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Summary: Cellular perturbations underlying Alzheimer’s disease are primarily studied 
in human postmortem samples and model organisms. Here we generated a single-
nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying 
degrees of Alzheimer’s disease pathology. We next performed a systematic cross-
disease and cross-species integrative analysis to identify a set of cell states that are 
specific to early AD pathology. These changes–which we refer to as the Early Cortical 
Amyloid Response—were prominent in neurons, wherein we identified a transient state 
of hyperactivity preceding loss of excitatory neurons, which correlated with the selective 
loss of layer 1 inhibitory neurons. Microglia overexpressing neuroinflammatory-related 
processes also expanded as AD pathological burden increased. Lastly, both 
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oligodendrocytes and pyramidal neurons upregulated genes associated with amyloid 
beta production and processing during this early hyperactive phase. Our integrative 
analysis provides an organizing framework for targeting circuit dysfunction, 
neuroinflammation, and amyloid production early in AD pathogenesis. 
 
 
Introduction 
The first pathological sign of AD in the human cortex is the gradual accumulation of 
amyloid beta plaques, followed by the appearance of gliosis, misfolded tau, and 
neurodegeneration. Of critical importance is understanding the coordinated activities of 
neurons and glia during the early phases of the disease that initiate this pathogenic 
cascade1,2. Several postmortem single-cell studies have begun identifying disease-
associated cellular changes in AD, particularly at later histopathological disease 
stages3–8. Inference from postmortem samples can be complicated by peri-mortem 
transcriptional responses to agonal state, cessation of blood flow, hypoxia, and 
neuronal atrophy. Prior cytological9–11 and transcriptional12 analyses demonstrate a 
marked decline, particularly in neurons, of cell health within two to four hours 
postmortem. Consequently, several fundamental questions related to the early stages of 
AD remain unanswered, including which cell types are perturbed the most, what 
molecular mechanisms are dysregulated in neuronal types of different cortical layers, 
and how these early perturbations contribute to the production of misfolded proteins and 
progression of pathology in the human brain. 
 
We reasoned that a deep analysis of samples from living individuals harboring various 
extents of amyloid deposits could provide an opportunity to comprehensively capture 
veridical states associated with early-stage AD pathology. We performed single-nucleus 
RNA-sequencing (snRNA-seq) on a rare set of surgical biopsy samples obtained from 
patients undergoing ventriculoperitoneal shunt placement for treatment of suspected 
normal pressure hydrocephalus (NPH). In a study of 335 individuals, 44% of these 
biopsies contained amyloid beta (Aꞵ) plaques13 and, most importantly, longitudinal 
follow up of multiple cohorts has indicated the presence of Aꞵ within NPH biopsies is 
strongly associated with a decline in cognitive performance and a future clinical 
diagnosis of AD13–15, demonstrating these biopsies capture early AD pathology. To 
ensure that our insights were not restricted to a single cohort and were specific to AD, 
we further developed an accurate integrative analysis framework to incorporate 
published postmortem and mouse model single-cell datasets to construct a 
compendium of 2.4 million uniformly annotated cell profiles across diseases and 
species. The resulting analyses revealed what we collectively term the Early Cortical 
Amyloid Response (ECAR): a suite of consistent tissue changes in specific cell types 
that co-occur with the initial onset of brain amyloidosis. 
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Results 
 
A single-nucleus atlas of human brain biopsies to identify AD pathological 
perturbations 
To capture cellular perturbations in cortex of living individuals in response to AD 
pathology, we collected biopsies–frozen within five minutes of surgical excision to 
ensure fidelity of in vivo transcriptional states–from the frontal cortices (Brodmann areas 
8 and 9) of 52 patients with NPH (Figure 1A). Histopathological examination of the 
biopsies identified 19 with Aꞵ plaques (Aꞵ+), eight with both Aꞵ plaques and 
phosphorylated tau pathology (Aꞵ+Tau+), and 25 biopsies that had neither 
histopathology (Table S1). From the stereotactic position of the catheter insertion site 
recorded by post-surgical CT or MRI (Figure 1A), we determined that the anatomical 
location of sampling did not correlate with AD histopathological burden (Figure S1A). 
We further divided the Aꞵ+ biopsies into three groups by their level of plaque burden 
(Figure S1B). The extent of Aꞵ plaque and tau tangle burden within the biopsies 
correlated inversely with these patients’ Aꞵ-42 CSF levels (p-value < 0.001; Figure 1B), 
and positively with CSF levels of phosphorylated tau (p-value < 0.005; Figure 1B), 
consistent with prior biomarker studies of AD progression16,17. Moreover, the CSF levels 
of phosphorylated tau in Aꞵ+ individuals were similar to individuals without 
histopathology (p-value >0.95; Student’s t-test) and significantly less than an 
independent cohort of 36 clinically diagnosed AD individuals (p-value < 0.004; Student’s 
t-test; Figure 1B). Collectively, these results suggest the severity of biopsy 
histopathology is representative of the overall burden in the brain. 
 
To explore the cell-type-specific changes associated with Aꞵ and tau histopathology in 
the cortex, we obtained 892,828 high-quality nuclei profiles from this biopsy cohort, with 
a median of 17,082 nuclei per individual. By unsupervised clustering18 (Methods), we 
identified the seven major classes of cells in the cortex: excitatory neurons (ExN; 
222,449 nuclei), inhibitory neurons (InN; 83,702 nuclei), microglia (Micro; 59,624 
nuclei), astrocytes (Astro; 73,487 nuclei), endothelial cells/pericytes (Endo; 22,407 
nuclei), oligodendrocytes (Oligo; 396,292 nuclei), and oligodendrocyte progenitor cells 
(OPC; 34,867 nuclei) (Figure 1A). To increase our resolution, we repeated our 
clustering analysis within each class to identify a total of 82 cell types with a median 
size of 3,586 nuclei per type. 
 
An integrative analysis of biopsy and postmortem brain 
Several studies have profiled brain cells under normal and disease conditions using 
human postmortem or mouse samples. However, a direct comparison of their results 
have been hampered by differences in sample qualities, dataset sizes, analysis  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.03.543569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.03.543569
http://creativecommons.org/licenses/by-nd/4.0/


 

4 

 
Figure 1. A fresh-tissue atlas of cortical states associated with AD pathology 
A) Schematic of the frontal cortex brain biopsy sampling workflow. Samples were stained and 
quantitatively assessed for AD histopathology by the 6F3D (Aꞵ) and AT8 (phosphorylated tau) antibodies 
(Methods). Brodmann areas are color-coded in the first panel. B) CSF Aꞵ-42 (left), phosphorylated tau 
(middle) and ratio of the two (right) in association with Aꞵ and tau burden scores (see Methods) in 49 
subjects sampled. We have excluded three individuals for whom the CSF measurements were missing. 
The “ind. AD” refers to an independent cohort of 36 NPH patients who were clinically diagnosed with AD 
prior to, or within one year after, CSF collection. Cohen d (d) effect sizes are reported. C) A summary of 
datasets included in the integrative analysis. Case-control datasets of human brain diseases are labeled. 
pm, postmortem; ASD, autism spectrum disorder; PD, Parkinson’s disease; MS, multiple sclerosis. D) 
Expression of markers of cell classes (top), main neuronal classes (middle), and individual cell types 
(bottom) across four human studies of neurodegenerative disease from the integrative analysis. Each row 
indicates the normalized expression level of each gene across the select human postmortem datasets 
(color-coded on y-axis) and 82 cell types. A detailed analysis of cell types and associated markers can be 
found in Table S3. 
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pipelines, and cell type annotations. We reasoned that the size and quality of our biopsy 
dataset would be sufficiently analytically powered to conduct a comprehensive 
integrative analysis of these datasets with highly granular cell type specificity. For our 
integrative analysis, we considered 27 published single-cell/nuclei studies of the brain 
derived from both human disease studies and mouse disease models (Figure 1C). 
Human studies included postmortem samples from individuals with AD, Parkinson’s 
disease (PD), multiple sclerosis (MS), and autism spectrum disorder (ASD) (Table S2). 
Mouse datasets included models of AD and ALS, as well as de/re-myelination, aging, 
prenatal, and food deprivation conditions among others (Table S2). To accurately 
combine these datasets with our biopsy cohort, we developed an optimized single-cell 
integration framework that efficiently handled the substantial technical (e.g., sample 
preparation, sequencing platforms and depth) and biological (e.g., human vs mouse) 
variation that exists among these datasets (Methods). We employed three criteria to 
validate the quality of our integrative analysis results: 1) uniform mixing of the datasets 
across clusters; 2) cells expressing similar cortical cell type markers are aligned with 
each other across datasets and organisms; 3) reported cell type identities in each of the 
studies are preserved in the aligned space. A total of 2,406,980 cells were included in 
our integrative analysis after removing artifacts, low quality cells, and doublets. We next 
implemented a random walk method to transfer cell type annotations from our biopsy 
cohort to each of 27 other studies, thereby uniformly annotating all datasets to the 82 
cell types (Figure 1D; Table S3). Comparison across human datasets demonstrated our 
biopsy cohort had among the highest number of cells sampled per cell type and minimal 
expression of artifactual genes often associated with sample quality and dissociation 
methods19,20 (Figures S2-S4). Congruently, our attempts failed to achieve similarly high 
integration resolution after exclusion of our biopsy dataset from the analysis (data not 
shown). 
 
We then investigated how agonal states and the postmortem interval affected gene 
expression patterns in different cell types by comparing our biopsy dataset with 
postmortem data, and identifying recurrent correlates with postmortem interval across 
datasets. Our analysis demonstrated a small but statistically significant decrease in 
gene expression levels in both excitatory (p-value < 0.038; Meta analysis) and inhibitory 
neurons (p-value < 0.024; Meta analysis, Figure S5A), as well as a trend towards 
increased gene expression levels in microglia (Figure S5A). Consistently, the ratio of 
glial to neuronal gene expression was lowest in the biopsy dataset, and this ratio 
increased with longer postmortem intervals within postmortem datasets (Figures S5B-
S5D). Together, our results, in combination with the expression patterns of artifact 
associated genes (Figures S3 and S4), indicate loss of transcriptional complexity in both 
inhibitory and excitatory neurons, as well as an increase in artifact-related genes in 
microglial cells in response to peri- and post-mortem events.  
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Meta-analysis reveals cortical cellular changes in early AD pathology 
To identify cortical tissue changes across progression of AD pathology, we divided our 
biopsy samples into those with only Aꞵ pathology (Aꞵ+) and those with both Aꞵ and tau 
pathology (Aꞵ+Tau+). In parallel, we also analyzed two AD postmortem studies3,4 that 
sampled both neuronal and glial cells from subjects with low Braak pathology staging 
and one dataset that only measured glia6 (Methods). We first tested for alterations in 
relative abundance of cell populations with increasing histopathological burden. A meta-
analysis of cell proportions identified two neuron types–NDNF-PROX1 and LINC00507-
COL5A2–that were significantly depleted (FDR-adjusted p-value < 0.05) (Figure 2A) in 
each of the cohorts with early amyloid pathology. The NDNF-PROX1 population 
expressed NDNF and RELN, markers of an interneuron type known to reside primarily 
in layer 1 (L1) of cortex21. The LINC0050s7-COL5A2 population expressed CUX2 and 
LINC00507, consistent with a layer 2/3 (L2/3) telencephalic identity21. Seven additional 
cell types showed a trend toward significant loss (0.05 < FDR-adjusted p-value < 0.12; 
Table S4): two upper layer excitatory types (RORB-SCTR, LINC00507-ACVR1C), three 
inhibitory types (VIP-HTR3A and SST-PENK that are upper-layer-enriched,and VIP-
NPSR1 that spans cortical layers; Figure S6A), one microglia type (CX3CR1) and one 
oligodendrocyte type (BACE2-L3MBTL4), while one microglia type (GPNMB-LPL) 
showed a trend toward expansion (Figure 2A). We further confirmed that the observed 
changes in neuronal populations do not correlate with the severity of any iNPH 
symptoms within the biopsy cohort (Figure S6B). Most importantly, our refined 
integration strategy and meta-analysis revealed similar alterations in neuronal and 
microglial proportions within each of the published postmortem AD case-control cohorts 
(Figure 2B), underscoring the robustness of the observed cellular changes associated 
with early-stage AD pathology.  
 
