccoons, skunks and bats, 
thrive in the ecological overlap with humans and are thus at 
an increased risk of being exposed to SARS-CoV-2 (8). Several 
peri-domestic species have been experimentally shown to 
become infected with and shed SARS-CoV-2 (9,10). SARS-CoV-2 
infection has also been reported in wild or free-ranging animals 
that have been naturally exposed, including American mink 
(Neovison vison) in Spain (11) and, more recently, white-tailed 
deer (Odocoileus virginianus) in multiple locations across North 
America (12–16). In Ontario, this includes identification of a 
probable case of deer-to-human viral transmission (16). Infection 
in animals can result in mild to severe symptoms of respiratory 
disease up to and including death via interstitial pneumonia 
(e.g. mink) (17,18). Other species do not show clinical signs of 
infection (e.g. skunks) (9,10) or show only mild and transient 
symptoms in some individuals, such as elevated temperature 
(e.g. white-tailed deer) (19).

The concept of One Health recognizes that human and animal 
health are interdependent (20). The spillover of virus from 
humans or domestic animals into wildlife is concerning not only 
due to the possible deleterious effects on wildlife, but because 
these wild populations have the potential to act as reservoirs 
for SARS-CoV-2. Pathogens that have an animal reservoir are 
inherently more difficult to control and the spread of SARS-
CoV-2 through animal populations could further contribute 
to the development of variants of concern (VoCs), potentially 
undermining the efficacy of countermeasures such as antivirals 
and vaccines (21,22). As such, there have been calls for increased 
surveillance at the human-wildlife interface (23). Urban areas 
around the world have been a particular area of concern and 
focus (24–26). The higher density of both human and some peri-
urban wildlife species populations in urban centres can lead to 
more frequent human-animal contact and increased potential 
for disease transmission. Additionally, people who have close 
contact with wildlife, such as biologists, rehabilitators, and 
hunters and trappers, may be at higher risk of being exposed 
to the virus and of facilitating its spread among wildlife. The 
impact of SARS-CoV-2 infection on wildlife health is not fully 
understood. Early detection of any spillover is therefore critical 
to preventing and addressing these concerns.

Given the risk of reverse-zoonotic SARS-CoV-2 transmission and 
our lack of knowledge of the virus in local wildlife, there was an 
urgent need to elucidate the epidemiology of the virus at the 
human-wildlife interface to help wildlife management and public 
health officials better communicate risk and plan management 
strategies. We therefore conducted SARS-CoV-2 surveillance 
in wildlife across Ontario and Québec, with a major focus on 
the southern regions of both provinces. These areas have high 
human population densities and include major urban centres 
such as Toronto and Montréal. Between spring 2020 and spring 
2021, incidences of COVID-19 peaked in Montréal and the 
surrounding regions in early January 2021, with rates exceeding 
400 cases per 100,000 population in Montréal and Laval (27). 

Incidences between spring 2020 and spring 2021 in the Greater 
Toronto Area peaked in April 2021, with case rates in the City 
of Toronto and Peel also exceeding 400 per 100,000 population 
(27).

Methods

Many experts have recommended a One Health approach for 
animal SARS-CoV-2 testing, which balances concerns for both 
human and animal health and is based on knowledge of experts 
in both fields (28,29). As such, our work was conducted through 
consultation and cooperation among a wide variety of agencies: 
the Public Health Agency of Canada; the Ontario Ministry of 
Northern Development, Mines, Natural Resources and Forestry 
(NDMNRF); le Ministère des Forêts, de la Faune et des Parcs du 
Québec; the Canadian Wildlife Health Cooperative (CWHC); 
the Ontario Ministry of Agriculture, Food, and Rural Affairs; 
the Canadian Food Inspection Agency; the Western College of 
Veterinary Medicine; the Granby Zoo; the National Microbiology 
Laboratory (NML) of the Public Health Agency of Canada; and 
Sunnybrook Research Institute. All samples for testing were 
collected between June 2020 and May 2021 through pre-existing 
partnerships or over the course of other research, surveillance or 
rehabilitation work (Table 1).

