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Abstract

Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap estimators. 

We consider bagging for inference from noisy or incomplete measurements on a collection of 

interacting stochastic dynamic systems. Each system is called a unit, and each unit is associated 

with a spatial location. A motivating example arises in epidemiology, where each unit is a city: 

the majority of transmission occurs within a city, with smaller yet epidemiologically important 

interactions arising from disease transmission between cities. Monte Carlo filtering methods used 

for inference on nonlinear non-Gaussian systems can suffer from a curse of dimensionality as 

the number of units increases. We introduce bagged filter (BF) methodology which combines an 

ensemble of Monte Carlo filters, using spatiotemporally localized weights to select successful 

filters at each unit and time. We obtain conditions under which likelihood evaluation using a BF 

algorithm can beat a curse of dimensionality, and we demonstrate applicability even when these 

conditions do not hold. BF can out-perform an ensemble Kalman filter on a coupled population 

dynamics model describing infectious disease transmission. A block particle filter also performs 

well on this task, though the bagged filter respects smoothness and conservation laws that a block 

particle filter can violate.
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1 Introduction

Bagging is a technique to improve numerically unstable estimators by combining an 

ensemble of replicated bootstrap calculations (Breiman, 1996). In the context of nonlinear 

partially observed dynamic systems, the bootstrap filter of Gordon et al. (1993) has led to 
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a variety of particle filter (PF) methodologies (Doucet et al., 2001; Doucet and Johansen, 

2011); Here, we consider algorithms combining an ensemble of replicated particle filters, 

which we term bagged filter algorithms. Standard PF methods suffer from a curse of 

dimensionality (COD), defined as an exponential increase in computational requirement as 

the problem size grows, limiting its applicability to large systems (Bengtsson et al., 2008; 

Snyder et al., 2015; Rebeschini and van Handel, 2015). The COD presents empirically 

as numerical instability of the Monte Carlo algorithm for affordable numbers of particles. 

Much previous research has investigated scalable approaches to filtering and inference with 

applications to spatiotemporal systems. Our bagged filters are in the class of plug-and-play 
algorithms, meaning that they require as input a simulator for the latent dynamic process 

but not an evaluator of transition probabilities (Bretó et al., 2009; He et al., 2010). Similar 

properties to plug-and-play are likelihood-free (Brehmer et al., 2020) and equation-free 
(Kevrekidis and Samaey, 2009). The ensemble Kalman filter (Evensen, 2009; Lei et al., 

2010; Katzfuss et al., 2020) is a widely used plug-and-play method which uses simulations 

to construct a nonlinear filter that is exact for a linear Gaussian model. Another plug-and-

play approach to combat the COD is the block particle filter (Rebeschini and van Handel, 

2015; Ng et al., 2002). Both ensemble Kalman filter and block particle filter methods 

construct trajectories that can violate smoothness and conservation properties of the dynamic 

model. By contrast, our bagged filters are built using valid trajectories of the dynamic 

model, making localization approximations only when comparing these trajectories to data.

The replicated stochastic trajectories in a bagged filter form an ensemble of representations 

of the dynamic system. Unlike the particles in a particle filter or ensemble Kalman filter, 

the bagged replicates are independent in a Monte Carlo sense. Bagged filters therefore bear 

some resemblance to poor man’s ensemble forecasting methodology in which a collection 

of independently constructed forecasts is generated using different models and methods 

(Ebert, 2001). Poor man’s ensembles have sometimes been found to have greater forecasting 

skill than any one forecast (Leutbecher and Palmer, 2008; Palmer, 2002; Chandler, 2013). 

One explanation for this phenomenon is that even a hypothetically perfect model cannot 

provide effective filtering using methodology afflicted by the COD. We show that bagged 

filter methodology can relieve this limitation. From this perspective, the independence of the 

forecasts in the poor man’s ensemble, rather than the diversity of model structures, may be 

the key to its success.

We first consider a simple bagged filter where each replicate is an independent simulation of 

the latent process model. We call this the unadapted bagged filter (UBF) since the replicates 

in the ensemble depend on the model but not on the data. UBF is described in Sec. 2, 

with a theoretical analysis presented in Sec. 2.1. Each UBF replicate corresponds to a basic 

PF algorithm with a single particle. We show that UBF formally beats the COD under a 

weak mixing assumption, though UBF can have poor numerical behavior if a very large 

number of replicates are needed to reach this happy asymptotic limit. Subsequent empirical 

results show that UBF may nevertheless be a useful algorithm in some situations. In Sec. 

3, we generalize UBF to construct an adapted bagged filter (ABF) where each replicate 

tracks the data. The price of adaptation is that ABF no longer avoids the COD, a limitation 

that can be controlled in certain situations by supplementing ABF with a technique called 

intermediate resampling, to obtain the ABF-IR algorithm. Theoretical results for ABF and 
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ABF-IR algorithms are developed in Sec. 3.1. The algorithms are demonstrated in action and 

compared with alternative approaches in Sec. 4.

2 The unadapted bagged filter (UBF)

Suppose the collection of units is indexed by the set {1, 2, …, U}, which is written as 

1:U . The latent Markov process is denoted by {Xn, n ∈ 0:N}, with Xn = X1:U,n taking 

values in a product space XU. This discrete time process may arise from a continuous time 

Markov process {X(t), t0 ≤ t ≤ tN} observed at times t1:N , and in this case we set Xn = 

X(tn). The initial value X0 may be stochastic or deterministic. Observations are made on 

each unit, modeled by an observable process {Yn = Y1:U,n, n ∈ 1: N} which takes values in 

a product space Y U. Observations are modeled as being conditionally independent given the 

latent process. The conditional independence of measurements applies over both time and 

the unit structure, so the collection {Yu,n, u ∈ 1:U, n ∈ 1:N} is conditionally independent 

given {Xu,n, u ∈ 1:U, n ∈ 1:N}. The unit structure for the observation process is not 

necessary for all that follows (see Sec. S1). We suppose the existence of a joint density 

fX0:N, Y 1:N of X1:U,0:N and Y1:U,1:N with respect to some appropriate measure, following a 

notational convention that the subscripts of f denote the joint or conditional density under 

consideration. The data are yu, n
*  for unit u at time n. This model is a special case of a partially 

observed Markov process (POMP, Bretó et al., 2009), also known as a state space model or 

hidden Markov model. The additional unit structure, not generally required for a POMP, is 

appropriate for modeling interactions between units characterized by a spatial location, and 

so we call the model a SpatPOMP. In the following, we use a lexicographical ordering on the 

set of observations; Specifically, we define the set of observations preceding unit u at time n 
as

Au, n = (u, n):1 ≤ n < n or (n = n and u < u) . (1)

The ordering of the spatial locations in (1) might seem artificial, and indeed densities 

such as fXu, n ∣ XAu, n, will frequently be hard to compute or simulate from. The bagged filter 

algorithms we study do not evaluate or simulate such transition densities but only compute 

the measurement model on neighborhoods, unlike the filter of Beskos et al. (2017) built on 

a similar factorization. If sufficiently distant units are approximately independent, we say 

the system is weakly coupled. In this case, we suppose there is a neighborhood Bu,n ⊂ Au,n 

such that the latent process on Au,n \ Bu,n is approximately conditionally independent of Xu,n 

given data on Bu,n.

