
 

1 
 

zol & fai: large-scale targeted detection and evolutionary investigation of gene clusters 1 
 2 
Rauf Salamzade1,2, Patricia Q. Tran3,4, Cody Martin2,3, Abigail L. Manson5, Michael S. 3 
Gilmore5,6,7, Ashlee M. Earl5, Karthik Anantharaman3, Lindsay R. Kalan1,8,9 4 
 5 
1Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of 6 
Wisconsin-Madison, Madison, WI, USA 7 
2Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA 8 
3Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA 9 
4Freshwater and Marine Science Doctoral Program, University of Wisconsin-Madison, WI, USA  10 
5Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 11 
6Department of Ophthalmology, Harvard Medical School and Mass Eye and Ear, Boston, Massachusetts, USA 12 
7Department of Microbiology, Harvard Medical School and Mass Eye and Ear, Boston, Massachusetts, USA 13 
8Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of 14 
Wisconsin-Madison, Madison, WI, USA 15 
9M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department 16 
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada 17 
 18 
Address for Correspondence: Lindsay R. Kalan; kalanlr@mcmaster.ca 19 
 20 
Abstract 21 
 22 
 Many universally and conditionally important genes are genomically aggregated within 23 
clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis 24 
of different types of gene clusters and mobile-genetic elements (MGEs), such as biosynthetic 25 
gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably 26 
perform comprehensive orthology inference at large scale across broad taxonomic contexts and 27 
thousands of genomes. First, fai allows the identification of orthologous instances of a query 28 
gene cluster of interest amongst a database of target genomes. Subsequently, zol enables 29 
reliable, context-specific inference of ortholog groups for individual protein-encoding genes 30 
across gene cluster instances. In addition, zol performs functional annotation and computes a 31 
variety of evolutionary statistics for each inferred ortholog group. Importantly, in comparison to 32 
tools for visual exploration of homologous relationships between gene clusters, zol can scale to 33 
thousands of gene cluster instances and produce detailed reports that are easy to digest. To 34 
showcase fai and zol, we apply them for: (i) longitudinal tracking of a virus in metagenomes, (ii) 35 
discovering novel population-level genetic insights of two common BGCs in the fungal species 36 
Aspergillus flavus, and (iii) uncovering large-scale evolutionary trends of a virulence-associated 37 
gene cluster across thousands of genomes from a diverse bacterial genus. 38 
 39 
Background 40 
 41 

De novo ortholog grouping typically involves searching for reciprocal best hits of proteins 42 
between pairs of genomes, indicative of orthology, and subsequently clustering pairs of inferred 43 
orthologs and in-paralogs across multiple genomes1–4. Initial methods for orthology inference 44 
were designed to be able to identify orthologs between distinct species but limited in the number 45 
of genomes they could process1–3. This limitation is largely due to the all-vs-all alignment of 46 
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proteomes, core to most methods for de novo ortholog grouping, which is an O(n2) operation 47 
and a major computational bottleneck. Approaches to overcome this procedure include limiting 48 
proteome comparisons by using a guiding-phylogeny5,6, adapting alignment searching 49 
parameters and heuristics to further boost speeds7,8, or preliminary aggressive clustering of 50 
proteins into coarse homolog groups9. Recently, graph-based and iterative-clustering 51 
approaches have also allowed vast scalability to thousands of bacterial genomes, but are 52 
primarily designed for application to a single species10–13.   53 
 Available orthology inference methods struggle to infer ortholog groups across large 54 
datasets of taxonomically diverse genomes, potentially representing thousands of species, such 55 
as a set of metagenome-assembled genomes (MAGs) related to a common microbiome. While 56 
multiple methods exist to identify instances of previously established ortholog groups within the 57 
predicted proteome of a metagenome14–17, these are unable to account for proteins not 58 
represented in their database. Recently, independent advancements in methods to collapse 59 
large protein sets based on sequence similarity have enabled rapid clustering of millions of 60 
sequences18–20. These approaches have even been used on massive protein datasets gathered 61 
from across multiple metagenomic datasets21; however, more resolute delineation of functionally 62 
analogous ortholog groups across thousands of genomes from multiple species remains difficult 63 
to perform de novo.  64 