In subjects with high histopathological burden, the proportional losses of the NDNF-
PROX1 and LINC00507-COL5A2 neuronal populations were no longer significant 
(Figures 2A and 2B), likely due to additional loss of other cortical neurons, since the 
overall proportions of excitatory and inhibitory neurons were both lower in these 
subjects across cohorts (Figure S6C). Instead, we identified a significant (FDR-adjusted 
p-value < 0.05) expansion of the GPNMB-LPL microglia type and loss of the major 
homeostatic microglia population, marked by expression of CX3CR1 (Figures 2A and 
2B). In addition, while not consistently altered in all three human studies (meta-analysis 
p-value < 0.11), one astrocyte population expressing CHI3L1 and GFAP increased in 
abundance in the late stages of disease in our biopsy cohort (p-value < 0.05; odds ratio 
(OR): 1.5), one postmortem cohort4 (p-value < 0.075; OR: 1.6), and in a mouse model 
of AD22 (p-value < 0.02; OR: 1.4) (Table S4). Together, these results indicate that 
gliosis becomes an increasingly prominent feature of cortical tissue as histopathology 
worsens. 
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Figure 2. Identification of early- and late-stage cellular perturbations in AD 
A) Volcano plot of a meta-analysis of cell type proportional changes (Methods) in early- and late-stage 
AD-related samples. Cell types reaching significance are labeled. Colors indicate cell class assignment. 
Dashed lines represent FDR thresholds of 0.05 and 0.1. B) Individual log-odds ratios of six significant cell 
types in Aꞵ+ (triangles) and Aꞵ+Tau+ samples (circles) for our biopsy cohort and published postmortem 
AD case-control datasets. Whiskers indicate standard errors. C) Number of DE genes in each cell class, 
stratified by biopsy histopathology. JK: Jack-knife. D) Fold change pattern concordance of DE genes 
between Aꞵ+ and Aꞵ+Tau+ samples. The y-axis shows the average logFC difference between Aꞵ+Tau+ 
and Aꞵ+. The Z-scores on x-axis are based on the transformation of p-values from a paired t-test analysis 
on the union of top 300 protein-coding genes (sorted by their jack-knifed p-value) from each condition. E) 
Fraction of DE genes in Aꞵ+ and Aꞵ+Tau+ biopsies that are similarly up- or down-regulated between the 
seven major cell classes and their associated subtypes in biopsy samples. The fraction was calculated by 
examining the top 300 protein-coding DE genes at the cell class. The dendrogram illustrates the 
subdivision of the seven major cell classes to a total of 82 subtypes. 
 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.03.543569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.03.543569
http://creativecommons.org/licenses/by-nd/4.0/


 

8 

Next, we examined how the transcriptional phenotype of each cell type changes across 
early and late histopathological stages of AD. We used a pseudocell-based strategy, 
coupled with mixed-effect modeling and jack-knifing (Methods), to robustly identify 
differentially expressed (DE) genes in both the Aꞵ+ and the Aꞵ+Tau+ biopsies (Figure 
2C; Table S5). To better understand the association of gene perturbations with 
progression of AD pathology, we developed a metric to quantify the relative magnitude 
of transcriptional alteration across each cell type in early- versus late-stage samples 
(Methods). For most cell types and most notably in microglia populations, we found that 
the transcriptional alterations quantified in Aꞵ+Tau+ biopsies were consistent with, but 
stronger than, those changes measured in Aꞵ+ samples (Figure 2D). However, several 
excitatory neuron populations showed transcriptional perturbations in the Aꞵ+ samples 
that were absent in the Aꞵ+Tau+ biopsies (Figures 2C and 2D), indicating their passage 
through a distinct transcriptional state early in histopathological progression. To further 
assess the extent of overlap in dysregulated transcriptional programs among related cell 
populations, we calculated the fraction of DE genes in each of the seven major cell 
classes that show consistent DE within each of their constituent cell types. This 
comparison demonstrated that DE genes identified by the analysis of each of seven 
major cell classes exhibited highly preserved perturbation patterns (i.e., similar up- or 
down-regulation patterns) within their related cell types (Figures 2E and S6D). 
Collectively, our DE analyses demonstrated that: a) perturbation of the transcriptomes 
increases in magnitude as neuropathology worsens–with the exception of excitatory 
neurons, which show a distinct early phase response; and b) that individual cell type 
responses are largely similar within a major cell class. 
 
Neuronal loss and hyperactivity in early AD pathology 
AD is increasingly recognized as a systems disease where interactions of different cell 
types define its pathological course. The strongest proportional change in our meta-
analysis of the early AD pathological stage was the loss of NDNF-PROX1 inhibitory 
neurons (Figure 2A). We therefore wondered whether the loss of these inhibitory 
neurons could contribute to the onset and early progression of AD by induction of 
specific transcriptional states in other cortical cell types. To examine this, we correlated 
the fraction of NDNF-PROX1 inhibitory neurons with the extent of molecular 
perturbations in all other cell types (Methods). Intriguingly, applying this analysis to the 
Aꞵ+ biopsy samples identified a specific and significant (FDR-adjusted p-value < 0.01) 
correlation between NDNF-PROX1 depletion and upregulated ExN DE genes in the 
LINC00507-COL5A2 excitatory neurons (Figures 3A and S7A), which themselves are 
vulnerable to loss in early AD pathology (Figure 2A). Alternative analysis methods and 
robustness analyses confirmed the strength of association between the ExN DE 
signature in LINC00507-COL5A2 with the loss of NDNF+ expressing cells in Aꞵ+ 
individuals (Figures S7B-S7E). Moreover, this association was also significant (FDR- 
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Figure 3. NDNF-PROX1 inhibitory neuron loss is associated with a hyperactivity signature in L2/3 
excitatory neurons. 
A) Logistic mixed-effect model regression of NDNF-PROX1 proportion versus cell type transcriptional 
signature in Aꞵ+ subjects. The dashed horizontal line represents the FDR threshold of 0.05. B) 
Associations (by logistic mixed-effect model) between the proportion of each inhibitory neuron type with 
each ExN type’s transcriptional signature in Aꞵ+ subjects. The red dots indicate the regression Z-score of 
the LINC00507-COL5A2 neurons with the corresponding inhibitory neuron cell type. The dashed line 
represents an FDR threshold of 0.05. Center line, median; box limits, upper and lower quartiles; whiskers, 
1.5x interquartile range. See Figure S7H for more details. C) Scatter plot comparing the logFC in the 
ExNs of Aꞵ+ (x-axis) and Aꞵ+Tau+ samples (y-axis). Visualization is based on the union of top 300 
protein-coding DE genes (sorted by jack-knifed p-value) in either group. D) Logistic mixed-effect model 
regression of NDNF-PROX1 proportion versus early-specific up-regulated DE genes (green dots in C) 
and up-regulated DE genes shared in both Aꞵ+ and Aꞵ+Tau+ samples (blue dots in C) for each ExN cell 
type. The dashed lines represent an FDR threshold of 0.05. Center line, median; box limits, upper and 
lower quartiles; whiskers, 1.5x interquartile range. E) Logistic mixed-effect model regression of NDNF-
PROX1 cell fraction versus expression of neural activity signatures23 in each ExN type in Aꞵ+ 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.03.543569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.03.543569
http://creativecommons.org/licenses/by-nd/4.0/


 

10 

Continuation of Figure 3 legend. 
samples (one-sided). The dashed line represents a one-sided FDR threshold of 0.05. PRG, primary 
response genes; SRG, secondary response genes. F) Scatter plot showing normalized NDNF-PROX1 
fraction (x-axis) and the percent of LINC00507-COL5A2 ExNs with high expression of the core immediate 
early genes FOS, JUNB, ARC, NPAS4, ERG1, and ERG2 (y-axis, Methods) in Aꞵ+ subjects. A logistic 
mixed-effect model was used to calculate the p-value. G) GSEA of Reactome pathways on DE results 
from subjects with varying Aꞵ and tau burdens, across ExN types. Dots outlined in black denote 
significant terms (FDR-adjusted p-value < 0.05). Aꞵ+ individuals with Aꞵ burden scores of 2 and 3 are 
grouped together. H) Concordance of DE genes between different stages of AD pathology within 
excitatory neuron cell types. The LINC00507+ and RORB+ were selected as upper layer excitatory 
neurons and FEZF2+, CTGF+, and THEMIS+ populations as lower layer. I) ExN DE genes whose 
products are involved in synapse vesicle cycle and trafficking (SYT1, SNAP25, and CDK5), amyloid 
precursor protein (APP), and receptors of oligomeric Aꞵ (PRNP, ATP1A3, and PGRMC1) across different 
Aꞵ and tau burdens. The outlined dots represent DE genes with jack-knifed FDR-adjusted p-value < 0.01. 
J) GSEA of human KEGG gene sets using DE genes of WIF1+ homeostatic astrocytes across increasing 
Aꞵ and tau burden. Outlined dots represent significant terms (FDR-adjusted p-value < 0.1). 
 
 
adjusted p-value < 0.05) within the control biopsy samples (Figures S7F and S7G), 
reinforcing that this pair of neuronal changes–loss of NDNF-PROX1 and induction of a 
specific transcriptional state in LINC00507-COL5A2–occurs early in disease. We next 
tested whether transcriptional response in LINC00507-COL5A2 neurons is specifically 
induced by loss of NDNF-PROX1 cells, or is also associated with the loss of other 
inhibitory neurons. Importantly, the relationship between the inhibitory neuron loss and 
ExN transcriptional state was specific to NDNF-PROX1 and VIP-HTR3A inhibitory 
neurons in Aꞵ+ biopsies (Figure 3B), the two most depleted inhibitory cell types in the 
early stage of AD. These results suggest a tight and specific coupling between layer 1 
inhibitory neuron loss and transcriptional alterations in layer 2/3 excitatory neurons. 
 
We next sought to better understand the association of the ExN DE signature with Aꞵ 
plaque pathology. Comparison of ExN DE genes between Aꞵ+ and Aꞵ+Tau+ biopsies 
revealed a bimodal pattern among upregulated DE genes (Figure 3C), in which one DE 
gene set was evident solely in the early stage of pathology while another was present in 
both early- and late-stage samples. Given their differences in expression trajectory, we 
asked whether these two sets of DE genes were differentially correlated with NDNF-
PROX1 inhibitory loss. Only the DE genes specifically found in response to early AD 
pathology, particularly within the LINC00507-COL5A2 population, correlated with 
NDNF-PROX1 proportional loss (Figure 3D).  
 
The activity of layer 1 NDNF-expressing inhibitory neurons has been shown to play 
crucial roles in the integration of long-range inputs into cortex, particularly through gain 
modulation of whole cortical columns24,25. We wondered if their loss may alter 
excitability of nearby L2/3 pyramidal cells. Indeed, we identified a significant association 
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between NDNF-PROX1 loss and upregulation of neural activity response genes23 
specifically within LINC00507-COL5A2 excitatory neurons in Aꞵ+ individuals (FDR-
adjusted p-value < 0.01; Figure 3E). Furthermore, Aꞵ+ biopsy samples with a greater 
proportional loss of NDNF-PROX1 cells showed a higher percentage of LINC00507-
COL5A2 cells expressing the core immediate early genes (FOS, JUNB, ARC, NPAS4, 
ERG1, and ERG2) that are induced after neuronal activity26 (p-value < 0.014; Figure 
3F). Increased activity of excitatory neurons would be expected to affect their 
metabolism. Consistent with this, gene set enrichment analysis (GSEA) demonstrated 
increased expression of metabolism- and mitochondria-related gene sets (Methods) 
specifically in biopsies with the lowest level of Aꞵ plaque burden, further reinforcing the 
relevance of the hyperactivity phenotype to the early stages of AD pathology (Figure 
3G). We also found an upregulation of gene sets indicating a cell-protective response to 
increased metabolism, including cholesterol biosynthesis, and responses to both 
reactive oxygen species (ROS) and DNA damage (Figure 3G). The enrichment of these 
terms was diminished in biopsies with higher burdens of Aꞵ and the presence of 
phosphorylated tau (Figure 3G), a pattern that was stronger in upper layer excitatory 
neurons. Consistently, comparing samples with lowest Aꞵ burden with Aꞵ+Tau+ 
demonstrated a significantly higher divergence of the DE patterns of upper layer 
neurons expressing LINC00507 and RORB compared to the lower layer excitatory 
neurons expressing FEZF2, THEMIS, and CTGF (p-value < 0.003; Student’s t-test; 
Figure 3I), demonstrating the specificity of this response to upper layer cortical neurons 
at the early stages of Aꞵ plaque formation. Collectively, our results demonstrate NDNF-
PROX1 inhibitory neuron loss is correlated with hyperactivity and preferential loss of 
layer 2/3 excitatory neurons in the prefrontal cortex with low Aꞵ plaque burden. 
 