Our primary interest is estimation of the log likelihood for the data given the model, 

ℓ = log fY 1:N y1:N
* , which is of fundamental importance in both Bayesian and non-Bayesian 

statistical inference. A general filtering problem is to evaluate E ℎ Xu, n ∣ Y Au, n = yAu, n
*  for 

some function ℎ:X ℝ. Taking ℎ(x) = fYu, n ∣ Xu, n yu, n
* ∣ x  gives a filtering representation of the 

likelihood evaluation problem. Further discussion on bagged filtering for other filtering 

problems is given in Sec. S10. For likelihood-based inference, maximization plays an 

important role in point estimation, confidence interval construction, hypothesis testing 
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and model selection. An extension of bagged filtering to likelihood maximization is 

demonstrated in Sec. 4.3 following the approach described in Sec. S11.

Pseudocode for a UBF algorithm for likelihood evaluation is given below. The prediction 

weight wu, n, i
P  gives an appropriate weighting for replicate i for predicting yu, n

*  based on the 

most relevant data, yBu, n
* . Conditional log likelihoods are estimated using an approximation

ℓu, n = log fYu, n ∣ YAu, n yu, n
* ∣ yAu, n

* = log ∫ fYu, n ∣ Xu, n yu, n
* ∣ x fXu, n ∣ YAu, n x ∣ yAu, n

* dx

≈ log ∫ fYu, n ∣ Xu, n yu, n
* ∣ x fXu, n ∣ YBu, n x ∣ yBu, n

* dx .

The choice of Bu,n is determined empirically, with a bias-variance trade-off used to compare 

small neighborhoods such as Bu,n = {(u, n − 1),(u − 1, n)} or Bu,n = {(u, n − 1),(u, n − 2)} 

against larger neighborhoods. The plug-and-play property is evident because UBF requires 

as input a simulator for the latent coupled dynamic process but not an evaluator of transition 

probabilities.

Algorithm 1:

Unadapted bagged filter (UBF).

Input: simulator for fXn ∣ Xn − 1 xn ∣ xn − 1  and fX0 x0 ; evaluator for fYu, n ∣ Xu, n yu, n ∣ xu, n ;

data, y1:N
*

; number of replicates, ℐ; neighborhood structure, Bu,n

1 fori in 1:ℐdo

2 initialize simulation, X0, i fX0( ⋅ );

3 forn in 1:Ndo

4 simulate, Xn, i fXn ∣ Xn − 1 ⋅ ∣ Xn − 1, i ;

5 measurement weights, wu, n, i
M = fYu, n ∣ Xu, n yu, n

* ∣ Xu, n, i  for u in 1:U;

6 prediction weights, wu, n, i
P = ∏(u, n) ∈ Bu, n wu, n, i

M
 for u in 1:U;

7 end

8 end

9 ℓu, n
MC = log ∑i = 1

ℐ wu, n, i
M wu, n, i

P − log ∑i = 1
ℐ wu, n, i

P
 for u in 1:U, n in 1:N;

Output: log likelihood estimate, ℓMC = ∑n = 1
N ∑u = 1

U ℓu, n
MC

2.1 UBF theory

A dataset y1:N
*  with U units is modeled via a joint density fX0:N, Y 1:N. We consider non-

asymptotic bounds that apply for all values of U and N. To impose a requirement that 

distant regions of space-time behave similarly and have only weak dependence, we assert 

the following conditions which define constants ϵA1, ϵA4 and Q used to bound the bias and 

variance in Theorem 1. Stronger bounds are obtained when the conditions hold for small 

ϵA1, ϵA4 and Q.
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Assumption A1. There is an ϵA1 > 0, independent of U and N, and a collection of 
neighborhoods {Bu,n ⊂ Au,n, u ∈ 1:U, n ∈ 1:N} such that, for all u and n, any bounded 
real-valued function |h (x)|≤1, and any value of xBu, nc ,

∫ ℎ xu, n fXu, n ∣ YBu, n, XBu, nc xu, n ∣ yBu, n
* , xBu, nc dxu, n

− ∫ ℎ xu, n fXu, n ∣ YBu, n xu, n ∣ yBu, n
* dxu, n < ϵA1 .

Assumption A2. For the collection of neighborhoods in Assumption A1, with 
Bu, n

+ = Bu, n ∪ (u, n), there is a constant b, depending on ϵA1 but not on U and N, such that

sup
u ∈ 1:U, n ∈ 1:N

Bu, n
+ ≤ b .

Assumption A3. There is a constant Q, independent of U and N, such that, for all u and n,

Q−1 < fYu, n ∣ Xu, n yu, n
* ∣ xu, n < Q

Assumption A4. There exists ϵA4 > 0, independent of U and N, such that the following 
holds. For each u, n, a set Cu,n, ⊂ (1:U) × (0:N) exists such that u, n ∉ Cu, n implies 

Bu, n
+ ∩ Bu, n

+ = ∅ and

fXBu, n
+ ∣ XBu, n+ − fXBu, n

+ < ϵA4fXBu, n
+

Further, there is a uniform bound | Cu,n |≤ c.

The two mixing conditions in Assumption A1 and A4 are subtly different. Assumption 

A1 describes a conditional mixing property dependent on the data, whereas A4 asserts 

a form of unconditional mixing. Although both capture a similar concept of weak 

coupling, conditional and unconditional mixing properties do not readily imply one another. 

Assumption A3 is a compactness condition of a type that has proved useful in the theory 

of particle filters despite the rarity of its holding exactly. Theorem 1 shows that these 

conditions let UBF compute the likelihood with a Monte Carlo variance of order UNℐ−1

with a bias of order UNϵ.

Theorem 1. Let ℓMC denote the Monte Carlo likelihood approximation constructed by UBF. 
Consider a limit with a growing number of bootstrap replicates, ℐ ∞, and suppose 
assumptions A1, A2 and A3. There are quantities ϵ(U, N) and V (U, N), with bounds |ϵ| < 

ϵA1Q2 and V < Q4bU2N2, such that

ℐ1/2 ℓMC − ℓ − ϵUN ℐ ∞
d N[0, V ], (2)
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where ℐ ∞
d

 denotes convergence in distribution and N[μ, Σ] is the normal distribution 

with mean μ and variance Σ. If additionally Assumption A4 holds, we obtain an improved 
variance bound

V < Q4bUN c + ϵA4(UN − c) . (3)

Proof. A complete proof is given in Sec. S3. Briefly, the assumptions imply a multivariate 

central limit theorem for ℓu, n
MC , (u, n) ∈ 1:U × 1:N  as ℐ ∞. The limiting variances and 

covariances are uniformly bounded, using Assumption A2 and A3. Assumption A1 provides 

a uniform bound on the discrepancy between ℓu,n and mean of the Gaussian limit. This 

is enough to derive (2). Assumption A4 gives a stronger bound on covariances between 

sufficiently distant units, leading to (3). □

Theorem 1 does not guarantee uniformity over U and N of the rate of convergence as 

ℐ ∞. However, it does guarantee that the polynomial bounds in (2) and (3) hold for 

sufficiently large ℐ. The COD is characterized by exponential bounds, and so Theorem 

1 shows a specific sense in which UBF can avoid COD. Uniformity of the central limit 

convergence in Theorem 1 may be expected to hold via a Berry-Esseen theorem, but 

extension of existing Berry-Esseen results for dependent processes (Bentkus et al., 1997; 

Jirak, 2016) is beyond the scope of this article.