Raccoons and skunks
Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) 
are peri-domestic species that are good candidates for reverse-
zoonotic disease surveillance due to their high density in urban 
areas and their frequent close contact with people, pets and 
refuse. They are also subject to ongoing rabies surveillance 
operations in both Ontario and Québec, making them easy to 
sample. In Ontario, wildlife rabies surveillance and testing are 
conducted by the NDMNRF on roadkill, animals found dead for 
other reasons, and wildlife that were sick or acting strangely. 
Submissions are received mainly from southwestern Ontario, 
and most animals received by the program and subsequently 
sampled and tested for SARS-CoV-2 came from urban centres 
within this region or had a case history of close contact with 
people (Figure 1). In Québec, a similar wildlife rabies surveillance 
program is coordinated by le Ministère des Forêts, de la Faune 
et des Parcs du Québec and testing and other post-mortem 
examinations are performed by the Québec CWHC. As was 
the case in Ontario, animals sampled by the Québec CWHC for 
SARS-CoV-2 testing came mainly from urban areas (Figure 1). 
The Ontario CWHC laboratory also contributed a small number 
of raccoon and skunk samples from animals submitted to them 
for post-mortem examination. Carcasses were sampled using a 
combination of oral, nasal, and rectal swabs, respiratory tissue 
and intestinal tissue (Table 1). Swabs were stored in individual 
2 mL tubes with ~1 mL of universal transport medium (UTM; 
Sunnybrook Research Institute) and 30–60 mg tissue samples 
were stored dry in tubes.
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Table 1: Metadata for 776 animals from Ontario and Québec screened for severe acute respiratory syndrome 
coronavirus 2

Species Sampling 
agency

Sample 
source

Sample 
location(s)

Dates of 
collection

Number of 
individuals 
sampled

Types of 
samples tested

Test 
performeda

Raccoon (Procyon 
lotor)

CWHC Rabies 
surveillance 
(Québec 
samples), post-
mortem exam

Southern Ontario, 
Southern Québec

Aug 2020–Feb 
2021

11 Respiratory tissue PCR

Southern Québec Nov–Dec 2020 68 Respiratory tissue, 
rectal swab

Southern Ontario, 
Southern Québec

Oct 2020–June 
2021

15 Respiratory and 
intestinal tissue

Southwestern 
Québec

Jan 2021 3 Nasal swab

Southern Québec Jan–June 2021 54 Nasal and rectal 
swabs

NDMNRF 
and 
CWHC

Rabies 
surveillance, 
post-mortem 
exam

Hamilton, Ontario Dec 2020 1 Oral and rectal 
swabs, respiratory 
and intestinal 
tissue

NDMNRF Rabies 
surveillance

Southwestern 
Ontario

June 2020–Jan 
2021

100 Oral and rectal 
swabs

Rabies 
seroprevalence 
study

Oakville, Ontario Sept–Oct 2020 141 Oral and rectal 
swabs

Sera Antibody

Total raccoons sampled 393 -

Striped skunk 
(Mephitis mephitis)

CWHC Rabies 
surveillance 
(Québec 
samples), post-
mortem exam

Southern Québec Jan–June 2021 66 Nasal swab PCR

Southern Ontario, 
Southern Québec

July–Dec 2020 55 Respiratory tissue

Southern Ontario, 
Southwestern 
Québec, Saint-
Félicien, Québec

Oct 2020–Apr 
2021

9 Respiratory and 
intestinal tissue

NDMNRF Rabies 
surveillance, 
rabies 
seroprevalence 
study

Southwestern 
Ontario

Sept 2020–May 
2021

104 Oral and rectal 
swabs

Rabies 
seroprevalence 
study

Oakville, Ontario Sept–Oct 2020 36 Oral and rectal 
swabs

Sera Antibody

Total skunks sampled 270 -

American mink 
(Neovision vison)

CWHC Post-mortem 
exam

Thornhill, Ontario July 2020 1 Respiratory tissue PCR

NDMNRF Registered fur 
harvesters, 
roadkill, rabies 
surveillance

Southern Ontario Fall 2020–
Spring 2021

42b Oral and rectal 
swabs, lung and 
intestinal tissue

Cardiac blood or 
Nobuto strips

Antibody

Total mink sampled 43 -

Big brown bat 
(Eptesicus fuscus)

