Skip to main content
. 2023 Jun 13;11:e15351. doi: 10.7717/peerj.15351

Table 3. Studies of sustained attention with machine learning models.

Author Type of subjects Number of subjects Research method Data sources Average accuracy Classification
Borhani et al. (2018) Healthy, age 21–24 years N = 38 (27 males) CNN EEG 73% 2 classes attentional state
Hosseini & Guo (2019) Healthy, age 25,31 years N = 2 (1 male) CNN EEG 91.78% Focusing state and mind wandering
Ho et al. (2019) Healthy N = 16 (8 males) CNN fNIRS 65.43% 3 classes mental workload
Khullar et al. (2021) ADHD, non-ADHD, age 7–21 years ADHD (N = 285), non-ADHD (N = 491) 2D CNN–LSTM fMRI 98.12% ADHD and non-ADHD
Zou et al. (2017) ADHD, non-ADHD, age 7–21 years ADHD (N = 286), non-ADHD (N = 340) CNN MRI 69.15% ADHD and non-ADHD
Mao et al (2019) ADHD, non-ADHD, age 7–21 years ADHD (N = 285), non-ADHD (N = 491) 4-D CNN fMRI 71.3% ADHD and non-ADHD
Chen et al. (2019) ADHD age 10.44 ± 0.75 years, non-ADHD age 10.92 ± 0.69 years ADHD (N = 50) (41 males). non-ADHD (N = 57) (53 males) CNN EEG 90.29% ADHD and non-ADHD
Fouladvand et al. (2018) ADHD, age 13–20 years N = 11,624 LSTM 84% Temporal medication features
Phan et al. (2018) Healthy N = 20 RNN EEG 82.50% 5 sleep stages
Liu & Liu (2017) Healthy N = 27 RNN EEG 74.50% Arousal and valence
Huve, Takahashi & Hashimoto (2018) Healthy RNN fNIRS 63% Driving under clear weather and driving under rainy weather
Rasyid & Djamal (2019) Healthy RNN EEG 89.73% Emotion and attention
Moinnereau et al. (2018) Healthy RNN EEG 83.2% 3 auditory stimuli
Ming et al. (2018) Healthy N = 16 RRN EEG 89.3% 2 classes attentional state
Kuang & He (2014) ADHD N = 222 DBN fMRI 35.19% 4 classes attentional state
Kuang et al. (2014) ADHD N = 94 DBN fMRI 61.90% 4 classes attentional state
Vahid et al. (2019) ADHD, non-ADHD N = 144 EEGNet EEG 83% ADHD and non-ADHD
Hao & Yin (2015) ADHD, non-ADHD N = 873 fMRI 64.70% ADHD and non-ADHD
Dubreuil-Vall, Ruffini & Camprodon (2019) ADHD age 43.85 ± 14.78 years. non-ADHD age 29.90 ± 10.77 years ADHD (N = 20) (10 males). non-ADHD (N = 20) (10 males) Deep CNN EEG 88% ADHD and non-ADHD

Notes.

CNN
convolutional neural networks
EEG
electroencephalogram
fNIRS
functional nearinfrared spectroscopy
ADHD
attention-deficit/hyperactivity disorder
LSTM
Long short-term memory
fMRI
functional magnetic resonance imaging
RNN
recurrent neural networks
DBN
deep belief network