The approximation error for UBF can be divided into two sources: a localization bias due 

to conditioning on a finite neighborhood, and Monte Carlo error. The localization bias does 

not disappear in the limit as Monte Carlo effort increases. It does become small as the 

conditioning neighborhood increases, but the Monte Carlo effort grows exponentially in the 

size of this neighborhood. Although the filtering inference is carried out using localization, 

the simulation of the process is carried out globally which avoids the introduction of 

additional boundary effects and ensures that the simulations comply with any constraints 

satisfied by the model for the latent process.

3 Adaptation and intermediate resampling

Theorem 1 shows that UBF can beat COD. However, UBF can perform poorly on long time 

series unless weak temporal dependence allows simulated sample paths to remain relevant 

over the course of a long time series. For example, we will find that UBF performs well 

on an epidemiological model (Sec. 5) but less well on a geophysical model (Sec. S8). It 

is sometimes necessary to select simulations consistent with the data, much as standard PF 

algorithms do. We look for approaches that build on the basic insight of UBF while having 

superior practical performance.

Whereas the full global filtering problem of drawing from fXn ∣ Y 1:n may be intractable via 

importance sampling methods, a version of this problem localized in space and time 

may nevertheless be feasible. The conditional density, fXn ∣ Y n, Xn − 1, is called the adapted 

density, and simulating from this density is called adapted simulation. For models where 

Xn−1 is highly informative about Xn, importance sampling for adapted simulation may be 
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much easier than the full filter calculation. The following adapted bagged filter (ABF) is 

constructed under a hypothesis that the adapted simulation problem is tractable, and it is 

applicable when the number of units is prohibitive for Monte Carlo sampling from the full 

filter distribution but not for sampling from the adapted distribution. In ABF, the adapted 

simulations are reweighted in a neighborhood of each unit and time point to construct a local 

approximation to the filtering problem which leads to an estimate of the likelihood. The 

pseudocode for ABF, below, reduces to UBF when using a single particle per repicate, J = 1.

Algorithm 2:

Adapted bagged filter (ABF)

Input: simulator for fXn ∣ Xn − 1 xn ∣ xn − 1  and fX0 x0 ; evaluator for fYu, n ∣ Xu, n yu, n ∣ xu, n ;

data, y1:N
*

; number of particles per replicate, J; number of replicates, ℐ;

neighborhood structure, Bu,n

1 fori in 1:ℐdo

2 initialize adapted simulation, X0, i
A fX0( ⋅ );

3 forn in 1:Ndo

4 proposals: Xn, i, j
P fXn ∣ X1:U, n − 1 xn ∣ Xn − 1, i

A
 for j in 1:J;

5 wu, n, i, j
M = fYu, n ∣ Xu, n yu, n

* ∣ Xu, n, i, j
P

 for u in 1:U, j in 1:J;

6 adapted resampling weights, wn, i, j
A = ∏u = 1

U wu, n, i, j
M

 for u in 1:U, j in 1:J;

7 Xn, i
A = Xn, i, r(i)

P
 with ℙ[r(i) = a] = wn, i, a

A ∑k = 1
J wn, i, k

A −1
;

8 wu, n, i, j
P = ∏n = 1

n − 1 1
J ∑k = 1

J ∏(n, n) ∈ Bu, n wu, n, i, k
M ∏(u, n) ∈ Bu, n wu, n, i, j

M
 for u in 1:U, j in 1:J;

9 end

10 end

11 ℓu, n
MC = log

∑i = 1
ℐ ∑j = 1

J wu, n, i, j
M wu, n, i, j

P

∑i = 1
ℐ ∑j = 1

J wu, n, i, j
P

 for u in 1:U, n in 1:N;

Output: log likelihood estimate, ℓMC = ∑n = 1
N ∑u = 1

U ℓu, n
MC

ABF remedies a weakness of UBF by making each boostrap filter adapted to the data. 

However, this benefit carries a cost, since adapted simulation is not immune from the 

curse of dimensionality. Therefore, we also consider an algorithm called ABF-IR which 

uses an intermediate resampling technique to carry out the adapted simulation. Intermediate 

resampling involves assessing the satisfactory progress of particles toward the subsequent 

observation at a collection of times between observations. This is well defined when the 

latent process has a continuous time representation, {X(t)}, with observation times t1:N. We 

write S intermediate resampling times as

tn − 1 = tn, 0 < tn, 1 < … < tn, S = tn .
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Carrying out an intermediate resampling procedure can have favorable scaling properties 

when S is proportional to U (Park and Ionides, 2020). In the case S = 1, ABF-IR reduces 

to ABF. Intermediate resampling was developed in the context of sequential Monte Carlo 

(Del Moral and Murray, 2015; Park and Ionides, 2020); however, the same theory and 

methodology can be applied to the simpler and easier problem of adapted simulation. ABF-

IR employs a guide function to gauge the compatibility of each particle with future data. 

This is a generalization of the popular auxiliary particle filter (Pitt and Shepard, 1999). Only 

an ideal guide function fully addresses COD (Park and Ionides, 2020) and on nontrivial 

problems this is not available. However, practical guide functions can nevertheless improve 

performance.

The implementation in the ABF-IR pseudocode constructs the guide gn,s,i,j using a simulated 

moment method proposed by Park and Ionides (2020). The quantities Xn, i, j
G , Vu,n,i, μn, s, i, j

IP , 

V u, n, s, i, j
meas , V u, n, s, i

proc  and θu,n,s,i,j constructed in ABF-IR are used only to construct gn,s,i,j. 

Heuristically, we use guide simulations to approximate the variance of the increment in 

each particle between time points, and we augment the measurement variance to account 

for both dynamic variability and measurement error. The guide function affects numerical 

performance of the algorithm but not its correctness: it enables a computationally convenient 

approximation to improve performance on the intractable target problem. Our guide function 

supposes the availability of a deterministic function approximating evolution of the mean of 

the latent process, written as

μ(x, s, t) ≈ E[X(t) ∣ X(s) = x] .

Further, the guide requires that the measurement model has known conditional mean and 

variance as a function of the model parameter vector θ, written as

ℎu, n xu, n = E Y u, n ∣ Xu, n = xu, n

v u, n xu, n, θ = Var Y u, n ∣ Xu, n = xu, n; θ

Also required for ABF-IR is an inverse function v u, n V , xu, n, θ  such that v u, n V , xu, n, θ = ϕ
implies

v u, n xu, n, ϕ = V .

