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Abstract   21 

Chronic polymicrobial infections (cPMIs) harbor complex bacterial communities with diverse 22 
metabolic capacities, leading to competitive and cooperative interactions. Although the microbes 23 
present in cPMIs have been established through culture-dependent and -independent methods, 24 
the key functions that drive different cPMIs and the metabolic activities of these complex 25 
communities remain unknown. To address this knowledge gap, we analyzed 102 published 26 
metatranscriptomes collected from cystic fibrosis sputum (CF) and chronic wound infections (CW) 27 
to identify key bacterial members and functions in cPMIs. Community composition analysis 28 
identified a high prevalence of pathogens, particularly Staphylococcus and Pseudomonas, and 29 
anaerobic members of the microbiota, including Porphyromonas, Anaerococcus, and Prevotella. 30 
Functional profiling with HUMANn3 and SAMSA2 revealed that while functions involved in 31 
bacterial competition, oxidative stress response, and virulence were conserved across both 32 
chronic infection types, ≥40% of the functions were differentially expressed (padj < 0.05, fold-33 
change >2). Higher expression of antibiotic resistance and biofilm functions were observed in CF, 34 
while tissue destructive enzymes and oxidative stress response functions were highly expressed 35 
in CW samples. Of note, strict anaerobes had negative correlations with traditional pathogens in 36 
both CW (P = -0.43) and CF (P = -0.27) samples and they significantly contributed to the 37 
expression of these functions. Additionally, we show microbial communities have unique 38 
expression patterns and distinct organisms fulfill the expression of key functions in each site, 39 
indicating the infection environment strongly influences bacterial physiology and that community 40 
structure influences function. Collectively, our findings indicate that community composition and 41 
function should guide treatment strategies for cPMIs.  42 

Importance  43 

The microbial diversity in polymicrobial infections (PMIs) allows for community members to 44 
establish interactions with one another which can result in enhanced disease outcomes such as 45 
increased antibiotic tolerance and chronicity. Chronic PMIs result in large burdens on health 46 
systems, as they affect a significant proportion of the population and are expensive and difficult 47 
to treat. However, investigations into physiology of microbial communities in actual human 48 
infection sites is lacking. Here, we highlight that the predominant functions in chronic PMIs differ, 49 
and anaerobes, often described as contaminants, may be significant in the progression of chronic 50 
infections. Determining the community structure and functions in PMIs is a critical step towards 51 
understanding the molecular mechanisms that drive microbe-microbe interactions in these 52 
environments.  53 
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Microbes live in multi-species communities where community structure and function dictate key 55 
processes such as nutrient cycling, tolerance to disturbances, and in infection sites, disease 56 
progression. The presence of diverse microbes with a wide range of metabolic capacities and 57 
large nutrient gradients often leads to microbe-microbe interactions in chronic polymicrobial 58 
infections (cPMIs) (1). These cooperative and competitive interactions can result in increased 59 
disease severity, increased antimicrobial tolerance, and chronicity compared to single species 60 
infections (2,3). Although we have known that chronic infections are composed of polymicrobial 61 
communities for over 100 years, pathogenesis research has focused on the physiology of a 62 
handful of well-known pathogens in isolation in laboratory and animal models, and data on 63 
microbial community physiology in human infection sites is lacking (4,5,6). Further, the 64 
contribution of the normal flora identified in cPMIs to disease progression has remained 65 
debatable, and members of the microbiota are often ignored in current treatment plans (7). 66 
Therefore, two important knowledge gaps are the key functions that drive each chronic PMI and 67 
the metabolic activities of the array of microbes present. To address these questions, we analyzed 68 
102 previously published metatranscriptomes collected from people with CF (CF: 30%) and 69 
chronic wound infections (CW: 70%) to identify key bacterial members and community functions 70 
in these typical examples of clinically important cPMIs (8,9).  71 

Anaerobes are prominent in chronic infections. 72 

We identified microbial communities in 90 of our 102 samples (CF:31 CW:59) through community 73 
composition analysis with MetaPhlAn4 (Table S1). Identification of the genera present revealed 74 
that both the CW and CF sputum samples contained a mix of traditional pathogens from the 75 
genera Staphylococcus, Pseudomonas, and Streptococcus, along with anaerobic members of the 76 
microbiota (Fig. 1A), concordant to what is expected in these infections based on previous 77 
metagenomic and 16S rRNA gene data (8,10,11,12,13). While the mean number of species 78 
identified in each sample aligns with previous reports (10,12,13,14,15), we found the CF samples 79 
were more diverse than CW samples with a mean of 11.8 and 6.7 species identified, respectively 80 
(P-value < 0.01) (Fig. 1B). The increased diversity in CF sputum compared to CW wounds was 81 
also observed with both Shannon and Simpson diversity indices (Fig. 1C&D). Interestingly, we 82 
identified a high abundance of transcripts assigned to anaerobes in these samples (Fig 1A&E, 83 
Table S1), suggesting the chronic infection environments are likely hypoxic. Further, we found 84 
that while anaerobes co-occurred with traditional pathogens in over 50% of samples (CF: 80.7%, 85 
CW: 52.5%), there was a strong negative correlation between the anaerobes and traditional 86 
pathogens in both sites, indicating possible competitive interactions (Fig. S1).  87 