Hyperactivity of neurons can trigger homeostatic pre- and postsynaptic mechanisms27. 
In subjects with a low Aꞵ burden, we identified upregulation of SNAP25, SYT1, and 
CDK5 in excitatory neurons, three genes whose products are involved in presynaptic 
vesicle release28–30 (Figures 3G and 3I). Increased activity of the presynaptic vesicle 
cycle can elevate Aꞵ production31. Congruently, we found upregulation of genes 
encoding for protein components involved in Aꞵ fibril formation, such as APP itself, only 
in the Aꞵ-low disease samples (Figures 3G and 3I). The oligomeric Aꞵ receptor genes 
PRNP, ATP1A3, and PGRMC1, whose protein products influence neuronal activity 
through the modulation of N-methyl-D-aspartate (NMDA) receptors32, were similarly 
upregulated in excitatory neurons at the early stages of AD pathology (Figure 3I). 
Homeostatic astrocytes also play critical roles in supporting synaptic function and 
coordinating antioxidant responses, especially in the context of neuronal 
hyperactivity33,34. In our integrative analysis of astrocytes, we identified one WIF1+ type 
with low expression of GFAP and high expression of EAAT1, EAAT2, and GSTP1 
genes, which encode for critical components of glutamate/glutathione cycling (Figures 
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S7I and S7J). The WIF1-expressing astrocytes showed enrichment of DE genes related 
to glutathione metabolism, lysosomal machinery, and fatty acid degradation specifically 
in subjects with low Aꞵ burden (Figure 3J), consistent with gene sets previously 
reported to be upregulated in the astrocytic response to hyperactive neurons34. 
Together, these results suggest that aberrant activity and metabolism of upper layer 
pyramidal cells perturb synapse homeostasis and astrocyte functioning in the brain. 
  
Expanded microglia populations with AD-specific alterations 
Our integrative analysis across four AD-related cohorts indicated a mild expansion of 
GPNMB-expressing microglia population at early stages of AD pathology that further 
expands and becomes the strongest signal in samples with high histopathological 
burden (Figure 2A; Table S4). Human genetics and transcriptome studies have strongly 
implicated microglia in the AD pathogenic process35–38. A reactive population expressing 
GPNMB was also identified as enriched in an AD animal model near amyloid plaques39, 
but its connection to human in vivo microglial states–in AD, normal aging, and other 
diseases–remains debated. To more deeply explore microglial states in AD pathology, 
we leveraged our well-powered integrative analysis of 400,743 microglia profiles across 
human and mouse studies from diverse brain regions and biological conditions, 
including 59,624 high-quality microglia nuclei (median number of genes per nucleus = 
2,384) from our biopsy cohort (Table S2). We more deeply sub-clustered the microglia 
profiles into a total of 13 microglial states (Figures 4A and 4B), including five 
homeostatic (HM) states, a chemokine-enriched state (CRM-CCL3), three reactive 
states expressing GPNMB (GPNMB-NACA, LPL-CD83, and GPNMB-EYA2), an 
interferon gene-enriched state (IRM-IFIT2), and a proliferative (Prolif) state (Figures 4A 
and 4B; Table S3). Comparing the microglia populations, we observed the main 
microglial markers, including SLC2A5, CX3CR1, CSF1R, P2RY12 were downregulated 
in the three GPNMB-expressing populations relative to the homeostatic microglial cells, 
but were still expressed at higher levels than macrophages and myeloid cells (Figure 
4A). One of the smaller homeostatic microglia populations, which we designated HM-2, 
also exhibited high expression of genes associated with technical dissociation artifacts, 
including FOS and JUNB19. All microglia states were well represented across datasets, 
biological conditions, and sequencing platforms. Moreover, we observed that markers of 
microglia states correlated strongly across different human brain regions, which is 
consistent with previous reports40,41 (Figures S8A-S8D). 
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Figure 4. Precise molecular definitions of microglial states activated in early and late AD. 
A) Expression of select marker genes (Methods) across human neurodegeneration datasets in the 
microglia integrative analysis. The expression values represent pseudobulk expression of each marker in 
each cell state and dataset. B) Uniform manifold approximation and projection (UMAP) representation of 
microglia profiles from integrative analysis, colored by the 13 identified states. C) Dot plot of -log10-
transformed p-values for MAGMA enrichment analysis42 (y-axis) of AD, PD, or ASD genetic risk in the up-
regulated DE genes of each cell class. Dots are colored by cell class membership. Dashed line 
represents an FDR threshold of 0.05. D) Dot plot of -log10-transformed p-values for a Fisher’s exact test 
assessing the overlap between microglial DE genes with markers of each of the 13 microglial states 
(Methods). E) Radar plot representation of enriched gene sets in markers of the three GPNMB-LPL 
states. The marker analysis was conducted by comparing the three cell states against each other. See 
Table S6 for more details. F) Association of proportion of each microglial state with early and late AD 
pathology, as well as PD and ASD. In meta-analysis columns, black dots represent microglia states with 
significant changes in cell state proportions (FDR-adjusted p-value < 0.05). The scale of points is based 
on the absolute Z-score values. G) Distribution of the fraction of markers shared between the biopsy 
cohort and each other dataset (y-axis), in each microglial state (x-axis). Datasets are stratified by species. 
Mean values are denoted with a line. Only genes expressed in more than 1% of cells were considered in 
the analysis of each dataset. H) Statistical comparison of the differences in (G) by Student’s t-test. The 
dashed line represents an FDR threshold of 0.05. 
 
 
Next, we examined how each of these 13 microglial states was affected by the 
presence of Aꞵ. Differential expression analysis across all microglia in our cohort 
identified a pattern that was highly similar in each of the 13 states (Figures S8E and  
S8F), suggesting that all microglia states respond to Aꞵ accumulation in a similar 
manner. This transcriptional pattern was also highly consistent across postmortem 
cohorts (Figure S8G). The DE signature showed upregulation of genes whose protein 
products are involved in microglia neuroinflammatory responses, including phagocytosis 
(COLEC12), antigen presentation (CD74 and HLA genes), lipoprotein metabolism and 
biosynthesis (APOE, OLR1, ATG7), fatty acid metabolism (ACSL1), autophagy (ATG7, 
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ATG16L2), and lysosomal function (ASAH1, NPC2, SLC11A1, PSAP) (Table S5). 
Underscoring the pathological relevance of this common microglial DE signature, we 
found that it was significantly (FDR-adjusted p-value < 0.05) enriched for the expression 
of genes implicated in AD by common variant case-control studies35,36, including: 
APOE, MS4A6A/4A, TREM2, and INPP5D (Figure 4C, Methods). In addition, 
intersection of this DE signature with marker genes for each of the 13 states showed 
highly significant overlap with markers of GPNMB-EYA2 and LPL-CD83 microglia (FDR-
adjusted p-value < 0.001; Fisher’s exact test; Figure 4D), indicating a transcriptional 
transition across microglia cells towards a state more resembling the GPNMB-EYA2 
and LPL-CD83 populations. These results indicate that microglia cells collectively 
transition towards a transcriptional state with high expression of AD risk genes and 
neuroinflammatory-related processes as AD pathological burden increases in human 
brains. 
 
We focused particularly on the three reactive GPNMB+ states, given their disease 
relevance. All three states highly expressed genes related to microglial reactivity, 
including APOE, ITGAX, MITF, and SGK1 (Figure 4A). However, comparative marker 
analysis between the three states revealed substantial differences. The GPNMB-NACA 
population preferentially expressed genes involved in antigen processing and 
presentation, as well as lysosomal and phagosomal function relative to the other two 
states (Figure 4E). By contrast, the GPNMB-EYA2 microglia preferentially expressed 
genes involved in autophagy (e.g., IGF1R, ATG7, and ATG16L2) and response to 
insulin (e.g., MYO5A, IGF1R, and PPARG) (Figure 4E). This cell state also expressed 
IL15, a key modulator of the nervous system inflammatory response43 (Figure 4A). The 
LPL-CD83 microglia expressed genes, including TGFBR1 and SMAD3, which encode 
for key proteins in TGF-ꞵ signaling (Figure 4A), and showed enrichment of genes 
involved in extracellular structure organization, response to cytokines, focal adhesion, 
and actin cytoskeleton (Figure 4E). Both IL-15 and TGF-ꞵ also mediate 
neuroinflammatory cross-talk between astrocytes and microglia44,45. Supporting this 
notion, we found a strong positive correlation between the expression of GFAP in 
astrocytes and the expansion of GPNMB-EYA2 and LPL-CD83 microglia states in our 
cohort (Figure S8H). Together, we find transcriptional heterogeneity among reactive 
microglia cells in human brains that points to specialized functional roles in responding 
to cues from their surrounding microenvironment. 
 
We next conducted a meta-analysis to ask which of these microglial states is 
specifically enriched in AD, and how these states relate to those found in other 
neurodegenerative diseases and disease models. Across the three AD-related datasets 
with sufficient numbers of microglia to power proportional testing, we identified an 
expansion of the LPL-CD83 and GPNMB-EYA2 states in both early and late stages of 
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AD histopathology (FDR-adjusted p-value < 0.05; Figure 4F). Interestingly, the GPMNB-
EYA2 state was also enriched in a meta-analysis of two PD datasets (FDR-adjusted p-
value < 0.002; Figure 4F), while LPL-CD83 was exclusively expanded across the AD 
datasets. Neither GPNMB-expressing microglia population was expanded in individuals 
with ASD, underscoring the specific role of these microglia in neurodegenerative 
diseases. In contrast to the human datasets, only the GPNMB-NACA state was 
consistently expanded in AD mouse models (Figure S8I). This state was also increased 
in several other mouse datasets, including a model of amyotrophic lateral sclerosis, in 
both juvenile and aged mice, and in response to demyelinating injury (Figure S8I). To 
better understand the underlying factors contributing to this apparent divergence in 
microglia response, we performed a systematic marker analysis of the 13 microglia 
states across the human and mouse datasets that are included in our integrative 
analysis. First, given the superior size, quality, and coverage of our human biopsy 
dataset, we used it as the base to reliably identify markers of each state. We next 
examined the concordance of marker genes in each of the remaining datasets. As 
expected, we found that microglia states are highly consistent across human datasets. 
Although human microglia states were less preserved in the mouse datasets in overall, 
preservation was notably lower for the mouse LPL-CD83 and GPNMB-EYA2 states 
(Figures 4G and 4H), suggesting these transcriptional states are less well recapitulated 
by laboratory mice. Collectively, our results demonstrate shared and AD-specific 
microglia responses to disease in the human brain, and selective divergence of the 
most disease-relevant states in mouse models. 
 
Amyloidogenic cell populations in human frontal cortex 
The production of amyloid in the brain has largely been assumed to be only in neurons 
but has been challenging to directly study in human tissue. We leveraged our high-
quality surgical biopsy dataset to assess amyloidogenicity in each cell type using 
transcriptional signatures as a proxy. We took an unbiased approach, assessing the 
enrichment of a set of 49 genes known to regulate Aꞵ production and secretion in each 
cell type (Table S7). Interestingly, GSEA against an ordered list of DE genes for each of 
the seven cell classes identified not only excitatory neurons but also oligodendrocytes 
as having significant, positive enrichment for the amyloid gene set (FDR-adjusted p-
value < 0.05, Figure 5A, Methods). The enrichment in these two cell classes was robust 
to the statistic used to order genes (Figure S9A). A leading-edge analysis identified 
specific genes that were highly up-regulated (including APP, LRRTM3, and ITM2B) and 
down-regulated (such as BACE2, SORL1, and PICALM) in biopsy samples with Aꞵ 
plaques in our cohort (Figure S9B). 
 