Algorithm 3:

ABF with intermediate resampling (ABF-IR)

Input: same as Algorithm 2 (ABF) plus: intermediate timesteps, S; measurement variance functions, v u, n and v u, n; 
approximate mean functions, μ and hu,n

1 fori in 1:ℐdo
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2 initialize adapted simulation, X0, i
A fX0( ⋅ );

3 forn in 1:Ndo

4 guide simulations: Xn, i, j
G fXn ∣ Xn − 1 xn ∣ Xn − 1, i

A
 for j in 1:J;

5 V u, n, i = Var ℎu, n Xu, n, i, j
G , j in 1:J ;

6 gn, 0, i, j
R = 1 and Xn, 0, i, j

IR = Xn − 1, i
A

 for j in 1:J;

7 fors in l:Sdo

8 Xn, s, i, j
IP fXn, s ∣ Xn, s − 1 ⋅ ∣ Xn, s − 1, i, j

IR
 for j in 1:J;

9 μn, s, i, j
IP = μ Xn, s, i, j

IP , tn, s, tn  for j in 1:J;

10 V u, n, s, i, j
meas = v u θ, μu, n, s, i, j

IP
 for u in 1:U, j in 1:J;

11 V u, n, s, i
proc = V u, n, i tn − tn, s / tn − tn, 0  for u in 1:U;

12 θu, n, s, i, j = v u V u, n, s, i, j
meas + V u, n, s, i

proc , μu, n, s, i, j
IP

 for u in 1:U, j in 1:J;

13 gn, s, i, j = ∏u = 1
U fYu, n ∣ Xu, n yu, n

* ∣ μu, n, s, i, j
IP ; θu, n, s, i, j  for j in 1:J;

14 guide weights: wn, s, i, j
G = gn, s, i, j/gn, s − 1, i, j

R
 for j in 1:J;

15 resampling: ℙ[r(i, j) = a] = wn, s, i, a
G ∑k = 1

J wn, s, i, k
G −1

 for j in 1:J;

16 Xn, s, i, j
IR = Xn, s, i, r(i, j)

IP
 and gn, s, i, j

R = gn, s, i, r(i, j) for j in 1:J

17 end

18 Xn, i
A = Xn, S, i, 1

IR
;

19 wu, n, i, j
M = fYu, n ∣ Xu, n yu, n

* ∣ Xu, n, i, j
G

 for u in 1:U, j in 1:J;

20 wu, n, i, j
P = ∏n = 1

n − 1 1
J ∑a = 1

J ∏u: (u, n) ∈ Bu, n wu, n, i, a
M ∏u: (u, n) ∈ Bu, n wu, n, i, j

M
 for u in 1:U, j in 1:J;

21 end

22 end

Output: ℓMC = ∑u = 1
U ∑n = 1

N log
∑i = 1

ℐ ∑j = 1
J wu, n, i, j

M wu, n, i, j
P

∑i = 1
ℐ ∑j = 1

J wu, n, i, j
P

This guide function is applicable to spatiotemporal versions of a broad range of population 

and compartment models used to model dynamic systems in ecology, epidemiology, 

and elsewhere. Other guide functions could be developed and inserted into the ABF-IR 

algorithm, including other constructions considered by Park and Ionides (2020).

One might wonder why it is appropriate to keep many particle representations at 

intermediate timesteps while resampling down to a single representative at each observation 

time. An answer is that adaptive simulation can fail to track the observation sequence when 

one resamples down to a single particle too often (Sec. S2).

3.1 ABF-IR theory

We start by considering a deterministic limit for infinite Monte Carlo effort and explaining 

why the ABF and ABF-IR algorithms approximately target the likelihood function, subject 

to suitable mixing behavior. Subsequently, we consider the scaling properties as Monte 
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Carlo effort increases. We adopt a convention that densities involving Yu,n are implicitly 

evaluated at the data, yu, n
* , and densities involving Xu,n are implicitly evaluated at xu,n unless 

otherwise specified. We write Au, n
+ = Au, n ∪ (u, n), matching the defintion Bu, n

+ = Bu, n ∪ (u, n). The 

essential ingredient in all the algorithms is a localization of the likelihood, which may be 

factorized sequentially as

fY1:U, 1:N = ∏
n = 1

N
∏

u = 1

U
fYu, n ∣ YAu, n = ∏

n = 1

N
∏

u = 1

U fYAu, n+

fYAu, n
.

In particular, the approximations assume that the full history Au,n can be well approximated 

by a neighborhood Bu,n ⊂ Au,n. UBF approximates fYu, n ∣ YAu, n by

fYu, n ∣ YBu, n =
fYBu, n+

fYBu, n
=

∫ fYBu, n+ ∣ XBu, n+ fXBu, n+ dxBu, n+

∫ fYBu, n ∣ XBu, nfXBu, ndxBu, n
.

For B ⊂ 1:U × 1:N, define B[m] = B ∩ (1:U ×{m}). ABF and ABF-IR build on the following 

identity,

fYAu, n = ∫ fX0 ∏
m = 1

n
fXm ∣ Xm − 1, Y mfYAu, n

m ∣ Xm − 1 dx0:n,

where fXm ∣ Xm − 1, Y m is called the adapted transition density. The adapted process (i.e., a 

stochastic process following the adapted transition density) can be interpreted as a one-step 

greedy procedure using the data to guide the latent process. Let gX0:N, X1:N
P x0:N, x1:N

P  be the 

joint density of the adapted process and the proposal process,

gX0:N, X1:N
P x0:N, x1:N

P = fX0 x0 ×

∏
n = 1

N
fXn ∣ Xn − 1, Yn xn ∣ xn − 1, yn

* fXn ∣ Xn − 1 xn
P ∣ xn − 1 . (4)

Using the convention that an empty density fY∅ evaluates to 1, we define

γB = ∏
m = 1

N
fYB[m] ∣ Xm − 1 yB[m]* ∣ Xm − 1 .

Denoting Eg for expectation for X0:N, X1:N
P  having density gX0:N, X1:N

P , we have fYAu, n = Eg γAu, n

and thus

fYu, n ∣ YAu, n =
Eg γAu, n+

Eg γAu, n
.
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Estimating this ratio by Monte Carlo sampling from g is problematic due to the growing size 

of Au,n. Thus, ABF and ABF-IR make a localized approximation,

Eg γAu, n+

Eg γAu, n
≈ Eg γBu, n+

Eg γBu, n
. (5)

The conditional log likelihood estimate ℓu, n
MC in ABF and ABF-IR come from replacing the 

expectations on the right hand side of (5) with averages over Monte Carlo replicates of 

simulations from the adapted process. To see that we expect the approximation in (5) to hold 

when dependence decays across spatiotemporal distance, we can write

γAu, n = γBu, nγBu, nc

γAt, n+ = γBu, n+ γBu, nc ,

where Bu, n
c  is the complement of Bu,n in Au,n. Under our assumptions, the term corresponding 

to γBu, nc  approximately cancels in the numerator and denominator of the right hand side of (5).