CF sputum has increased expression of antibiotic resistance and biosynthetic pathways 88 
while tissue destructive and catabolic pathways are primarily expressed in CW infections.  89 

Through profiling with both SAMSA2 and HUMANn3, we classified the level 4 enzyme 90 
commission (EC) functions in each sample (SAMSA: 4527, HUMANn3: 2459). Our analysis 91 
revealed that several EC classes involved in oxidative stress responses, virulence, bacterial 92 
competition, fatty acid metabolism, and iron acquisition were conserved across infection 93 
environments (Table S2), indicating that bacterial community members in these infection types 94 
may be competing with one another for resources while tolerating host innate immune 95 
mechanisms and simultaneously expressing their virulence functions. However, while some key 96 
functions were conserved across both infection sites, over 40% of the functions identified were 97 
differentially expressed (qvalue < 0.05, fold-change > 2) between the two sites (40.4% and 43.0% 98 
for SAMSA2 and HUMANn3, respectively), with the majority displaying higher expression in the 99 
wounds compared to the sputum. There were key differences in the types of functions that were 100 
highly expressed in each site. CF sputum displayed high expression of antibiotic resistance 101 
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functions, iron acquisition, virulence factors, and functions important for attachment to host 102 
surfaces (Fig. 2A & Table S2). In contrast, CW infections had high expression of functions 103 
involved in oxidative stress response and tissue destructive enzymes and virulence factors (Fig. 104 
2A & Table S2). Taking a deeper look into the expression of metabolic pathways in each site 105 
revealed the enrichment of catabolic pathways, such as the glycogen degradation pathway and 106 
the valine degradation pathway, as well as catabolism support pathways, including phospholipase 107 
synthesis, in CW samples (Table S3). In contrast, in the CF samples there was an enrichment of 108 
biosynthetic pathways, such as the fatty acid elongation pathway, oleate, palmitoleate and valine 109 
biosynthesis.  110 

 The increased expression of functions involved in multiple classes of antibiotic resistance 111 
in sputum strongly suggests that bacterial community in CF airways may have adapted to 112 
negating the effect of the antibiotics used in the management of infection, possibly contributing to 113 
the persistence of the lung infection. Further, the enrichment in biosynthetic pathways in CF lung 114 
communities indicates these key nutrients are likely limited in this environment. In contrast, the 115 
high expression of oxidative stress, tissue destructive enzymes, and catabolic pathways in CW 116 
infections indicates the complex community in these infections are degrading host tissue to 117 
release nutrients and that nutrients are likely abundant, possibly contributing to bacterial virulence 118 
and persistence. This may also be due to the high presence of S. aureus in CW infections, which 119 
is notorious for synthesizing large quantities of tissue destructive enzymes (16).  120 

Bacterial community structure and environment influence function. 121 

In addition to the distinct functions identified in each infection site, we were interested if the same 122 
community members were contributing to conserved functions in each infection, or if distinct 123 
community members were contributing to each site. Therefore, we analyzed the stratified output 124 
provided by HUMANn3 to evaluate community member contributions. We observed that 125 
transcripts were frequently assigned to common pathogens such as P. aeruginosa, 126 
Staphylococcus epidermidis, S. aureus, Streptococcus agalactiae and anaerobic members of the 127 
microbiome such as Anaerococus vaginalis, Finegoldia magna, Prevotella melaninogenica, and 128 
Veillonella parvula.  While both groups were prominent contributors to the reduction of oxidative 129 
stress and bacterial competition, iron acquisition and biofilm functions were mostly expressed by 130 
P. aeruginosa in the CF environment while S. aureus dominated expression in CW infections. 131 
Additionally, tissue degrading enzymes were primarily expressed by P. aeruginosa in CF sputum 132 
but by the anaerobic microbiota in CW infection. Taken together, our data shows that key 133 
community functions are expressed by distinct species in each site, indicating niche differentiation 134 
may be occurring during chronic infection. However, it should be noted that one limitation is the 135 
short reads used may not allow for species level identification of all functions by HUMANn3. 136 