Granby 
Zoo

Rehabilitation 
program

Southwestern 
Québec

Nov 2020–Mar 
2021

15 Oral swabs PCR

2 Guano

15 Oral swabs and 
guano

Total big brown bats sampled 32 -

Hoary bat (Lasiurus 
cinerus)

CWHC Post-mortem 
exam

Etobicoke, Ontario Dec 2020 1 Respiratory and 
intestinal tissue

PCR

American marten 
(Martes americana)

CWHC Post-mortem 
exam

Sainte-Anne-de-
Bellevue, Québec

Nov 2020 1 Respiratory and 
intestinal tissue

PCR
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Species Sampling 
agency

Sample 
source

Sample 
location(s)

Dates of 
collection

Number of 
individuals 
sampled

Types of 
samples tested

Test 
performeda

Fisher (Pekania 
pennanti)

CWHC Post-mortem 
exam

Western Québec May 2021 2 Respiratory and 
intestinal tissue

PCR

American black 
bear (Ursus 
americanus)

CWHC Post-mortem 
exam

Northern Ontario Sept 2020 2 Respiratory tissue PCR

Killaloe, Ontario Oct 2020 1 Respiratory and 
intestinal tissue

Total black bears sampled 3 -

Atlantic white-
sided dolphin 
(Lagenorhynchus 
actus)

CWHC Post-mortem 
exam

Carleton-sur-Mer, 
Québec

June 2021 1 Intestinal tissue PCR

Sept-Îles, Québec March 2021 1 Respiratory and 
intestinal tissue

Total Atlantic white-sided dolphins sampled 2 -

Harbour porpoise 
(Phocoena 
phocoena)

CWHC Post-mortem 
exam

La Montée, 
Québec

Dec 2020 1 Respiratory and 
intestinal tissue

PCR

Harbour seal (Phoca 
vitulina)

CWHC Post-mortem 
exam

Matane, Québec Dec 2020 1 Respiratory and 
intestinal tissue

PCR

Coyote (Canis 
latrans)

CWHC Post-mortem 
exam

Saint-Alexandre-
d’Iberville, Québec

April 2021 1 Respiratory and 
intestinal tissue

PCR

Eastern wolf (Canus 
lupus lycaon)

CWHC Post-mortem 
exam

Algonquin 
Provincial Park, 
Ontario

Oct 2020 1 Respiratory tissue PCR

Southern and 
central Ontario

4 Respiratory and 
intestinal tissue

Total eastern wolves sampled 5 -

Grey fox (Urocyon 
cinereoargenteus)

CWHC Post-mortem 
exam

Châteauguay, 
Québec

Dec 2020 1 Respiratory and 
intestinal tissue

PCR

Red fox (Vulpes 
vulpes)

CWHC Post-mortem 
exam

Mercier, Québec Jan 2021 1 Nasal and rectal 
swabs

PCR

Southwestern 
Québec

Nov–Dec 2020 4 Respiratory tissue, 
rectal swabs

Southern, Ontario July–Oct 2020 5 Respiratory tissue

Dunham, Québec Dec 2020 1 Respiratory and 
intestinal tissue

Total red foxes sampled 11 -

Virginia opossum 
(Didelphis 
virginiana)

CWHC Post-mortem 
exam

Bolton-Est, 
Québec

June 2021 1 Nasal and rectal 
swabs

PCR

Southern Ontario July–Oct 2020 2 Respiratory tissue

Southwestern 
Ontario, Saint-
Jean-sur-Richelieu, 
Québec

Oct 2020, 
March 2021

3 Respiratory and 
intestinal tissue

Total Virginia opossums sampled 6 -

White-tailed 
deer (Odocoileus 
virginianus)

CWHC Post-mortem 
exam

London, Ontario, 
Southwestern 
Québec

Oct–Dec 2020 3 Respiratory and 
intestinal tissue

PCR

Abbreviations: CWHC, Canadian Wildlife Health Cooperative; NDMNRF, Northern Development, Mines, Natural Resources and Forestry; PCR, polymerase chain reaction; -, not applicable
a All PCR testing was performed at Sunnybrook Research Institute and all antibody testing was performed at the Public Health Agency of Canada’s National Microbiology Laboratory
b Due to the condition of the carcasses, we were unable to collect lung tissue or cardiac blood from one individual, cardiac blood from a further two individuals and rectal swabs from two individuals. In 
cases where we could not collect cardiac blood, we instead submitted a Nobuto strip soaked in fluid from the chest cavity for antibody testing