The localized likelihood estimate in ABF and ABF-IR has similar structure to UBF. 

However, ABF and ABF-IR additionally require the capability to satisfactorily implement 

adapted simulation. Adapted simulation is a local calculation, making it an easier task than 

the global operation of filtering. Nevertheless, adapted simulation via importance sampling 

(as carried out by ABF) is vulnerable to COD. For a continuous time model, the use 

of intermediate resampling in ABF-IR is motivated by a result that this can reduce the 

COD, or avoid it entirely for an ideal guide function (Park and Ionides, 2020). Without 

intermediate resampling even an ideal proposal distribution does not avoid COD for a 

particle filter (Snyder et al., 2015). Assumptions B1–B4 below are analogous to A1–A4 and 

are non-asymptotic assumptions involving ϵB1 > 0, ϵB4 > 0 and Q > 1 which are required 

to hold uniformly over space and [time. Assumptions B5–B7 control the Monte Carlo error 

arising from adapted simulation. B5 is a stability property which asserts that the effect of 

the latent process on the future of the adapted process decays over time. Assumption B6 is 

a non-asymptotic bound on Monte Carlo error for a single step of adapted simulation. The 

scaling of the constant C0 with U, N and S in Assumption B6 has been studied by Park and 

Ionides (2020), where it was established that setting S = U can lead to C0 being polynomial 

in U and N when using an ideal guide function. This property is critical to enable ABF-IR 

to avoid COD. Since ABF has S = 1 it suffers from COD, albeit at an empirically slower 

rate than PF. The ϵB6
−3. error rate in Assumption B6 follows from balancing the two sources of 

error defined in the statement of Theorem 2 of Park and Ionides (2020) (details are provided 

in Sec. S15). Assumption B7 can be guaranteed by the construction of the algorithm, if 

independently generated Monte Carlo random variables are used for building the guide 

function and the one-step prediction particles. The asymptotic limit in Theorem 2 arises as 

the number of replicates increases.
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Assumption B1. There is an ϵB1 > 0, independent of U and N, and a collection of 
neighborhoods {Bu,n ⊂ Au,n, u ∈ 1:U, n ∈ 1:N} such that the following holds for all 
u and n, and any bounded real-valued function | h(x) |≤1. Setting A = Au,n, B = Bu,n, 

fA xA = fYA ∣ XA yA
* ∣ xA  , and fB xB = fYB ∣ XB yB

* ∣ xB , so that we have the identity

fXu, n ∣ YA x ∣ yA
* =

Eg fA XA
P fXu, n ∣ XA[n], Xn − 1 x ∣ XA[n]

P , Xn − 1

Eg fA XA
P ,

we require that

∫ ℎ(x)
Eg fA XA

P fXu, n ∣ XA n , Xn − 1 x ∣ XA(n)
P , Xn − 1

Eg fA XA
P −

Eg fB XB
P fXu, n ∣ XB[n], Xn − 1 x ∣ XB[n]

P , Xn − 1

Eg fB XB
P dx < ϵB1 .

Assumption B2. The bound sup
u ∈ 1:U, n ∈ 1:N

Bu, n
+ ≤ b in Assumption A2 applies for the 

neighborhoods defined in Assumption B1. This also implies there is a finite maximum 
temporal depth for the collection of neighborhoods, defined as

dmax = sup
u, n

sup
u, n ∈ Bu, n

n − n .

Assumption B3. Identically to Assumption A3, Q−1 < fYu, n ∣ Xu, n yu, n
* ∣ xu, n < Q.

Assumption B4. We use subscripts of g to denote marginal and conditional densities derived 
from (4). Suppose there is an ϵB4, independent of U and N, such that the following 
holds. For each u and n, a set Cu,n ⊂ (1:U) × (0:N) exists such that (u, n) ∉ Cu, n implies 

Bu, n
+ ∩ Bu, n

+ = ∅ and

gXBu, n ∪ Bu, n
P − gXBu, n

P gXBu, n
P < (1/2)ϵB4gXBu, n ∪ Bu, n

P

gXBu, n
P X0:NgXBu, n

P X0:N − gXBu, n ∪ Bu, n
P X0:N

< (1/2)ϵB4gXBu, n ∪ Bu, n
P X0:N

Further, there is a uniform bound |Cu,n|≤ c.

Assumption B5. There is a constant K, independent of U and N, such that, for any 0 ≤ d ≤ 

dmax, any n ≥ K + d, and any set D ⊂ (1:U) × (n: n−d),

gXD ∣ Xn − d − K xD ∣ xn − d − K
(1) − gXD ∣ Xn − d − K xD ∣ xn − d − K

(2)

< ϵB5gXD ∣ Xn − d − K xD ∣ xn − d − K
(1)

holds for all xn − d − K
(1) , xn − d − K

(2) , and xD .
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Assumption B6. Let h be a bounded function with |h(x)| ≤ 1. Let Xn, S, j, i
IR  be the Monte 

Carlo quantity constructed in ABF-IR, conditional on Xn − 1, S, i
A = xn − 1, S, i

A . There is a constant 

C0(U, N, S) such that, for all ϵB6 > 0 and xn − 1, S, i
A , whenever the number of particles satisfies 

J > C0(U, N, S)/ϵB6
3 ,

E 1
J ∑

j = 1

J
ℎ Xn, S, j, i

IR − Eg ℎ Xn ∣ Xn − 1 = xn − 1, S, i
A < ϵB6 .

Assumption B7. For 1 ≤ n ≤ N, the Monte Carlo random variable is Xn, i
A  independent of wu, n, i, j

M

conditional on Xn − 1, i
A .

Theorem 2. Let ℓMC denote the Monte Carlo likelihood approximation constructed by ABF-
IR, or by ABF since this is the special case of ABF-IR with S = 1. Consider a limit with 
a growing number of bootstrap replicates, ℐ ∞, and suppose assumptions B1, B2, B3, 

B5, B6 and B7. Suppose the number of particles J exceeds the requirement for B6. There 
are quantities ϵ(U, N) and V(U, N), with |ϵ|<Q2ϵB1 + 2Q2b(ϵB5 + (K + dmax)ϵB6) and V < 

Q4bU2N2 such that

ℐ1/2 ℓNC − ℓ − ϵUN ℐ ∞
d N[0, V ] .