Conclusions and Key Takeaways 137 

We found the key functions that drive disease progression in each infection type differ. Further, 138 
we showed that the microbial community in each infection type is distinct, and this compositional 139 
difference alongside the infection environment is critical in determining functions important for 140 
disease progression. Interestingly, we found that the anaerobic microbiota may play a significant 141 
role in the progression of chronic infections. Together, these findings will prompt future studies 142 
aimed at investigating how co-infecting microbes interact with traditional pathogens, the molecular 143 
mechanisms that drive these interactions, and how these interactions impact chronicity.  144 

 145 
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 146 

Materials and Methods 147 

Dataset Collection and Validation: We analyzed 102 RNA-sequencing files of chronic wound 148 
and cystic fibrosis patients from published studies (7,11,16,17,18,19). We limited our search to 149 
metatranscriptomes collected from people with CW in lower extremities & CF and ensured the 150 
absence of technical replicates or transcriptomes with reads previously mapped to single bacterial 151 
species, which identified 6 studies that fit these criteria. We assessed the quality of the sequence 152 
files using FastQC 0.11.9 (20) and removed adapter sequences and reads less than 22 bases 153 
with CutAdapt 4.1 (21). Ribosomal RNA sequences were removed with SortMeRNA 4.0.0 (22) 154 
using default parameters. The resulting reads were mapped to the human genome 155 
(GRCh38/hg38), and processed reads that did not map to GRCh38 were used for community and 156 
functional analyses. 157 

Metatranscriptome Analysis: MetaPhlAn 4.0.1 was used for community composition analysis 158 
and to obtain the relative abundances of bacteria in each sample using a minimum read length 159 
threshold of 22 bases and other default parameters (23). SAMSA 2.0 and HUMAnN 3.0 were 160 
used for functional profiling. First, we analyzed the prokaryotic non-rRNA reads with SAMSA2 to 161 
identify the functional profile of the microbial community in each sample (24). SAMSA2 annotated 162 
the reads against the RefSeq bacterial database and SEED subsystems database using 163 
DIAMOND aligner. Outputs were aggregated and exported for statistical analysis with DESeq2 164 
1.38.3 in RStudio. In addition, we also did functional profiling with HUMAnN3 to obtain the 165 
metabolic potential of the microbial communites (25). HUMANn3 uses the DIAMOND aligner to 166 
map reads to the UniRef90 database to identify the UniRef protein families, which were regrouped 167 
to level 4 enzyme classes (EC). We normalized the reads per kilobase output to relative 168 
abundance data with humann_renorm_table and the data was input into MaAsLin2 1.12.0 in 169 
RStudio for differential expression analysis.   170 

Statistical Analyses: 171 

All other statistical analyses were performed in RStudio with R version 4.2.2. Data visualizations 172 
were performed in GraphPad Prism 9.  173 

Data Availability: 174 

All code used in these analyses is available at 175 
https://github.com/Aanuoluwaduro/Metatransriptomics-Microbial-Community-Functions.  176 

The 102 metatranscriptomes used in this study were pulled from the National Center for 177 
Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession numbers: 178 
SRP135669, PRJNA573047, PRJNA563930, PRJNA726011, PRJNA576508, PRJNA720438, 179 
PRJNA909326. 180 

Additional detailed methods are included in the Supplemental Material.  181 
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 278 

Figure 1: Bacterial community composition in CF and CW environments. A) Relative 279 
abundance of bacterial genera present in at least 3 samples with a % assigned read abundance 280 
of at least 1%. 29 genera were identified in CF samples and CW 36 in wound samples. B) 281 
Distribution of the number of species with a relative abundance of at least 1% in CF and CW 282 
samples. C) The Shannon diversity index of each sample. D) Distribution of the Simpson diversity 283 
index in each sample. E) Distribution of the percentage of reads assigned to anaerobes (closed 284 
circles) and facultative anaerobes (open circles) in each sample in the CF and CW environments. 285 
For plots B-E, CF samples are in blue and CW samples are in red. P-values and brackets indicate 286 
comparisons that were deemed statistically significant (T-test, P-value <0.05) 287 
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 288 

Figure 2: Distinct expression of microbial functions in CF and CW communities. A) Volcano 289 
plot to highlight differentially expressed functions between infection sites as identified by 290 
SAMSA2. 40.37% of the functions were differentially expressed (adjusted P-value <0.05, 291 
log2FoldChange > 1. B & C) Bacterial contribution to the expression of functions conserved 292 
across CF and CW environments. D-G) Bacterial contribution to the expression of differentially 293 
expressed functions.  294 
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