Table 1: Metadata for 776 animals from Ontario and Québec screened for severe acute respiratory syndrome 
coronavirus 2 (continued)
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Additionally, samples were collected from live raccoons and 
skunks during an annual seroprevalence study conducted by 
the NDMNRF in Oakville, Ontario to assess the effectiveness 
of rabies vaccine baiting (NDMNRF Wildlife Animal Care 
Committee Protocol #358). Animals were captured in live traps 
and transported to a central processing station where they 
were anaesthetized. Oral and rectal swabs were collected for 
polymerase chain reaction (PCR) testing. Blood was drawn from 
the brachiocephalic vein and 0.2–1.0 mL of sera was collected 
for antibody testing. Following reversal and successful recovery, 
animals were returned to their point of capture and released.

Mink
Instances of SARS-CoV-2 infection in mink have already been 
identified in multiple countries, including Canada, and infected 
farmed mink have proven capable of passing the virus to naive 
conspecifics, humans and companion animals (17,30–33). At the 
time of writing no mink farm outbreaks have been reported in 
Ontario or Québec, but mink farms in Ontario have previously 
been shown to act as points of infection for other viruses 
(e.g. Aleutian mink disease), which can spread to wild mink 
populations (34).

The majority of mink carcasses we sampled for SARS-CoV-2 
testing were submitted to the NDMNRF by licensed fur 
harvesters through a collaboration with the Ontario Fur 
Managers Federation. The NDMNRF staff collected oral and 
rectal swabs, lung tissue and intestinal tissue from the carcasses, 
as well as cardiac blood samples via cardiac puncture for 
antibody testing. If blood could not be obtained from the heart, 
fluid was collected from the chest cavity on a Nobuto filter strip 
(Advantec MFS, Inc, Dublin, California, United States [US]). 
Nobuto strips were allowed to air dry, then placed in individual 
coin envelopes.

Big brown bats
Bats are known carriers of coronaviruses (35–37). As such, 
concerns have been raised over the possible susceptibility of 
North American bats to SARS-CoV-2 (38). Species such as the big 
brown bat (Eptesicus fuscus) frequently roost in buildings, which 
brings them into close contact with people and increases the 
likelihood of SARS-CoV-2 exposure. Big brown bat oral swabs 
and guano samples for SARS-CoV-2 PCR testing were collected 
by staff at the Granby Zoo, which runs a rehabilitation program 
over the winter to care for bats that have been disturbed during 
their hibernation. Guano samples were stored dry in 2 mL tubes.

Other species
Other samples for SARS-CoV-2 PCR testing were obtained 
opportunistically through the Ontario and Québec regional 
CWHC laboratories, which receive a wide variety of wildlife 
species for post-mortem examination (Table 1). Animals were 
selected for sampling based on potential for SARS-CoV-2 
infection. This could be due to urban habitat, human contact or 
to predicted species susceptibility based on prior research. The 
number and type of samples collected varied by carcass and 
depended on carcass condition (Table 1).

Ribonucleic acid extraction
Ribonucleic acid (RNA) extraction and PCR testing were 
performed at the Sunnybrook Research Institute in Toronto, 
Ontario. All swab, tissue and guano samples were stored at 
-80°C prior to testing. For oral, rectal or nasal swab samples, 
RNA extractions were performed using 140 µL of sample via the 
QIAmp viral RNA mini kit (Qiagen, Mississauga, Ontario) or the 
Nuclisens EasyMag using Generic Protocol 2.0.1 (bioMérieux 
Canada Inc., St-Laurent, Québec) according to manufacturer’s 
instructions. The RNA from guano samples (80 mg) were 
extracted via the QIAmp viral RNA mini kit and eluted in 40 µL in 
containment level 3 at the University of Toronto. Tissue samples 
were thawed, weighed, minced with a scalpel, and homogenized 
in 600 µL of lysis buffer using the Next Advance Bullet Blender 
(Next Advance, Troy, New York, US) and a 5 mm stainless steel 
bead at 5 m/s for 3 minutes. The RNA from 30 mg tissue samples 
was extracted via the RNeasy Plus Mini kit (Qiagen, Mississauga, 
Ontario) or the Nuclisens EasyMag using Specific Protocol B 
2.0.1; RNA was eluted in 50 µL. All extractions were performed 
with a positive and negative control. Extraction efficiency 
between kits was assessed through comparison of positive 
extraction controls.