If additionally Assumption B4 holds, we obtain an improved rate of

V < Q4bNU c + ϵB4 + 3ϵB5 + 4 K + dmax ϵB6 (NU − c)

Proof. A full proof is provided in Sec. S4. The extra work to prove Theorem 2 beyond 

the argument for Theorem 1 is to bound the error arising from the importance sampling 

approximation to a draw from the adapted transition density. This bound is constructed using 

Assumptions B5, B6 and B7. The remainder of the proof follows the same approach as 

Theorem 1, with the adapted process replacing the unconditional latent process. □

The theoretical results foreshadow our empirical observations (Sec. 4) that the relative 

performance of UBF, ABF and ABF-IR is situation-dependent. Assumption A4 is a mixing 

assumption for the unconditional latent process, whereas Assumption B4 replaces this with 

a mixing assumption for the adapted process conditional on the data. For a non-stationary 

process, Assumption A4 may fail to hold uniformly in U whereas the adapted process 

may provide stable tracking of the latent process (Sec. S2). When Assumption A4 holds, 

UBF can benefit from not requiring Assumptions B5, B6 and B7. Adapted simulation is 

an easier problem than filtering, but nevertheless can become difficult in high dimensions, 

with the consequence that Assumption B6 could require large C0. The tradeoff between ABF 

and ABF-IR depends on the effectiveness of the guide function for the problem at hand. 

Intermediate resampling and guide function calculation require additional computational 

resources, which will necessitate smaller values of ℐ and J. In some situations, the improved 
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scaling properties of ABF-IR compared to ABF, corresponding to a lower value of C0, will 

outweigh this cost.

4 Examples

We compare the performance of the three bagged filters (UBF, ABF and ABF-IR) against 

each other and against alternative plug-and-play approaches. The plug-and-play property 

facilitates numerical implementation for general classes of models, and all the algorithms 

and models under consideration are implemented in the R packages pomp (King et al., 2016) 

and spatPomp (Asfaw et al., 2021b). Ensemble Kalman filter (EnKF) methods propagate the 

ensemble members by simulation from the dynamic model and then update the ensemble 

to assimilate observations using a Gaussian-inspired rule (Evensen, 2009; Lei et al., 2010). 

The block particle filter (BPF, Rebeschini and van Handel, 2015; Ng et al., 2002) partitions 

the latent space and combines independently drawn components from each partition. BPF 

overcomes COD under weak coupling assumptions (Rebeschini and van Handel, 2015). 

Unlike these two methods, our bagged filters modify particles only according to the latent 

dynamics. Thus, our methods respect conservation laws and continuity or smoothness 

conditions obeyed by the dynamic model. We also compare with a guided intermediate 

resampling filter (GIRF, Park and Ionides, 2019), one of many variants of the particle filter 

designed to scale to larger numbers of units than are possible with a basic particle filter.

First, in Sec. 4.1, we consider a spatiotemporal Gaussian process for which the exact 

likelihood is available via a Kalman filter. We see in Fig. 1 that ABF-IR can have a 

considerable advantages over UBF and ABF for problems with an intermediate level of 

coupling. Then, in Sec. 4.2, we develop a model for measles transmission within and 

between cities. The measles model is weakly coupled, leading to successful performance 

for all three bagged filters. This class of metapopulation models was the primary motivation 

for the development of these methodologies. In Sec. 4.3 we demonstrate an extension from 

likelihood evaluation to likelihood maximization for the measles model. Additionally, in 

Sec. S8, we compare performance on the Lorenz-96 model, a highly coupled system used to 

test inference methods for geophysical applications.

4.1 Correlated Brownian motion

Suppose X(t) = ΩW(t) where W(t) = W1:U (t) comprises U independent standard Brownian 

motions, and Ωu, u = ρd(u, u) with d(u, u) being the circle distance,

d(u, u) = min( u − u , u − u + U , u − u − U ) .

Set tn = n for n = 0, 1, …, N with initial value X(0) = 0 and suppose measurement errors are 

independent and normally distributed, Yu,n = Xu,n + ηu,n with ηu, n N 0, τ2 . The parameter ρ 
determines the strength of the spatial coupling.

Fig. 1 shows how the bagged filters scale on this Gaussian model, compared to a standard 

particle filter (PF), a guided intermediate resampling filter (GIRF), a block particle filter 

(BPF), and an ensemble Kalman filter. For our numerical results, we use τ = 1, ρ = 0.4 
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and N = 50. The algorithmic parameters and run times are listed in Sec. S5, together 

with a plot of the simulated data and supplementary discussion. In this case, the exact 

likelihood is computable via the Kalman filter (KF). Since EnKF is based on a Gaussian 

approximation, it is also exact in this case, up to a small Monte Carlo error. The GIRF 

framework encompasses lookahead particle filter techniques, such as the auxiliary particle 

filter (Pitt and Shepard, 1999), and intermediate resampling techniques (Del Moral et al., 

2017). GIRF methods combining these techniques were found to perform better than either 

of these component techniques alone (Park and Ionides, 2020). Thus, GIRF here represents 

a state-of-the-art auxiliary particle filter that targets the complete joint filter density for all 

units. We use the general-purpose, plug-and-play implementation of GIRF provided by the 

spatPomp R package (Asfaw et al., 2021a); for a Gaussian model, one can calculate an ideal 

guide function for GIRF but that was not used. PF works well for small values of U in Fig. 1 

and rapidly starts struggling as U increases. GIRF behaves comparably to PF for small U but 

its performance is maintained for larger U. ABF and ABF-IR have some efficiency loss, for 

small U, relative to PF and GIRF due to the localization involved in the filter weighting, but 

for large U this cost is paid back by the benefit of the reduced Monte Carlo variability. UBF 

has a larger efficiency loss for small U, but its favorable scaling properties lead it to overtake 

ABF for larger U. BPF shows stable scaling and modest efficiency loss. This linear Gaussian 

SpatPOMP model provides a simple scenario to demonstrate scaling behavior. For filters 

that cannot take direct advantage of the Gaussian property of the model, we see that there 

is a tradeoff between efficiency at low U and scalability. This is unavoidable, since there is 

no known algorithm that is simultaneously fully efficient (up to Monte Carlo error), scalable, 

and applicable to general SpatPOMP models. We now explore this tradeoff empirically on 

to a more complex SpatPOMP exemplifying the nonlinear non-Gaussian models motivating 

our new filtering approach.

4.2 Spatiotemporal measles epidemics

Data analysis for spatiotemporal systems featuring nonlinear, nonstationary mechanisms 

and partial observability has been a longstanding open challenge for ecological and 

epidemiological analysis (Bjørnstad and Grenfell, 2001). A compartment modeling 

framework for spatiotemporal population dynamics divides the population at each spatial 

location into categories, called compartments, which are modeled as homogeneous. 

Spatiotemporal compartment models can be called patch models or metapopulation models 

in an ecological context. Ensemble Kalman filter (EnKF) methods provide a state-of-the-art 

approach to inference for metapopulation models (Li et al., 2020) despite concerns that 

the approximations inherent in the EnKF can be problematic for models that are highly 

nonlinear or non-Gaussian (Ades and Van Leeuwen, 2015). Our bagged filter methodologies 

have theoretical guarantees for arbitrarily nonlinear and non-Gaussian models, while having 

improved scaling properties compared to particle filters.