The unexpected enrichment of amyloid-related genes in oligodendrocytes prompted us 
to investigate whether they share a common DE gene signature with excitatory neurons.  
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Figure 5. Cell-type-specific dysregulation of amyloid formation in the human frontal cortex 
A) GSEA trace plot of amyloid-associated gene set ordered by their signed p-value from DE analysis 
across the seven cell classes. The x-axis shows the rank order of the DE genes in corresponding cell 
classes; the y-axis is the normalized enrichment scores (NES) from GSEA. Bold lines indicate GSEA 
traces for significant cell classes, oligodendrocytes and excitatory neurons. The dashed line indicates 
NES score corresponding to FDR threshold of 0.05. B) Dot plot of -log10-transformed FDR-adjusted p-
values of GSEA results of the top 300 upregulated protein-coding genes (sorted by their jack-knifed p-
values) from each cell class against an ordered list of DE genes in oligodendrocytes. Dotted red line 
indicates significance at FDR threshold of 0.05. C) Multidimensional scaling (MDS) low-dimension 
embedding of gene ontology terms significantly enriched in intersect of DE genes between 
oligodendrocytes and excitatory neurons from REVIGO46 (see Methods). Size of dots indicate 
significance values. D) GSEA of amyloid gene set against cell type level DE genes across increasing 
levels of Aꞵ and tau burden. Cell types are grouped based on their major cell class annotations. The 
dashed line represents a significance threshold of FDR-adjusted p-value < 0.05. E) Schematic of 
regulation of Aꞵ formation, intracellular transport, and degradation/clearance pathways, showing the 
substituent in each pathway genes that together comprise the amyloid gene set (Table S7). F) Excitatory 
neuron and oligodendrocyte DE results across increasing levels of Aꞵ and tau burden for genes found by 
the leading edge analysis in A. The size of each dot is scaled by p-values and the color of each dot 
denotes the logFC. G) Signed -log10-transformed p-values from GSEA results for the amyloid gene 
set on Oligo DE genes from postmortem AD, PD, MS, and ASD cohorts. 
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Assessment of the degree of overlap between DE genes from oligodendrocytes and 
other cell classes revealed that the excitatory neuron DE genes had the most significant 
degree of overlap (FDR-adjusted p-value < 0.05; Figure 5B), which was consistent 
across a wide range of gene set sizes tested (Figure S9C). The high overlap of DE 
genes between oligodendrocytes and excitatory neurons is in contrast with the overall 
expression of genes in oligodendrocytes, which overlaps most with OPC populations 
(Figure S9D), indicating a selective dysregulation of shared processes in 
oligodendrocytes and excitatory neurons. A gene ontology analysis of the intersecting 
co-regulated genes identified enrichment for multiple terms, including those related to 
amyloid fibril formation (Figure 5C), further suggesting a similar, shared Aꞵ-related 
response. Remarkably, this signature was most prominent in the samples with lowest 
Aꞵ burden for both excitatory neurons and oligodendrocytes (FDR-adjusted p-value < 
0.05, Figures 5D, S9E and S9F). The DE genes that made up the leading edge from 
GSEA were involved in multiple aspects of amyloid processing, including regulation of 
APP transcription, beta-secretase regulation, and degradation/clearance pathways for 
Aꞵ peptides (Figure 5E). These changes included the downregulation of genes known 
to decrease the production or else help clear Aꞵ peptides, such as SORL1, BACE2, and 
PICALM, as well as the upregulation of genes involved in amyloid formation like 
RAB11A, LRRTM3, and APP itself (Figure 5F). Crucially, the Aꞵ gene set was 
consistently enriched across oligodendrocytes in a meta-analysis of postmortem cohorts 
with low AD histopathology3,4 (Figure S9G), and not in DE genes from other disease 
states, including PD47,48, ASD49, and MS50 (Figure 5G), reinforcing its robust and 
specific association with AD across cohorts. 
 
To experimentally assess the relative Aꞵ-forming potential of these two cell populations, 
we differentiated the H1 embryonic stem cell (ESC) line into mature oligodendrocytes 
(iOligos) and excitatory neurons (iExNs) (Figure 6A; Methods). In our iExN culture, we 
found nearly all cells expressed major excitatory neuron markers, as measured by 
single-cell RNA-sequencing (Figures S10A-S10C). Single-cell analysis (Figure 6B) of 
our iOligo cultures showed robust expression of numerous genes known to play roles in 
myelin function such as MBP, PLP1, and CNP, as well as transcription factors important 
for oligodendrocyte differentiation and maturation such as SOX10 and NKX2-2 (Figures 
6C and S10D-S10F). These genes were not expressed at high levels in our excitatory 
neuron cultures, which instead were marked by canonical neuronal marker genes such 
as RBFOX3, SLC17A7, and TUBB3 (Figure 6C). Importantly, both cultures expressed 
appreciable levels of all the necessary machinery to produce amyloid beta protein 
(Figure 6D). Further, immunohistochemistry of key proteins defining the oligodendrocyte 
lineage, such as MBP and O4, showed a linear, significant increase upon induction of 
SOX10 (Figure 6E, Figure S10I, p-value < 0.05, linear mixed-effect model), while 
markers of other cell types were not significantly associated (Figures S10G and S10H).  
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Figure 6. Quantitation of Aꞵ production by human mature oligodendrocytes and excitatory 
neurons 
A) Schematic of differentiation of ESCs and ELISA-based quantification of Aꞵ from conditioned media. B) 
Two-dimension UMAP embeddings of single-cell expression profiling for ESC-derived iOligo (left) and 
iExN (right) cultures. C) Expression of key marker genes in ESC-derived iOligo and iExN cultures. D) Dot 
plot depicting scaled expression of essential Aꞵ machinery in ESC-derived cultures of iOligos and iExNs. 
E) Representative images of immunofluorescence stains of O4 and MBP in ESC-derived iOligo cultures 
five days after doxycycline addition. F) Normalized Aꞵ protein abundance for ESC-derived iExNs (top) 
and iOligos (bottom) across days of differentiation. Center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5x interquartile range; points, outliers. G) Fractional abundance of Aꞵ protein levels 
relative to median Aꞵ protein levels in DMSO condition for PSEN inhibitor-treated and BACE inhibitor-
treated conditioned media samples for ESC-derived iOligos and iExNs. Error bars indicate one standard 
deviation above and below the mean value. H) Ratio of Aꞵ-38 to Aꞵ-40 and Aꞵ-40 to Aꞵ-42 species from 
conditioned media obtained from ESC-derived cultures of iExNs (left) and iOligos (right). Center line, 
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. 
 
 
An ELISA-based quantification of amyloid-beta peptides from our iOligo cultures 
(Methods) showed a linear, three-fold increase in Aꞵ upon SOX10 induction (Figure 6F). 
We observed a similar fold increase after induction of differentiation in the iExN culture 
(Figure 6F). Indeed, the total abundance of Aꞵ was not significantly different (p = 0.497, 
Student’s t-test, Figure 6F) between iExN and iOligo at their respective differentiation 
endpoints, suggesting a similar intrinsic cell-autonomous capacity to produce amyloid 
beta. As predicted with our analysis of single-nucleus transcriptome data, we could not 
detect any Aꞵ in media taken from ESC-derived microglia cultures, with raw values 
similar to those found in an unconditioned media (Figure S10J). Further supporting the 
functionality of Aꞵ production and processing machinery in both populations, treatment 
of both iOligo and iExN cultures with a beta-secretase (BACE) inhibitor or gamma-
secretase inhibitor caused a 10-fold reduction in total Aꞵ protein levels in both cell 
types (Figure 6G). Finally, we sought to determine whether the species composition of 
amyloid peptide production was significantly different between cell types given the well-
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established higher aggregation and amyloid formation potential of longer species. We 
found that Aꞵ species ratios were not significantly different (p-value = 0.64, Student’s t-
test, Figure 6H) between iOligos and iExNs, suggesting that oligodendrocyte-derived Aꞵ 
peptides could contribute to AD-related amyloidosis in similar ways to excitatory 
neurons. 
 
Discussion 
Therapeutic trials of AD have made increasingly clear the importance of early 
intervention into the disease2, but identifying the cellular states occurring in human 
tissue at early disease stages has been challenging. Here, we leveraged a unique 
cohort of fresh human brain biopsy tissue to identify cellular perturbations–which we 
collectively refer to as the Early Cortical Amyloid Response (ECAR)--that are 
specifically present in tissue at the earliest stages of AD pathology. One prominent 
ECAR component was the identification of a hyperactive, hypermetabolic signature 
within excitatory neurons. This signature was associated with an astrocytic upregulation 
of glutathione metabolism and fatty acid degradation, suggesting dysregulation of 
synapse homeostasis in response to aberrant neuronal activity33,34. Furthermore, this 
upper layer hyperactivity phenotype was tightly coupled with the loss of a specific 
NDNF+ layer 1 interneuron population very early in disease progression. NDNF-
expressing interneurons are most active in states of arousal25, and their activation is 
positively correlated with associative learning51, suggesting that their loss may directly 
affect memory formation. In addition, a recent study of NDNF-expressing neurons in the 
hippocampus found that their potentiation led to an inhibitory shift at excitatory 
synapses between entorhinal cortical projections and CA1 neuronal dendrites52. The 
loss of this cell type could thus help seed foci of aberrant excitation, further aggravating 
the acute effects of Aꞵ accumulation in the tissue. Hyperactivity has been observed in 
animal AD models that either overexpress APP or are exposed to Aꞵ-containing 
extracts from AD patients32,33,53,54. Our work in human tissue finds that hyperactivity is a 
prelude to subsequent neuronal loss, and postulates a mechanism–loss of a specific 
inhibitory neuron population–that contributes to its onset.  
  
The second ECAR component is the expansion of two activated microglial states, one 
of which (GPNMB-EYA2) is shared between AD and PD, and the other (LPL-CD83) that 
is expanded only in AD. One means by which microglia protect against 
neurodegeneration is through the autophagy-mediated clearance of Aꞵ55 and α-
synuclein56, a convergence that could explain the expansion of the GPNMB-EYA2 
population–enriched for autophagy-related genes–in both AD and PD. The LPL-CD83 
population–whose expansion is AD-specific–shows high expression of TGF-ꞵ signaling 
components, including TGFBR1 and SMAD3, which both promote Aꞵ clearance by 
microglia57 and mediate tissue repair58. According to our integrative analysis, neither of 
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these cell states was expanded in the examined AD mouse models, and the states 
themselves showed more molecular divergence between species than other microglial 
states, arguing for the importance of human samples when studying these highly 
disease-relevant cells. Interestingly, exposure of human ESC-derived microglia to 
diverse brain-related challenges was recently shown to induce in vitro cellular states 
that transcriptionally resemble our GPNMB+ states (e.g., high expression of GLDN, 
CD83, PPARG, and MYO1E)59. It will be important to more deeply characterize these 
states genomically, and to study their functional properties, such as capacity for 
phagocytosis, synaptic engulfment, and neuroinflammatory potential.  
 
The last ECAR component we identified was a shared signature, in both 
oligodendrocytes and excitatory neurons, of differentially regulated genes associated 
with Aꞵ production. This signature peaked especially in the lowest-stage amyloid 
burden samples, suggesting a declining rate of amyloid production with the progression 
of the disease, consistent with rates of amyloid accumulation determined from pre-
clinical non-invasive measurements made in patients with dominantly-inherited AD60. 
Because our signature derives from measurements made from human biopsy tissue, it 
provided us with a unique opportunity to uncover the molecular mechanisms underlying 
excess production and accumulation of Aꞵ in early stages of AD pathology in the human 
brain. Upregulated genes in this signature encoded for pro-amyloidogenic factors such 
as LRRTM3, and RAB11A, as well as APP itself, while ITM2B, SORL1, and BACE2 
were downregulated. The dysregulation of these specific genes within human diseased 
tissue nominates them as especially promising targets for therapeutic intervention into 
early amyloid beta accumulation.  
 
Our analyses establish oligodendrocytes as an amyloid-producing cell type in AD. Prior 
work in animal cells and models have suggested that other cell types, beyond excitatory 
neurons, could be sources of amyloid61,62. Our work–supported by both analyses of 
human tissue and human ESC-derived cultures–suggests that in humans, Aꞵ 
production is primarily in oligodendrocytes and excitatory neurons. Neuropathological 
studies have postulated an inverse relationship between myelination and AD 
pathology63, prompting hypotheses that myelin breakdown may play a causal role in the 
disease64. Additionally, white matter regions are some of the first to exhibit a high 
burden of oligomeric Aꞵ65. These studies, coupled with our results, underscore the 
relevance of the interface between neuronal axons and oligodendrocytic bodies to AD 
pathogenesis.  
 