Severe acute respiratory syndrome coronavirus 
2 polymerase chain reaction analysis

Real-time polymerase chain reaction (RT-PCR) was performed 
using the Luna Universal Probe One-Step RT-qPCR kit (NEB). 
Two gene targets were used for SARS-CoV-2 RNA detection: 
the 5’ untranslated region (UTR) and the envelope (E) gene (39). 
This assay was adapted from the Shared Hospital Labs from The 
Research Institute of St. Joseph Hamilton for use in animals. The 
cycling conditions were as follows: one cycle of denaturation 

Figure 1: Original locations of animals submitted for 
severe acute respiratory syndrome coronavirus 2 testing 
June 2020–May 2021 (N=776)
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at 60°C for 10 minutes then 95°C for 2 minutes followed by 
44 amplification cycles of 95°C for 10 seconds and 60°C for 
15 seconds. Quantstudio 3 software (Thermo Fisher Scientific 
Inc., Waltham, Massachusetts, US) was used to determine cycle 
thresholds (Ct). All samples were run in duplicate and samples 
with Cts less than 40 for both gene targets in at least one 
replicate were considered positive.

Antibody testing
Antibody testing was performed on cardiac blood, chest cavity 
fluid and serum samples at the NML in Winnipeg, Manitoba. All 
samples were stored at -20°C prior to testing. Cardiac blood 
samples were collected onto Nobuto filter strips by saturating 
the length of the strip with 100 µl of blood. To obtain the 1:9 
dilution required for testing, saturated Nobuto strips were cut 
into 4–5 pieces and placed into a 2 mL tube containing 360 µl 
phosphate buffered saline pH 7.4 containing 0.05% Tween 20 
and eluted overnight at 4°C. Nobuto strips collected from chest 
cavity fluid were processed in the same way, whereas serum 
samples were diluted 1:9 with Sample Dilution Buffer. Samples 
were mixed by vortexing and tested using the GenScript 
cPass™ SARS-CoV-2 Neutralization Antibody Detection Kit 
(GenScript US, Inc. Piscataway, New Jersey, US) according to the 
manufacturer’s protocol.

Briefly, 60 µl of a sample was added to 60 µl HRP-conjugated 
RBD solution and incubated at 37°C for 30 minutes. A 100 µl 
aliquot of the mixture was transferred to the ELISA microwell 
test plate and incubated at 37°C for 15 minutes. Microwells 
were washed four times with 260 µl wash buffer then 100 µl 
TMB substrate was added to each well. Following a 20-minutes 
incubation in the dark at room temperature, 50 µl of Stop 
Solution was added to each well. Absorbance was read 
immediately at 450 nm.

Each assay plate included positive and negative controls that met 
required quality control parameters. Percentage inhibition was 
calculated for each sample using the following equation:

% inhibition = (1- optical density sample / optical density 
negative control) x 100%  

Samples with greater than or equal to 30% inhibition were 
considered positive for SARS-CoV-2 neutralizing antibodies.

Results

We tested 776 individual animals from 17 different wildlife 
species for SARS-CoV-2. These animals were collected primarily 
from urban areas in southern Ontario and Québec between June 
2020 and May 2021 (Table 1). We found no evidence of SARS-
CoV-2 viral RNA in any of the tested samples and no evidence 
of neutralizing antibodies in a subset of 219 individuals (141 
raccoons, 36 striped skunks, 42 mink).