We consider a spatiotemporal model for disease transmission dynamics of measles within 

and between multiple cities, based on the model of Park and Ionides (2020) which adds 

spatial interaction to the compartment model presented by He et al. (2010). The model 

compartmentalizes the population of each city into susceptible (S), exposed (E), infectious 

(I), and recovered/removed (R) categories. The number of individuals in each compartment 
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city u at time t are denoted by integer-valued random variables Su(t), Eu(t), Iu(t) , and Ru(t). 
The population dynamics are written in terms of counting processes N••,u(t) enumerating 

cumulative transitions in city u, up to time t, between compartments identified by the 

subscripts. We model the U largest cities in the UK, ordered in decreasing size so that u 
= 1 corresponds to London. We vary U to test methodologies on a hierarchy of filtering 

challenges. Our model is described by the following system of stochastic differential 

equations, for u = 1, …, U,

dSu t = dNBS, u t − dNSE, u t − dNSD, u t
dEu t = dNSE, u t − dNEI, u t − dNED, u t
dIu t = dNEI, u t − dNIR, u t − dNID, u t

Here, NBS,u (t) models recruitment into the susceptible population, and N•D,u (t) models 

emigration and death. The total population Pu(t) = Su(t) + Eu(t) + Iu(t) + Ru(t) is calculated 

by smoothing census data and is treated as known. The number of recovered individuals 

Ru(t) in city u is therefore defined implicitly. NSE,u (t) is modeled as negative binomial death 

processes (Bretó et al., 2009; Bretó and Ionides, 2011) with over-dispersion parameter σSE, 

and rate given by

E NSE, u(t + dt) − NSE, u(t) = β(t)Su(t)[ Iu + ι
Pu

α

+ ∑
u ≠ u

vuu

Pu

Iu

Pu

α
− Iu

Pu

α
]dt + o dt ,

(6)

where β(t) models seasonality driven by high contact rates between children at school, 

described by

β(t) = 1 + a(1 − p)p−1 β during school term,
(1 − a)β during vacation

with p = 0.759 being the proportion of the year taken up by the school terms, β is the mean 

transmission rate, and a measures the reduction of transmission during school holidays. In 

(6), α is a mixing exponent modeling inhomogeneous contact rates within a city, and ι 
models immigration of infected individuals which is appropriate when analyzing a subset of 

cities that cannot be treated as a closed system. The number of travelers from city u to u is 

denoted by vuu. Here, vuu is constructed using the gravity model of Xia et al. (2004),

vuu = G ⋅ d
P2 ⋅ Pu ⋅ Pu

d(u, u) ,

where d(u, u) denotes the distance between city u and city u, Pu is the average population 

for city u across time, P  is the average population across cities, and d is the average 

distance between a randomly chosen pair of cities. Here, we model vuu as fixed through 

time and symmetric between any two arbitrary cities, though a natural extension would 

allow for temporal variation and asymmetric movement between two cities. The transition 
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processes NEI,u (t) , NIR,u (t) and N•D,u (t) are modeled as conditional Poisson processes 

with per-capita rates μEI, μIR and μ•D respectively, and we fix μ•D = 50 year−1 . The birth 

process NBS,u (t) is an inhomogeneous Poisson processes with rate μBS,u (t) , given by 

interpolated census data.

To complete the model specification, we must describe the measurement process. Let Zu,n = 

NIR,u (tn) − NIR,u (tn−1) be the number of removed infected individuals in the nth reporting 

interval. Suppose that cases are quarantined once they are identified, so that reported cases 

comprise a fraction ρ of these removal events. The case report yu, n
*  is modeled as a realization 

of a discretized conditionally Gaussian random variable Yu,n , defined for y > 0 via

ℙ Y u, n = y ∣ Zu, n = z = Φ y + 0.5; ρz, ρ(1 − ρ)z + ψ2ρ2z2

− Φ y − 0.5; ρz, ρ(1 − ρ)z + ψ2ρ2z2 (7)

where Φ(·; μ, σ2 ) is the N μ, σ2  cumulative distribution function, and ψ models 

overdispersion relative to the binomial distribution. For y = 0, we replace y − 0.5 by −∞ in 

(7).

This model includes many features that have been proposed to be relevant for understanding 

measles transmission dynamics (He et al., 2010). Our plug-and-play methodology permits 

consideration of all these features, and readily extends to the investigation of further 

variations. Likelihood-based inference via plug-and-play methodology therefore provides 

a framework for evaluating which features of a dynamical model are critical for explaining 

the data (King et al., 2008). By contrast, Xia et al. (2004) developed a linearization for 

a specific spatiotemporal measles model which is numerically convenient but not readily 

adaptable to assess alternative model choices. Fig. 2 shows a simulation from our model, 

showing that trajectories from this model can capture some features of the system that have 

been hard to understand: how can it be that disease transmission dynamics between locations 

have important levels of interaction yet are not locked in synchrony (Becker et al., 2020)? 

Here, we are testing statistical tools rather than engaging directly in the scientific debate so 

we test methods on the simulated data.

We first assess the scaling properties of the filters on the measles model by evaluating the 

likelihood over varying numbers of units, U, for fixed parameters. The results are given 

in Fig. 3, with additional information about timing, algorithmic choices, parameter values 

and a plot of the data provided in Sec. S6. In Fig. 3, the log likelihood per unit per time 

increases with U because city size decreases with U. Smaller cities have fewer measles 

cases, resulting in a narrower and taller probability density function. Fig. 3 shows a rapid 

decline in the performance of the particle filter (PF) beyond U = 4. This is a challenging 

filtering problem, with dynamics including local fadeouts and high stochasticity in each 

city stabilized at the metapopulation level by the coupling. In this example, GIRF performs 

poorly suggesting that the simulated moment guide function is less than successful. We used 

the general-purpose implementation of GIRF in the spatPomp package, and there might be 

room for improvement by developing a model-specific guide function. ABF-IR uses the 

same guide function, and this may explain why ABF-IR performs worse than ABF here, 

though ABF-IR is much less sensitive than GIRF to the quality of the guide. ABF and 
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UBF are competing with BPF as winners on this challenge. The bagged filters and BPF 

have substantial advantages compared to EnKF, amounting to more than 0.2 log likelihood 

units per observation. We suspect that the limitations of EnKF on this problem are due to 

the nonlinearity, non-Gaussianity, and discreteness of fadeout and reintroduction dynamics. 

Thus, EnKF is relatively effective with small ensemble size but soon reaches the limit of 

its capabilities (Sec. S13). By contrast, the bagged filters and block particle filter perform 

substantially better than EnKF for larger ensemble size (Sec. S13). All the algorithms 

have various other tuning parameters that could influence the results. Some investigations 

of alternatives are presented in Secs. S6, S7 and S12. Generalizable conclusions are 

hard to infer from numerical comparisons of complex algorithms on complex models. 

Experimentation with different methods, and their tuning parameters, is recommended when 

investigating a new model.

Fig. 4(A) demonstrates an application of ABF to the task of computing a slice of the 

likelihood function over the coupling parameter, G, for simulated data. This slice varies G 
while fixing the other parameters at the values used for the simulation. Fig. 4(B) shows 

a similar plot calculated using BPF with comparable computational effort. Both ABF and 

BPF are successful here, though BPF is more computationally efficient. By contrast, Fig. 