Although our findings were enabled by the exceptional data quality obtained from a rare 
cohort of freshly-frozen brain biopsies, we utilized large-scale integrative analysis of 
many published datasets to corroborate many of our findings, and to assess their 
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specificity for AD. Our integrative analysis illustrates that cell type identities are more 
resilient to peri- and post-mortem effects compared to expression patterns of individual 
genes, and can be accurately recovered by anchoring to high-quality datasets. From 
this work, we conclude that single-cell brain datasets are generally of sufficient 
consistency and quality that it is possible to conduct cumulative, highly informative 
meta-analyses. Such analyses will not only ensure the consistency of biological findings 
across multiple cohorts, but will also enable comparative analyses–as we performed 
here across many diseases and models with microglial expansion phenotypes–to 
assess the specificity of a state for a particular disease. To further facilitate this 
endeavor, we have established a web-based resource (available at 
https://braincelldata.org/resource) where individual scientists can explore our integrative 
analysis–which covers most published single-cell studies of the brain– to formulate and 
test mechanistic hypotheses. In addition, we have generalized the process of data 
integration to enable scientists to seamlessly integrate their own new datasets into our 
analysis, providing a common language for understanding cell-type-specific changes in 
different cortical diseases. We expect that the continued accrual of data from more 
donors, regions, species, and related conditions will provide additional crucial insights 
into the pathogenic process of AD and other diseases of the brain. 
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Data availability 
All generated snRNA-seq data and the results of our integrative analysis of 28 single 
cell/nuclei studies are publicly available at: https://braincelldata.org/resource. This 
includes sample annotations related to the dataset source (36 datasets across 28 
studies), cell identifiers (e.g., cell barcodes), quality metrics, and cell type annotations 
from integrative analysis. We have also included functionality to perform several 
analyses in a fast and efficient way, including: examination of the integration solutions, 
performing marker analysis across all of the datasets, and exploring differentially 
expressed genes. 
 
STAR Methods 
Procurement of frontal cortex brain biopsies 
Patients presenting to a clinic at the Kuopio University Hospital were evaluated for adult 
hydrocephalus with NPH symptoms: 47 with idiopathic normal pressure hydrocephalus, 
3 with previously unrecognized congenital hydrocephalus and 2 with acquired 
hydrocephalus. Patients were consented for retrieval of brain biopsies during 
ventriculoperitoneal shunt placement for treatment of their symptomatic adult 
hydrocephalus. Biopsies were taken at the site where the shunt would penetrate the 
brain. Three cylindrical biopsies were taken approximately 2mm in diameter and 3-
10mm in length using a disposable Temno Evolution TT146 (Merit Medical Systems) 
biopsy tool. The insertion point of the catheter was approximately 3 cm from the midline 
and anterior to the coronal suture66. Biopsies were immediately frozen with liquid 
nitrogen and stored at -80°C. One biopsy was sent for histopathological staining using 
the 6F3D and AT8 antibodies and evaluated by a neuropathologist for presence of Aꞵ 
plaques and tau tangles via light microscopy67. Biopsy Aꞵ plaques burden was further 
assessed semiquantitatively by a neuropathologist (T.R.) under light microscopy and 
assigned to mild (1), moderate (2), or severe amyloid burden (3) as described 
previously68. Our initial cohort included 58 individuals. We excluded one individual with 
tau-only pathology and another patient with a history of psychosis. We excluded four 
additional individuals (2 Aꞵ-free and 2 Aꞵ+) that, upon microscopic inspection of Nissl 
stained cryosections (see the biopsy tissue quality scoring methods), displayed 
decidedly poor tissue quality and a very high ratio of white matter to cortical matter. All 
of these excluded biopsies were more than 85% white matter tracts with the diminished 
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cortical regions showing dysmorphic neuronal profiles. The biopsy procedure was 
approved by the Research Ethics Committee of the Northern Savo Hospital District 
(decision No. 276/13.02.00/2016). 
 
Neuroanatomical localization of biopsy site 
The stereotactic position (distances in millimeters) was measured from anatomically 
linked planes (transverse, sagittal, coronal) in a multiplanar reconstruction (MPR) 
produced from the postoperative CT/MRI DICOM image. After planar alignment 
(transverse and sagittal planes to the midline, and coronal plane in a 90-degree angle to 
the planum sphenoidale), the biopsy location was determined to be at proximal 
catheter’s cortex entry site at the catheter’s midline. Following distances were 
measured: In the transverse plane from the midline to the biopsy location (x). In the 
sagittal plane from the frontal bone’s internal cortex to the biopsy location’s coronal axis 
(at 90-degree angle) (y). In the sagittal plane, distance from the planum sphenoidale to 
the biopsy location’s transverse axis (at 90-degree angle) (z). EBRAINS Siibra-explorer 
was used to map and visualize each biopsy position69–71. 
 
Biopsy tissue quality scoring 
To ascertain tissue quality measurements (range from 1-10), we performed Nissl 
staining followed by semi-quantitative scoring of each biopsy slide image. For Nissl 
staining, briefly, fresh frozen tissue was thermally equilibrated to -20°C in a cryostat 
(Leica CM3050S) for 20 minutes. Tissue was mounted onto a cryostat chuck with 
Optimal Cutting Temperature compound (O.C.T. compound), aligned at a 5° cutting 
angle, and sectioned at 10 μm in thickness per tissue slice. Using a Superfrost plus 
slide that has been pre-cooled to -20oC, the tissue section was collected by carefully 
placing it and gently flattening it with the brush on top of the slide. Subsequently, slides 
were stained with 0.1% Cresyl Violet acetate in DiH2O, destained with ethanol, and 
100% Xylene for 5 minutes. Slides were mounted by adding 2-3 drops of Permount 
around the tissue and coverslipped. Images were subsequently collected using a 
Keyence BZ-X810 series All-in-one Fluorescence microscope. With BZ-X800 viewer 
software, each stained slide was imaged on the Brightfield/Phase contrast channel 
using a 20X objective. The stained region of interest was selected by specifying the XY 
positions of the tissue outer edges and adjusting the Z-stack function to auto-focus prior 
to each image capture. The stitching of captured image series was made with BZ-X800 
analyzer software. The images are exported as Big TIFF files and edited for cropping, 
contrast, and brightness with Photoshop software. 
 
Measurement of iNPH grading scale 
Severity of iNPH related symptoms was evaluated using the iNPH grading scale 
(iNPHGS)72, a clinician-rated scale that aims to assess the hallmark triad of the disease. 
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Inversely-correlated with the severity of the disease, the 12-point iNPHGS has been 
shown to be clinically meaningful down to a single point72. 
 
Generation of single-nuclei suspensions from frozen brain biopsies 
Fresh-frozen brain biopsy tissue was cryosectioned at -15 to -20°C into 60-micron 
sections. Following microdissection, samples were placed on dry ice until nuclei 
isolation. To each cryosectioned sample, 1 mL of Extraction Buffer (ExB) was added 
into a 1.5-mL Eppendorf tube. Samples were briefly triturated before being placed in a 
six-well plate. Samples were then triturated 20 times with the ExB, every 2 minutes, until 
no large chunks of tissue were observed in each well. After the last trituration, samples 
were diluted with 45-50mL of wash buffer in a 50-mL Falcon tube, and then split into 
four 13-15 mL solutions in 50mL Falcon tubes. The diluted samples were then spun at 
500g for 10 minutes at 4°C (pre-cooled) in a swing bucket benchtop centrifuge.  
 
After centrifugation, a visible nuclei pellet was observed. Samples were then removed 
very gently from the centrifuge and placed in an ice bucket. The supernatant was 
aspirated until there was barely any liquid observed on top of the pellet (50-100µL of 
liquid left). To aspirate without disturbing the pellet, a serological pipette was first used 
till about 1mL was remaining, followed by serial aspiration with a P2000 and P200 
pipette. 
 
The pellets were then resuspended in 250µL of wash buffer (WB), mixed thoroughly by 
trituration and placed in an Eppendorf 1.5-mL tube. 
 
Single-nucleus and single-cell RNA-sequencing and read pre-processing 
For all single-nuclei experiments, the 10X Genomics (v3) kit was used according to the 
manufacturer’s protocol recommendations. Library preparation was performed 
according to the manufacturer’s recommendation. Libraries were pooled and sequenced 
on either a NovaSeq S2 or S4. 
 
Sequencing reads from human brain biopsy experiments were demultiplexed and 
aligned to the hg19 reference using DropSeqTools 
(https://github.com/broadinstitute/Drop-seq) with the default settings. To reduce 
background noise from ambient RNA and potential UMI barcode swaps, we used 
Cellbender remove-background v273 with the default applied settings to all libraries. The 
Cellbender-corrected reads were used for downstream variable gene selection, 
dimensionality reduction, clustering, and differential expression. Cellbender was also 
used to distinguish cells from empty droplets. 
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Initial clustering of the biopsy cohort 
Pre-processed Cellbender-corrected digital expression matrices were loaded into R per 
library as a digital gene expression matrix. All matrices were combined per individual 
and an initial variable gene selection was performed. A low-dimensional embedding was 
generated via rliger v1.0 at a k = 45 and lambda = 5. Following integrative non-negative 
matrix factorization18, a shared nearest neighbors graph was generated and individual 
nuclei profiles were clustered according to the SLM (smart local moving) algorithm to 
identify broad cell classes. We used a recent large-scale survey of postmortem human 
brain21 to identify cell class markers and merged each cluster into one of eight cell 
classes (excitatory neurons, inhibitory neurons, astrocytes, microglia/macrophages, 
oligodendrocytes, oligodendrocyte precursor cells, endothelial cells/pericytes, and 
peripheral blood mononuclear cells (PBMCs)). PBMCs were excluded from downstream 
analysis. 
 
For each cell class, individual nuclei were subsetted and the above clustering process 
was repeated to identify individual cell types. Marker genes were identified for neuronal 
populations based on a large-scale survey of neurons in the human neocortex21. 
Further, a recent survey of microglia/macrophage in the murine brain was used to 
identify cell type markers for microglia and macrophages74. For other non-neuronal 
types, we performed the Wilcoxon rank-sum test on SLM-defined cell clusters to find 
markers and thereby determine cell type annotations. We removed doublets identified 
as clusters that expressed markers of more than one cell class population. We also 
removed clusters whose markers contained high numbers of mitochondrial genes or 
heat shock related proteins. 
 
Integrative analysis of the biopsy dataset with postmortem studies 
We collected and uniformly processed all publicly available metadata on each dataset 
including the donor information (e.g., age, sex, diagnosis), sample information (e.g., 
brain region, sequencing protocol, batch structure), cell type identities, and quality 
metrics. All gene identifiers were mapped to Ensembl gene id. For mouse datasets, we 
further mapped Ensembl gene ids to their human orthologs75. However, we did retain 
non-orthologous mouse genes for normalization. We calculated the following quality 
metrics for every cell in each dataset: number of unique genes (nGene) and total unique 
molecular identifier (nUMI), percentage of mitochondrial genes (MT%), percentage of 
ribosomal genes (Ribo%), percentage of non-coding lncRNAs (lncRNA%), and 
percentage of dissociation-related artifact genes20. We used nGene and MT% quality 
metrics as our initial criteria to select cells for our integrative analyses and used the 
other quality metrics to identify and remove low quality cell clusters from the integrative 
analysis results. We retained cells with nGene >500 and MT% <5. For microglia cells, 
we used nGene >200 for two studies4,39 to compensate for the lower number of unique 
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genes compared to other cell types. We further used the nGene >200 threshold for all 
cell classes in Mathys et al. dataset3. Finally, we removed donors with less than 50 cells 
within each cell class. Our integrative analyses across the seven cell classes included a 
total of 2,406,980 high quality cell profiles across 36 datasets from 28 studies on 
humans and mice. Distributions of the quality metrics are included in Figures S3 and 
S4. See data availability section for information about availability of the integrative 
analysis. 

We performed our integrative analysis of each cell class individually to maximize the 
accuracy of cell state mapping across datasets. The seven major cell classes were: 
excitatory neurons (ExN), inhibitory neurons (InN), astrocytes (Astro), 
microglia/macrophages (Micro), oligodendrocytes (Oligo), Oligodendrocyte progenitor 
cells (OPC), and endothelial/pericyte cells (Endo). For ExNs and InNs, we limited our 
analysis to cortex brain region. However, glial cells were represented from across the 
brain regions. Table S2 summarizes the datasets that are included in integrative 
analysis of each of the seven cell classes. As outlined below, we developed a multi-step 
framework to efficiently handle substantial biological and technical variation that exists 
among the single cell and nuclei datasets.  