Discussion

Our study did not detect any spillover of SARS-CoV-2 to wildlife 
in Ontario and Québec. Raccoons and skunks were the most 
commonly tested species. Results from experimental studies 
have suggested these species may be susceptible to SARS-
CoV-2, but the lack of and low quantity of infectious virus 
shed by raccoons and skunks, respectively, suggest they are 
an unlikely reservoir for SARS-CoV-2 in the absence of viral 
adaptations (9,10). Similarly, a challenge study with big brown 
bats found that they are resistant to SARS-CoV-2 infection 
and do not shed infectious virus (40). Conversely, minks are 
susceptible to SARS-CoV-2 infection, but no evidence of SARS-
CoV-2 was detected in any of the mink sampled. While this could 
be attributed to low effective sample size, to date SARS-CoV-2 
has been infrequently detected in wild mink populations globally. 
It should be noted, however, that these experimental studies on 
raccoons, skunks and big brown bats (9,10,40) were conducted 
using parental SARS-CoV-2. The susceptibility of these species to 
VoCs is presently not known and may differ from susceptibility to 
the parental strain (41). Additionally, challenge studies assessing 
susceptibility tend to be conducted on small numbers of young, 
healthy individuals, so results may not be reflective of the full 
range of possible responses to infection in the wild.

As the pandemic progresses, new evidence is emerging on 
susceptible wildlife that may act as competent reservoirs for the 
virus. For example, white-tailed deer are now considered a highly 
relevant species for SARS-CoV-2 surveillance in light of their 
experimentally determined susceptibility as well as evidence 
of widespread exposure to the virus via antibody and PCR 
testing across North America (12–16,19). Continued surveillance 
efforts should be adaptive and include targeted testing of 
highly relevant species as they are identified. In Ontario and 
Québec, these would include mink, white-tailed deer and deer 
mice (Peromyscus maniculatus) (9,42). Continuing to include 
less susceptible species remains important given ongoing viral 
genomic plasticity and changing host range of VoCs.

Limitations
There are several limitations for this study that need to be 
acknowledged. First, the majority of our SARS-CoV-2 testing 
was done by RT-PCR, which is only capable of detecting active 
infection. Antibody testing, which identifies resolved infection 
or exposure, is more likely to find evidence of SARS-CoV-2 in 
surveillance studies since results are less dependent on timing 
of sample collection. Antibody testing typically requires samples 
from live animals or fresh carcasses, which limited our ability to 
use it; however, the testing performed allowed for test validation 
in raccoons, skunks and mink, which may facilitate more antibody 
testing in future. Second, we relied on different kits for RNA 
extraction due to logistical challenges. Based on our extraction 
controls, the QIAamp RNA mini kit performed slightly better 
compared to the Nuclisens EasyMag (~2 Cts) for swab samples. 
Conversely, the Nuclisens EasyMag performed slightly better 
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(~2 Cts) compared to the RNeasy mini plus kit for tissue samples. 
Third, the type of samples we collected may also have limited 
our ability to detect SARS-CoV-2 infection. Viral replication can 
vary among tissue types and therefore some tissues are more 
optimal for viral RNA detection than others (1). In the present 
work, animals were sampled opportunistically as a part of pre-
existing programs, and we were not able to consistently collect 
the same sample sets. Additionally, the sample types were from 
live animals and carcasses and not optimized; certain sample 
types were sometimes unavailable (e.g. tissue samples from live 
animals) or were not sufficient for collection.

Conclusion
A One Health approach is critical to understanding and 
managing the risks of an emerging zoonotic pathogen such 
as SARS-CoV-2. We leveraged activities of existing research, 
surveillance, and rehabilitation programs and expertise from 
multiple fields to efficiently collect and test 1,690 individual 
wildlife samples. The absence of SARS-CoV-2-positive wildlife 
samples does not exclude spillover from humans to Canadian 
wildlife, given the limitations cited above. Continued research 
in this area is both important and pressing, particularly as novel 
VoCs emerge. Public and animal health sectors should continue 
to work collaboratively with academic and government partners 
to help prevent the spread of SARS-CoV-2 from people to 
wildlife, monitor for spillover, and address any issues should 
they arise. There is an urgent need for a coordinated wildlife 
surveillance program for SARS-CoV-2 in Canada. This approach 
will help protect the health of both Canadians and wildlife, now 
and in the future.
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