4(C) shows that EnKF has substantial bias in estimating G, as well as considerably lower 

likelihood. Likelihood slices have less inferential value than likelihood profiles, but provide 

a computationally and conceptually simpler setting that can be insightful. Scientifically, 

the slices in Fig. 4 give an upper bound on the identifiability of G from such data, since 

the likelihood slice provides statistically efficient inference when all other parameters are 

known.

4.3 Likelihood maximization and profile likelihood

Likelihood evaluation via filtering does not by itself enable parameter estimation for POMP 

models, however it provides a foundation for Bayesian and likelihood-based inference. In 

particular, filtering algorithms can be modified to carry out likelihood maximization by 

stochastically perturbing parameters in a sequence of filtering operations with decreasing 

perturbation variance (Ionides et al., 2015). We demonstrate this for the measles model in 

Fig. 5 using an iterated bagged filter algorithm which is fully described in Sec. S11.

Monte Carlo methods for computing and maximizing the log likelihood suffer from 

bias and variance, both of which can be considerable for large datasets and complex 

models. Appropriate inference methodology, such as Monte Carlo adjusted profile (MCAP) 

confidence intervals, can accommodate substantial Monte Carlo variance so long as the bias 

is slowly varying across the statistically plausible region of the parameter space (Ionides 

et al., 2017; Ning et al., 2021). Fig. 5 constructs an MCAP 95% confidence interval for 

the coupling parameter, G, using an iterated unadapted bagged filter to maximize over the 

parameters, a, β, σSE, ψ, μEI and μIR. This simulation study, carried out with U = 20 and 

N = 208 , shows that G is identifiable via likelihood-based inference in the absence of 

assumptions about these parameters.

The likelihood estimate provided by bagged filters could be viewed as a composite 

likelihood (Varin et al., 2011) rather than an approximation to the likelihood. However, 
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in situations where the likelihood approximation is found to be adequate, it is convenient to 

take advantage of the tools of likelihood-based inference.

5 Discussion

The nested loops used in the pseudocode for the bagged filters can be computed in 

various different orders to give mathematically equivalent results. There is scope for 

implementations to trade off memory, computation and communication by varying decisions 

on how the loops defined in the pseudocode are coded, including decisions on memory 

over-writing and parallelization. This article focuses on the properties of the quantities 

calculated by the algorithms, leaving room for future research on implementation-specific 

considerations, though some supplementary discussion of memory-efficient implementation 

is given in Sec. S9.

Plug-and-play inference based on sequential Monte Carlo likelihood evaluation has proved 

successful for investigating highly nonlinear partially observed dynamic systems of low 

dimension arising in analysis of epidemiological and ecological population dynamics (Bretó, 

2018; Pons-Salort and Grassly, 2018; de Cellès et al., 2018; Marino et al., 2019). This article 

develops a methodological extension motivated by the analysis of interacting biological 

populations. Similar challenges related to nonlinear non-Gaussian dynamic models arise 

in geophysical modeling. Relative to biological systems, geophysical applications are 

characterized by a greater number of spatial locations, better mathematical understanding of 

the underlying processes, and lower stochasticity. From this literature, the locally weighted 

particle filter of Poterjoy (2016); Poterjoy et al. (2019) is perhaps closest to our approach, 

but the local weights of Poterjoy (2016); Poterjoy et al. (2019) are used to construct a 

localized Kalman gain which is motivated by a Gaussian approximation comparable to 

EnKF. EnKF arose originally via geophysical research (Evensen, 1994) and has since 

become used more widely for inference on SpatPOMP models (Katzfuss et al., 2020; Li 

et al., 2020). However, EnKF can fail entirely even on simple POMP models if the structure 

is sufficiently non-Gaussian. For example, let Xn be a one-dimensional Gaussian random 

walk, and let Yn given Xn = xn be normally distributed with mean 0 and variance xn
2. The 

linear filter rule used by EnKF to update the estimate of Xn given Yn has mean zero for any 

value of Xn, since Xn and Yn are uncorrelated. Therefore, the EnKF filter estimate of the 

latent process remains essentially constant regardless of the data. Models of this form are 

used in finance to describe stochastic volatility.

EnKF could be applied more successfully by modifying model, such as replacing Yn by 

|Yn| , but for complex models it may be unclear whether and where such problems are 

arising. Our results show that there is room for improvement over EnKF on a spatiotemporal 

epidemiology model, though in our example there is no clear advantage for BF methods over 

BPF.

Latent state trajectories constructed in our BF algorithms are all generated from the model 

simulator, appropriately reweighted and resampled, and so they are necessarily valid sample 

paths of the model. For example, spatial smoothness properties of the model through 

space, or conservation properties where some function of the system remains unchanged 
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through time, are maintained in the BF trajectories. This is not true for the block particle 

filter, due to the indepdent resampling of the blocks (see Sec. S14). EnKF preserves linear 

constraints, since the filter procedure perturbs particles using a linear update rule, but cannot 

respect nonlinear relationships. The practical importance of smoothness and conservation 

considerations will vary with the system under investigation, but this property of BF gives 

the scientific investigator one less thing to worry about.

The algorithms UBF, ABF, ABF-IR, GIRF, PF, BPF, and EnKF compared in this article 

all enjoy the plug-and-play property, facilitating their implementations in general-purpose 

software. The numerical results for this paper use the abf, abfir, girf, pfilter, bpfilter and enkf 

functions via the open-source R package spatPomp (Asfaw et al., 2021b) that provides a 

spatiotemporal extension of the R package pomp (King et al., 2016). UBF was implemented 

using abf with J = 1 particles per replicate. The source code for this article is available as 

supplementary material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
log likelihood estimates for a correlated Brownian motion model of various dimensions. 

UBF, ABF and ABF-IR are compared with a guided intermediate resampling filter (GIRF), 

standard particle filter (PF), block particle filter (BPF) and ensemble Kalman filter (EnKF). 

The exact likelihood was computed via a Kalman filter (KF).
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Fig. 2. 
Log(reported cases + 1) for (A) the measles simulation used for the likelihood slice; (B) the 

corresponding UK measles data. The simulation shares the biennial pattern, with most but 

not all cities locked in phase most of the time.
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Fig. 3. 
log likelihood estimates for simulated data from the measles model of various dimensions. 

UBF, ABF and ABF-IR are compared with a guided intermediate resampling filter (GIRF), 

a standard particle filter (PF), a block particle filter (BPF) and an ensemble Kalman filter 

(EnKF).
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Fig. 4. 
Likelihood slices varying the coupling parameter, for the measles model with U = 40 cities, 

computed via (A) ABF; (B) BPF; (C) EnKF. The solid perpendicular lines construct 95% 

Monte Carlo adjusted confidence intervals (Ionides et al., 2017). The true parameter value is 

identified by a blue dashed line.
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Fig. 5. 
An iterated bagged filter used to maximize the likelihood, compute a profile likelihood, 

and hence construct a confidence interval. The profiling is carried out over the coupling 

parameter, G.
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