Selecting highly variable genes. We reasoned that the influence of batch effects on the 
cell embedding space would be minimized by selection of genes that recurrently show 
high variability across the human and mouse datasets. To achieve this, we implemented 
the following method: 1) Select the top 2000 variable genes within each donor of each 
dataset by the vst method in Seurat76. 2) Weight the selected genes in each donor so 
that the sum of the weights for each dataset add up to one. 3) Calculate an aggregate 
score for each gene by summing up their weighted scores. This procedure aims to 
minimize the participation of genes that show between dataset variability (hence likely 
influenced by batch effects) in the follow up analysis of cell embedding construction and 
clustering. 
 
Principal component analysis. To remove donor-specific batch effects (e.g., due to pre 
and post-mortem effects, sample preparation, and sequencing settings), we performed 
scaling (i.e., mean of zero and unit variance) of transcriptome data per gene and per 
donor and used this scaled data for principal component analysis. Comparison of 
different integrative solutions indicated the better quality after removal of donor specific 
effects. For all seven cell class analyses, we used the top 30 principal components, 
weighted by their variance explained. 
  
Batch effect removal. We used Harmony v1.077 to remove batch effects from the PCs 
with donor id and organism specified as the main source of batch effects. The default 
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theta and lambda parameters were used for all analyses, except for the Endo cells with 
the theta parameter of four. 
 
Assessing the quality integration solutions. To assess the quality of the results, we 
developed multiple “cluster-free” quality metrics enabling us to perform a systematic and 
unbiased comparison of the solutions that is independent of the clustering method. 
These metrics can be grouped into three main categories. First, we required a uniform 
distribution of the datasets in the UMAP space. In addition to visual inspection, we 
developed a method that allowed us to do a quantitative evaluation of dataset 
distributions. Briefly, each of the two UMAP coordinates are split to 100 units, providing 
10,000 bins. Within each bin a hypergeometric test is performed to assess whether or 
not cells from a specific dataset are over-represented. This analysis is performed for 
each dataset from each integrative solution (the related R functions and visualizations 
are provided at https://braincelldata.org/resource). Second, we examined whether cells 
expressing known cortical cell type markers are aligned with each other across datasets 
and organisms. To systematically test this, we repurposed the commonly used feature 
plot visualizations to represent donors instead of individual cells, thereby bypassing the 
effect of sample size variation between donors and datasets (Figure S4). Finally, we 
assessed if the initial clustering structure of each dataset is preserved in the aligned 
space. For this analysis, we used the reported clustering structure for each of the 
datasets individually. We also constructed confusion matrices to compare the cluster 
annotations between datasets (see the linked website for more details). 
 
Cluster quality analysis. On each cell class integrative analysis we performed Leiden 
clustering using the Seurat package76 with clustering resolutions of 0.6 or 0.8. We next 
used our calculated cell-based quality metrics (nGene, nUMI, MT%, Ribo%, lncRNA%, 
and %dissociation-related artifact genes) to identify and remove low quality clusters. We 
also performed marker analysis of each cluster per each dataset using FindAllMarkers() 
function in Seurat to identify and remove doublet clusters. 
 
Uniform annotation of the datasets. We modified a previously developed random walk 
algorithm78 to transfer cell type annotations from the biopsy dataset to each of 35 
datasets (27 studies) in the aligned space, thereby uniformly annotating all datasets 
with cluster labels from the biopsy cohort. We next checked the consistency of cell type 
proportions among datasets and expression of marker genes across datasets and 
clusters (Table S3; See the linked website for more details). 
 
Cell type marker analysis 
Marker genes were identified in each dataset by running the ‘FindAllMarkers’ function in 
Seurat76. Significant genes (adjusted p-value < 0.1) with min.diff.pct of 0.1 were 
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considered as markers. The heatmap in Figure 3A based on a select number of 
microglia markers based on the existing knowledge on microglia states and function. 
The full organized marker results are provided in Table S3. 
 
To assess an overlap between cell state markers and DE genes in the microglia 
analysis (Figure 3D), we retained the top 100 upregulated markers (adjusted p-value < 
0.01; sorted by p-value) that were markers with logFC >0 in less than a third of the cell 
states. This additional criterion was added to avoid spurious overlap of markers in non-
homeostatic microglia that were driven by the large size of the homeostatic microglia. 
 
Differential abundance 
In our integrative analysis, a major analytic challenge was the wide variation in cell class 
compositions among the analyzed datasets. As an illustration, both of human PD 
datasets, one of human AD datasets, and all of mouse AD datasets included only glial 
cells and not neuronal cells from cortex. To address this, we conducted our meta-
analysis of cell type proportional changes within each cell class separately. For our 
meta-analysis of early AD pathology, we included three out of 6 AD postmortem cohorts 
from the frontal lobe (more specifically prefrontal cortex or superior frontal gyrus)3,4,6. 
We excluded one cohort79 due to overlap of individuals with another included cohort3, 
and two that lacked sufficient numbers of early AD stage subjects5,7. We further 
included two PD postmortem datasets47,48, one ASD dataset49 and one MS dataset50 as 
contrast groups in our analyses. 
 
We used a logistic mixed-effect model80 to identify differentially abundant cell 
populations in each dataset separately (Table S4). For all human datasets, we included 
sex as a fixed effect, and individual as a random effect in the model. We then tested the 
significance of association between the status with the clusters using a Wald test. For 
assessing cell type abundance associations with iNPH grading scales, we modified the 
method to allow for continuous independent variables, while preserving the Wald test for 
assigning significance. 
  
We performed a meta-analysis of cell type abundance results across four cohorts with 
designations for earlier and later AD stages: (1) the biopsy cohort (Aꞵ+ as early and 
Aꞵ+Tau+ as late; all cell classes), (2) Mathys et al. (Braak III-IV as early and Braak V-VI 
as late; all cell classes except endothelial cells), (3) Leng et al. (Braak III-IV as early and 
Braak V-VI as late; all cell classes) and (4) Gerrits et al. (CtrlPlus as early and AD as 
late). The p-values from individual analyses were combined together via the Stouffer’s 
method, with an additional consideration of the directionality of the change as 
determined via the odds ratio assessment from the Wald test. All Stouffer’s p-values 
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were subsequently corrected for multiple hypothesis testing via the Benjamini-Hochberg 
correction. 
 
To determine the relative cellular abundance changes at the cell class level we 
generated p-values by comparing proportions of the seven cell classes by a Wilcoxon 
rank-sum test. Meta-analysis p-values (and Z-scores) were generated using Stouffer's 
method, taking into account the directionality of the abundance change. 
  
For mouse datasets, we used Fisher’s exact test to examine expansion and loss of 
different microglia cell types and states (Table S4). The p-values were subsequently 
corrected for multiple hypothesis testing using the Benjamini-Hochberg procedure. For 
visualization purposes, z-scores were calculated by transformation of the p-values and 
signed by the directionality of the log odds ratio. 
 
Differential gene expression analysis 
We employed a pseudocell strategy coupled with mixed linear models and jack-knifing 
to robustly identify differentially expressed genes. To construct pseudocells, we 
aggregated the raw UMI count of, on average, every 30 cells per subject and cell type. 
We constructed one pseudocell for cell types that had between 15 to 45 cells in a donor 
and excluded cell types that had less than 15 cells. This reduces the impact of dropout 
and technical variability, while ameliorating low statistical power and high variation in 
sample size issues attributed to the pseudobulk approaches81. We used the Limma 
Trend82 approach with robust moderated t-statistic to identify DE genes within each cell 
class with sex, cell type, log2(pseudocell MT%) and log2(pseudocell nUMI) as 
covariates and subject id as a random effect. Cell type annotation was included as a 
covariate to account for the cell type-specific baseline expression of the genes and 
therefore to ameliorate the impact of cell type expansion on the DE patterns. 
  
We further performed jack-knife resampling at two levels to identify robust DE genes 
that are shared among the majority of individuals. First, iterating on each of the 52 
individuals in the biopsy cohort, we excluded one subject from the analysis of each cell 
class and then re-calculated the DE statistic for the remaining 51 individuals, retaining 
the maximum p-value (i.e., the least significant p-value) achieved for each gene. An 
adjusted jack-knife p-value was next calculated for genes with adjusted p-value < 0.1 in 
the main analysis using the Benjamini-Hochberg correction. Second, iterating 50 times, 
we randomly sampled 50% of cohort subjects (balanced by their pathological status) 
and re-calculated the logFC patterns. A consistency score was defined for each gene as 
the fraction of iterations in which the jack-knifed logFCs were consistent with the logFC 
pattern from the full cohort of 52 individuals (i.e., up- or down-regulated in both). Genes 
with jack-knifed adjusted p-value < 0.01 and jack-knifed consistency score ≥0.9 were 
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deemed as significant. Comparison of the DE patterns with a pseudobulk approach 
using LimmaTrend indicated highly consistent (>99%) logFC patterns between the 
pseudobulk and our pseudocell strategy for the DE genes. We also found majority of 
identified DE gens by pseudocell approach remain significant (median >72% per cell 
class; pseudobulk FDR-adjusted p-value < 0.1) in the pseudobulk approach, while the 
identified DE genes by our pseudocell approach show much less sensitivity to variation 
in cohort size (data not shown). 
 
To compare the DE genes between Aꞵ+ and Aꞵ+Tau+ individuals (Figure 1F), we 
performed a paired t-test based on values from below equation: 
 

𝑠𝑖𝑔𝑛(𝑙𝑜𝑔𝐹𝐶(𝐴𝛽+)	∗ 	𝑙𝑜𝑔𝐹𝐶(𝐴𝛽 + 𝑇𝑎𝑢+)) ∗ 𝑠𝑖𝑔𝑛(𝑙𝑜𝑔𝐹𝐶(𝐴𝛽 + 𝑇𝑎𝑢+)) ∗ [𝑙𝑜𝑔𝐹𝐶(𝐴𝛽
+ 𝑇𝑎𝑢+) − 𝑙𝑜𝑔𝐹𝐶(𝐴𝛽+)] 

 
This equation will be positive only if the logFC from both Aꞵ+ and Aꞵ+Tau+ are in the 
same direction (i.e., gene is up or down regulated in both conditions) and are stronger in 
Aꞵ+Tau+ and negative otherwise. We excluded from this analysis cell types with less 
than 20 DE genes in either Aꞵ+ and Aꞵ+Tau+ conditions as they usually were small and 
their fold change patterns were not reliable. We used a paired t-test to determine if the 
outputs of this function are randomly distributed around zero or are biased towards 
positive (i.e., consistent but stronger logFC in Aꞵ+Tau+) or negative (i.e., discordant or 
stronger in Aꞵ+) values. 
 
Gene set enrichment analysis 
DE genes were filtered to protein-coding based on the gene biotype information from 
the ‘EnsDb.Hsapiens.v86’ package in R Bioconductor. Genes were next ordered based 
on their t-statistic from LimmaTrend mixed linear models. Curated GO Biological 
Process, KEGG and Reactome gene sets were retrieved from the EnrichR portal83. To 
identify enriched pathways, we ran the fGSEA package84 v1.16.0 with default setting 
while limiting the geneset sizes between 15 and 250 genes. For each cell class and cell 
type analysis, protein-coding genes expressed in more than one percent of cells in the 
corresponding group were used as background. 
 
Correlating cell type proportional changes to transcriptome responses across cell types 
To identify correlation between cell type abundances and transcriptional phenotypes, 
we used a logistic mixed-effect model80. Specifically, we constructed a meta-gene 
(referred to as DE signature in the main text) from the top 300 upregulated protein-
coding genes (sorted by their jack-knifed p-value) in each individual cell by aggregating 
their corresponding UMI counts, as proposed before85. The meta-gene was next 
normalized over the total nUMI count of the cells and standardized to have a mean of 
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zero and variance of one across cells from all subjects in our cohort. We then binarized 
cells as active or inactive for a meta gene based on a standardized score threshold of 2. 
In our analyses we required presence of at least two subjects with more than 3% 
transcriptionally active cells in each cell type and status category. For cell types that do 
not meet this criterion we set the association p-value to one to indicate transcriptional 
changes in the corresponding cell type are not associated with the interested cell type 
fractional variation. Finally, we fit a logistic mixed-effect model on the binarized scores 
to examine their association with the normalized cell type proportional changes with sex 
as a covariate and subject as a random effect. The cell type proportions were 
normalized by applying an empirical cumulative estimation using the ecdf() function in 
R. We used cell-class level DE genes to construct meta-genes since: 1) cell class level 
DE genes were highly conserved within cell types (Figure S6D); 2) DE genes were not 
driven by the variation in the cell counts of the cell types. As summarized below, we 
performed robustness analysis and alternative meta-gene construction schemes to 
further confirm the observed associations. 
 
First, to assess the robustness of the results, we tested the sensitivity of the results to 
the presence of technical variation in cell gene counts by, iterating 30 times, adding 
Poisson noise to the transcriptome data of each individual cell before calculation of the 
meta-gene expressions (Figure S7B). In addition, iterating 30 times we randomly down 
sampled the cell types to examine the association of the cell type sizes on the results 
(Figure S7C). 
 
Second, as an alternative analysis method to support our findings (Figure S7D), we 
constructed meta-genes through principal component analysis of the normalized and 
scaled expression of the top 300 upregulated protein-coding genes (sorted based on 
jack-knifed p-values). Similar to the WGCNA approach86, the first principal component 
was chosen as the meta-gene. The meta-gene scores were then binarized as above 
and the association with cell type proportional changes were examined using a logistic 
mixed-effects model similar to above. 
 
Heritability enrichment of differentially expressed genes with MAGMA 
We used MAGMA42 to determine the degree of enrichment of common variant risk in 
the list of differentially expressed genes across cell types. We first downloaded the 
summary statistics from a recent common variant meta-analysis of AD and related 
dementias35, PD87, and ASD88. Using the online FUMA tool89, we generated Z-scores 
for each gene, corresponding to the approximate degree of association between the 
gene and AD (SNP2GENE function). To determine gene sets for each cell class, we 
took the top 200 differentially expressed genes between biopsy samples with AD 
pathology versus those samples without, ordered by t-statistic at a significance value of 
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p < 0.2 (to ensure enough genes were being captured per gene set). Significance 
values for the gene set of interest were calculated via MAGMA, wherein a regression is 
fit to determine whether those genes with membership for that set have a significant 
enrichment for heritable risk of the trait of interest. 
 
Generation of a doxycycline-inducible SOX10 H1 stem cell line 
We adapted a recently-published protocol to produce mature oligodendrocytes from the 
H1 embryonic stem cell precursors cell line90. First, we isolated and incorporated a 
SOX10 transcription factor (Addgene #115242) into the backbone of a doxycycline-
inducible cassette (Addgene #105840) to generate pBR01.  
 
H1 ESCs were plated in Matrigel (cat. #47743-716)-coated (30-minute incubation at 
37°C prior to cell plating) plates in mTesR1 (cat. #85857) with supplements (ESC 
media, StemCell Technologies cat. #85857) and RevitaCell (cat. #A2644501). After 
plating, we performed daily media changes with ESC media without RevitaCell until 
plates were approximately 80% confluent with compact colonies. For routine passaging, 
ESCs were washed 1X with PBS (cat. #10010049) and incubated in Versene (cat. 
#BE17-711E) for 5 mins at room temperature, after which Versene was gently aspirated 
from the plate and replaced with ESC media. ESCs were gently dissociated into a cell 
suspension using a manual cell scraper and transferred as small colonies to a fresh 
Matrigel-coated plate at a 1:20 dilution. In order to generate a doxycycline-inducible 
SOX10 cell line, we performed TALEN-based integration as has been previously 
described91. Briefly, we electroporated (1050V, 50 ms pulse, two pulses total) 1 million 
ESCs with 4 μg pBR01, 2 μg TALEN-L (Addgene #59025), 2 μg TALEN-R (Addgene 
#59026), and 0.4 μg Bcl-XL (Addgene #8790) plasmids using a Neon Transfection 
System Pipette Station (Thermo Fisher). After 96 hours, cells were incubated with 2 
μg/mL puromycin (cat. #A1113803) for 72 hours. After puromycin selection, polyclonal 
ESCs were expanded and stored in liquid nitrogen at 106 cells/mL in 10% DMSO + 
mTesR1.  
 
Oligodendrocyte differentiation of ESCs 
To differentiate the resulting cell line into mature oligodendrocyte lineage cells, we 
adapted the Garcia-Leon protocol with minor modifications90. Briefly, we used the H1 
embryonic stem cell line with the integrated SOX10 cassette to generate neural 
progenitor cells which were subsequently differentiated into mature oligodendrocytes. 
Vials containing 1 million ESC precursors were thawed and plated into one well of a 
Matrigel-coated 6-well plate, supplementing the cells with RevitaCell to increase vitality. 
These cells were then allowed to grow to confluence with supplementation of 1mL E8 
media (cat. #A2858501). Confluent cells were subsequently split with the following 
procedure. First, cells were washed with 1mL of Dulbecco’s PBS per well. Then, cells 
were subsequently treated with 1mL of ReleSR (cat. #05872) incubated at 37°C for five 
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minutes. Cells were then spun down and split at a ratio of 1:14 into Matrigel-coated 6-
well plates and grown in 1mL of E8 media (cat. #A2858501) supplemented with 1x 
RevitaCell solution. The cells were transitioned to mTeSR1 media by replacing with a 
1:1 E8 to mTeSR1 solution on the first day, 75% mTeSR1 with 25% E8 on the second 
day, and a full 1mL of 100% mTeSR1 on the thirdday. Cells were then allowed to grow 
to confluence before being split again with 1mL ReleSR as above. The cells were 
replated onto 6-well matrigel-coated plates, supplemented with RevitaCell. An N2B27 
media was made by mixing non-essential amino acid MEM (cat. #11140-050), 2-
mercaptoethanol (cat. #21985023), N2 (cat. #17502048) and B27 (cat. #12587010) to 
1× concentration plus insulin (cat. #I9278) at 25 µg/ml final concentration to Dulbecco’s 
modified essential media. The cells were then grown in 2 mL of the pre-made N2B27 
medium supplemented with 0.1 μM retinoic acid (RA, cat. #R2625), 10 μM SB431542 
(cat. #04-0010-10) and 1 μM LDN193189 (cat. #04-0074) for five days and an additional 
two days with 10 μM of smoothened agonist (SAG, cat. #566660).  
 
After cells achieved confluence, they were passaged using a pre-warmed 1mL aliquot of 
Accutase (cat. #A1110501) for 1-2 minutes. The cells were seeded onto 6-well plates 
coated with poly-l-ornithine (cat. #P3655) and laminin (cat. #L2020-1MG)-coated plates 
at a density of 10,000 cells per square centimeter. The cells were fed a differentiation 
medium supplemented with 2 μg/mL of doxycycline (cat. #D9891-10G) to induce 
expression of SOX10 and allowed to grow for 10 days, at which time they are mature.  
 
Neuronal differentiation of ESCs 
Neuronal differentiation of ESCs into cortical glutamatergic neurons was carried out as 
previously described92. In brief, the differentiation was carried out by adding doxycycline 
hyclate (2 μg/mL) to N2 supplemented media (Thermo Fisher, 17502048) with 
patterning factors SB431542 (Tocris, 1614, 10 μM), XAV939 (Stemgent, 04-00046, 2 
μM) and LDN-193189 (Stemgent, 04-0074, 100 nM), as described previously92–94. 
Puromycin selection was used (5μg/μL), from days 2 to 6 to remove non-transduced 
cells. At 4 days post induction, neuronal cells were resuspended into Neurobasal media 
(Gibco, 21103049) that was supplemented with B27 (Gibco, 17504044, 50X), 
doxycycline (2 μg/mL), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic 
factor (CTNF), and glial cell-derived neurotrophic factor (GDNF) (R&D Systems 248-
BD/CF, 257-33 NT/CF, and 212-GD/CF at 10 ng/mL each). From this point onwards the 
neurons were either co-cultured with murine glial cells that were derived from early 
postnatal (P1-P3) mouse brains as described previously95 or were left to grow as 
monocultures (mouse strain https://www.jax.org/strain/100012; animal ethical committee 
approval by Harvard University: Animal Experimentation Protocol (AEP) # 93-15). 
 
Immunohistochemistry and imaging of ESCs 
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We performed immunohistochemistry on ESC-derived oligodendrocytes at 1, 5, and 10 
days after doxycycline-based SOX10 induction. Briefly, cells were grown on a 6-well 
plate and fixed using 2% PFA and then permeabilized using Triton-X (cat.# T9284-1L), 
followed by multiple washes with 1x Dulbecco’s PBS at each step. We used the 
following primary antibodies for our immunohistochemistry experiments: anti-O4 (cat. 
#MAB1326), anti-MBP (cat. #AB9348), anti-NeuN (cat. #MAB377), and anti-PAX6 (cat. 
#AB78545). The primary antibodies were diluted in a solution of 10% bovine serum 
albumin (BSA) in phosphate-buffered saline (PBS) supplemented with 1% Triton-X then 
added to the cells and allowed to incubate overnight at 4°C. Cells were then washed 
three times in PBS. Finally, the secondary antibodies were diluted in a solution of 10% 
BSA in PBS supplemented with 1% Triton-X then added to the cells and allowed to 
incubate for 1-2 hours at room temperature. After the secondary incubation, one to two 
drops of ProLong Glass AntiFade Mountant with NucBlue (cat.# P36981) was added 
into the wells and coverslips were added on top of each cell culture into wells for 
downstream imaging. 
 
Imaging of immunohistochemical stains was performed on a Keyence BZ-800XE 
microscope with a Nikon Apo 20x objective. All images were acquired using the same 
light emission settings and all channels were set to the same LUTs before 
quantification. For quantification, we used CellProfiler’s IdentifyPrimaryObjects and 
MeasureObjectIntensity function to segment cells based on their DAPI signal. 
Subsequently, the average fluorescence value (mean intensity value) was normalized 
per cell to the average fluorescence intensity of the DAPI signal. To determine the 
significance of an intensity difference, a linear mixed-effect model was used to calculate 
the significance of a change in normalized intensity value across days of differentiation, 
treating each slice image as a random effect. Significance values were determined via a 
likelihood ratio test against the null model not containing the day of differentiation. 
 
Generation of single-cell suspension from ESC-derived H1 iOligodendrocytes 
To generate single-cell experiments, briefly we used oligodendrocytes at terminal 
differentiation (past day 8 post-doxycycline induction of SOX10). We isolated cells using 
the passaging protocol as mentioned above and measured cell concentrations in our 
isolate using a hemocytometer. 
 
Read processing and clustering of iOligodendrocyte and iExcitatory Neuron scRNA-seq 
experiments 
Sequencing reads from iOligo experiments were demultiplexed and aligned to the hg38 
reference using CellRanger with default setting using the command CellRanger 
mkfastq, followed by count generation using the command CellRanger count. 
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Sequencing reads from iExN experiments were demultiplexed and aligned to the hg38 
reference using DropSeqTools with default setting. 
 
To analyze single-cell RNA-sequencing data from ESC-derived oligodendrocytes and 
neurons we first determined highly variable genes using LIGER. We further used non-
negative matrix factorization (with k, number of factors, set to 20) to determine a low-
dimension embedding followed by graph-based clustering using SLM. Marker genes 
were identified by a Wilcoxon rank-sum and cells were annotated based on known 
markers of mature cell types as identified from our biopsy dataset. 
 
ELISA-based amyloid beta quantification 
To quantitate amyloid beta peptide levels from cell culture, we used the MesoScale 
Discovery V-Plex Plus Aꞵ Peptide Panel 1 (6E10) ELISA kit (cat. #K15200G). Briefly, 
we extracted 1.5 mL of conditioned media per well replicate from isolates of ESC-
derived oligodendrocytes, neurons, and microglia. Isolates were stored at -80°C till the 
ELISA assay was run at which time they were brought up to 4°C before being spun 
down at 10,000rpm for 15 minutes. The MSD ELISA was run according to the 
manufacturer’s guidelines. Absolute Aꞵ peptide abundances were quantified using the 
MSD Discovery Workbench Analysis Software. 
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Figure S1. Stereological positioning and neuropathological scoring of biopsy cohort samples  
A) Relative three-dimensional coordinates of biopsy positions based on the mapping of post-surgical CT 
or MRI images from 52 subjects. Samples are colored by AD pathologic status. B) Representative images 
of biopsies with different Aꞵ burden. 
  
  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.03.543569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.03.543569
http://creativecommons.org/licenses/by-nd/4.0/


 

46 

 
Figure S2. Individual cell types in the integrative analysis are well represented across biological 
conditions and datasets 
A-G) Number of cells in each cell type stratified by biological condition (left), and dataset (right). pm, 
postmortem; PD, Parkinson’s disease; MS, multiple sclerosis; ASD, autism spectrum disorder.  
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Figure S3. Quality metrics of human datasets included in the integrative analysis of Astro, Endo, 
ExN, and InN cell classes 
A-D) QC metrics of human datasets parsed by major cell class: A) Astrocytes, B) Endothelial cells, C) 
Excitatory neurons, D) Inhibitory neurons. Detailed marker analysis results are provided in Table S3. 
More QC metrics are available through the linked portal (see data availability section). %MT: percent 
expression of genes per cell that map to mitochondrial genes, normalized by nUMI. %dissociation artifact: 
percent expression of dissociation-related artifactual genes20 in each nuclei and normalized by nUMI. 
Astrocyte PTCSC3 cell type is more deeply clustered into three states (PTCSC3-DCLK1,PTCSC3-GFAP-
ROBO2, and PTCSC3-GFAP-FABP7). Center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5x interquartile range. 
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Figure S4. Quality metrics of human datasets included in the integrative analysis of Oligo, OPC, 
and Micro cell classes 
QC metrics of human datasets parsed by the major cell class: A) Oligodendrocytes, B) Oligodendrocyte 
progenitor cells, and C) Microglia. D) Comparisons of some key microglia states between human and 
mouse datasets. Color indicates the number of human or mouse donors that support the expression of 
the gene in a given UMAP coordinate across datasets. Detailed marker analysis results are provided in 
Table S3. More QC metrics are available through the linked portal (see data availability section). %MT: 
percent expression of mitochondrial genes in each cell and normalized by total nUMI. %dissociation 
artifact: percent expression of dissociation-related artifactual genes in each cell and normalized by total 
nUMI. Microglia cell types CX3CR1 and GPNMB-LPL are more deeply clustered into five (HM-0 to HM-4) 
and three (LPL-CD83 ,GPNMB-EYA2, GPNMB-NACA) states, respectively. Center line, median; box 
limits, upper and lower quartiles; whiskers, 1.5x interquartile range. 
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Figure S5. Peri- and post-mortem effects on gene expression patterns 
A) Impact of postmortem interval on the number of expressed transcripts (nUMI) per cell class. To 
estimate significance within each postmortem dataset, a regression line was fit to estimate the 
significance of association between PMI and the mean nUMI in each subject. For this analysis, we 
considered three postmortem datasets of Lau et al., Mathys et al., and Velmeshev et al. that their 
postmortem interval information were available and had sufficient range for a regression analysis. The p-
values from each dataset were next combined using Stouffer’s method. To calculate the nUMIs per cell, 
we excluded the top 50 expressed genes in each dataset to better capture the impact of the postmortem 
intervals on the expression of the lower expressed genes. The dashed line represents the p-value cutoff 
threshold of 0.05. B) Impact of PMI on glial-to-neuronal gene expression ratio. Within each of three 
postmortem datasets, Similar to panel A, a regression line was fit to examine the impact of the PMI on the 
mean ratio of glial-to-neuronal genes in each subject. The p-values were next combined using Stouffer's 
method. In each subject, the mean neuronal expression was calculated as the mean nUMI of excitatory 
and inhibitory neurons, excluding the top50 expressed genes. The dashed line represents the p-value 
cutoff threshold of 0.05. C) Glial-to-neuronal gene expression ratio as a function of PMI in each of the 
three postmortem datasets. D) Comparison of glial-to-neuronal gene expression levels between the 
biopsy and four postmortem datasets. Glial expression in each dataset was normalized to reduce the 
effect of the ambient RNA as measured by the expression level of the top 250 most specific markers of 
excitatory and inhibitory neurons. The neuronal specific gene markers were identified based on the pct.1 - 
pct.2 difference in our biopsy dataset. As shown, this normalization resulted in overlay of agonal state 
/postmortem scores for samples with a similar PMI across datasets. 
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Figure S6. Correspondence of neuronal cell types from integrative analysis with a reference 
dataset containing cortical layer annotations 
A) The plots represent the correspondence of neuronal cell type annotations from our integrative analysis 
with cell cluster annotations from a human cortex dataset21 that included cortical layer information. The 
sum of fractions in each row adds up to one. B) Dot plot of -log10-transformed FDR-adjusted p-values 
from logistic mixed-effect model testing association of cell type abundance with iNPH GS (Methods) 
subscore severity measured prior to shunt placement (precog = cognitive subscale, pregait = gait 
subscale, preurine = urine subscale, prepooled = combined iNPH GS score). C) Z-score from meta-
analysis of cell class level differential abundance comparing late-stage samples (Braak V-VI and 
Aꞵ+Tau+) versus pathology-free samples (Methods). D) Cell class level DE genes are preserved within 
cell types. Cell types are labeled in which less than 70% of cell class level DE genes were preserved. 
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Figure S7. Loss of NDNF-PROX1 inhibitory neurons is associated with an upregulation of 
excitatory neuron DE signature 
A) Distribution of Z-scores per cell class for the analysis shown in Figure 3A. Each small line indicates 
one cell type and the tick lines represent the mean. B) Logistic mixed-effect model regression (Methods) 
of NDNF-PROX1 proportion versus ExN cell type transcriptional signature in Aꞵ+ subjects with added 
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poisson noise. Poisson noise counts were added to the UMI counts of each gene in each cell prior to 
computing the regression. Boxplots show the distribution of -log10 transformed p-values over 30 noise 
iterations. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; 
points, outliers. C) Logistic mixed-effect model regression of NDNF-PROX1 proportion versus ExN cell 
type transcriptional signature in Aꞵ+ subjects with downsampling of cells. Iterating 30 times, we randomly 
downsampled each ExN type to 7000 cells, unless the cell type size was less than this number. Boxplots 
show the Z-score distributions over the 30 downsampling iterations. The dashed line indicates the FDR 
threshold of 0.05. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; points, outliers. D) Association between NDNF-PROX1 loss and LINC00507-COL5A2 cell type 
assessed using an alternative strategy of constructing a meta gene of the ExN DE signature from the first 
principal component (Methods). Each small line indicates one cell type and the tick lines represent the 
mean. E) Logistic mixed-effect model regression of NDNF-PROX1 proportion versus ExN cell type 
transcriptional signature in Aꞵ+ subjects after randomizing assignment of cells to excitatory cell types. 
Dashed line represents FDR-threshold of 0.05. F-G) Logistic mixed-effect model regression (Methods) of 
NDNF-PROX1 proportion versus ExN cell type transcriptional signature in control (F) and Aꞵ+Tau+ (G) 
subjects. The inset boxplot in F shows the overall distribution of Z-scores among the 17 excitatory neuron 
types. Dashed line represents FDR-threshold of 0.05. H) Boxplots representing the association (as 
measured by Z-score from logistic mixed-effect model regression) between each inhibitory neuron cell 
type (x-axis) with the ExN DE signature across 17 ExN types (boxplots). The red dot represents the Z-
score of the LINC00507-COL5A2 type. Analysis is based on Aꞵ+ individuals only. In boxplots, center line, 
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. I) Barplots representing 
the relative frequencies of the five astrocyte cell types. J) Dot plots showing expression of astrocyte 
marker genes in each astrocytic cell type. K) logFC expression of APP, CDK5, and SNAP25 genes in 
LINC00507-COL5A2 excitatory neurons across increasing Aꞵ burden scores. Regression line is 
illustrated in blue with associated standard error. 
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Figure S8. Microglia responses to the accumulation of Aꞵ and tau in cortical tissue. 
A) Microglia cell state compositions across human and mouse datasets. B) UMAP representation of 
microglia integrative analysis where each cell is colored by its dataset of origin. C) Proportion of microglial 
states stratified by brain region. D) Marker expression consistency of previous human and mouse single-
cell datasets with the biopsy dataset. Consistency score is defined as the fraction of markers from human 
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biopsy dataset for each microglia state that show a conserved up- or down-regulation pattern in each 
dataset. E) The fraction of DE genes from the biopsy dataset between each pair of microglia states that 
have a conserved logFC pattern (e.g., up or down in both cell states). DE genes were calculated by 
comparing Aꞵ+/Aꞵ+Tau+ samples with controls. F) Comparison of DE genes between GPNMB-LPL and 
CX3CR1 microglia types in the biopsy dataset. The analysis is based on the union of top 300 DE genes in 
each cell type to reduce the impact of cell type size variation (i.e., statistical power). G) Microglia DE 
genes from the biopsy dataset are upregulated in two AD postmortem studies and are enriched for the 
markers of GPNMB-LPL and LPL-CD83 microglia states. Meta-gene expression of the up-regulated 
microglial DE genes from our dataset in two published postmortem studies4,6. The meta-gene was 
constructed by summing their UMI counts in each cell and normalizing by the nUMI. The gray lines 
illustrate the median expression of the meta-gene across microglia states. H) Differential expression 
analysis of astrocyte genes in response to Microglia GPNMB-EYA2 and LPL-CD83 expansion. The DE 
genes (FDR-adjusted p-value < 0.05) are represented in red. Fractions of microglia GPNMB-EYA2 and 
LPL-CD83 cells in individuals are normalized using an empirical normal cumulative estimation function 
(ecdf function in R) to have a range between zero and one. I) Enrichment of mouse microglia states in 
response to various conditions (Fisher’s exact test; FDR-adjusted p-value < 0.1). 
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Figure S9. Nomination of amyloid-producing cell types in the human frontal cortex  
A) Bar chart showing -log10-transformed p-values for various ordering statistics (indicated at bottom right) 
based on GSEA of Aꞵ production and secretion geneset (Table S7) and cell class DE genes. B) Dot plot 
denoting differential expression of leading edge genes, identified by the GSEA of Aꞵ gene set in Figure 
5A, in Aꞵ+ subjects versus Aꞵ-free biopsy samples. Color correlates with log-fold change and size 
correlates to -log10-transformed p-values. C) Correlation analysis results obtained via fGSEA (see 
Methods) comparing differentially expressed gene lists between all major cell classes and 
oligodendrocytes, with increasingly liberal thresholds (larger gene lists) for assigning univariate 
significance. D) Overlap of genes expressed in oligodendrocytes with other major cell classes. Different 
thresholds were selected to consider a gene as expressed (x-axis) based on the percentage of the cells 
in which the gene has non-zero UMI. E,F) Signed -log10-transformed p-values associated with fGSEA 
enrichment across increasing Aꞵ and tau burdens for all major cell types (glia in (E) and neurons in (F)) in 
human frontal cortex from DE analysis of the human biopsy dataset. G) Meta-analysis p-values for fGSEA 
of the Aꞵ associated gene set in the DE genes of two postmortem AD case-control datasets 3,4, for six cell 
classes. 
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Figure S10. Single-cell transcriptomics and immunohistochemistry of ESC-derived 
oligodendrocyte and neuron cultures  
A,D) Violin plot of number of nUMI (top) and nGene (bottom) per cell type identified in single-cell 
transcriptomics of ESC-derived iExN (A) and (D) iOligo lineage cultures. In boxplots, center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. B,E) Key marker 
genes for cell types identified from single-cell transcriptomics of ESC-derived iExN (B) and (E) iOligo 
cultures. C,F) Composition of ESC-derived iExN (C) and iOligo (F) cultures based upon single-cell cluster 
annotations. G) Representative images of immunofluorescence stains of PAX6 and NeuN (G) in ESC-
derived iOligo cultures. H,I) Box plots of average intensity values per cell (normalized to DAPI intensity) 
across days of differentiation for NeuN, PAX6 (H), O4, and MBP (I). Box upper and lower bounds 
represent upper and lower quartiles and Whisker distance from upper and lower hinges represents ≤1.5 
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times the interquartile range. Center line indicates the median value. J) Total Aꞵ levels from conditioned 
media isolated from ESC-derived microglia and blank control derived from unconditioned oligodendrocyte 
differentiation media. *** = p < 0.001, ** = p < 0.01, * = p < 0.05, NS = not significant. Statistical tests are 
based on a linear mixed-effect model for comparing immunofluorescence signal intensity per cell using 
each sample well as the levels of the random effect. Statistical significance for comparing amyloid beta 
protein values was determined via the Student’s t-test. 
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