Of relevance, within bacterial genomes, genes are often co-located within smaller, 65 
discrete, multi-gene units, which we will broadly refer to as gene clusters. Examples of gene 66 
clusters include operons22,23, phages24, metabolic gene clusters25, biosynthetic gene clusters 67 
(BGCs)26–29, and pathogenicity islands30,31. Although less common, eukaryotic genomes can 68 
also contain genes aggregated within discrete clusters32–34. Sometimes gene clusters are highly 69 
conserved, encoding for products essential to the survival of the organism35. In other cases, a 70 
single gene cluster can exhibit variability in gene carriage and order across different strains or 71 
species36–38. This is often the case for BGCs encoding specialized metabolites or virulence-72 
associated gene clusters, where evolution of gene content and sequence divergence can 73 
influence fitness and contribute to adaptation within a changing ecosystem39–41.  74 

Syntenic conservation has been used to assist de novo identification of homologous 75 
instances of a gene cluster of interest in diverse target genomes42–45. Homologous gene cluster 76 
instances can then be comprehensively investigated to delineate homolog or ortholog groups of 77 
the proteins found across them44,46. While such targeted approaches can alleviate time and 78 
computational resources by avoiding more comprehensive identification of orthologs at genome-79 
wide scales, currently available methods are mostly designed for specific types of gene clusters, 80 
such as BGCs42,44,45. Many of the software implementing such approaches also do not provide 81 
support for uniform annotation of coding sequences in target genomes, which can decrease 82 
sensitivity for gene cluster detection. In addition, most methods do not account for gene cluster 83 
paralogy, which has been observed for BGCs in bacterial38 and fungal genomes33, or provide 84 
specialized capabilities for finding gene clusters across fragmented genomes or metagenomic 85 
assemblies38. 86 

Following identification of homologous gene clusters in target genomes, software to 87 
understand the evolutionary relationships between gene cluster instances and infer protein 88 
ortholog groups have largely applied coarse protein clustering and aimed to provide 89 
visualization based exploration to users44,46–48. Visual assessment of related gene clusters and 90 
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manual refinement of ortholog groups work well at smaller scales but become impractical when 91 
dealing with hundreds to thousands of gene cluster instances. Scalability challenges are due to 92 
both computational costs needed to render visuals as well as the figures becoming convoluted 93 
and difficult to interpret. An effective solution to ease the identification of evolutionary trends 94 
amongst homologous gene clusters is to first identify ortholog groups44 and present information 95 
pertaining to their conservation and sequence divergence within tabular reports10,38. Such 96 
tabular reports scale by the number of unique ortholog groups and can be organized by their 97 
consensus order along gene cluster instances. We recently introduced construction of such 98 
reports in a software suite for exploring microdiversity amongst homologous BGCs from a single 99 
taxon38; however, the functionality was difficult to use outside of the suite and reliant on 100 
orthologous relationships between proteins of gene clusters being known in advance.  101 

Here, we introduce the zol suite, providing functionalities for gene cluster detection and 102 
subsequent inference and investigation of protein ortholog groups across homologous gene 103 
clusters. The versatility and scalability of these programs is demonstrated through application to 104 
three types of gene clusters within different genomic contexts including a virus within 105 
environmental metagenomes, fungal secondary metabolite encoding biosynthetic gene clusters, 106 
and a conserved polysaccharide antigen locus from the diverse bacterial genus of 107 
Enterococcus. 108 
 109 
Results 110 
 111 
fai and zol allow for the rapid inference of gene cluster orthologs across diverse 112 
genomes 113 
 114 

The zol suite consists of three major programs: prepTG (prepare target genomes), fai 115 
(find additional instances), and zol (zoom on locus) (Figure 1A). First, prepTG and fai can be 116 
run to process a set of target genomes and rapidly search for a query gene cluster within them, 117 
respectively. Afterwards, zol can perform reliable and efficient context-limited inference of 118 
ortholog groups across homologous gene cluster instances identified using a flexible 119 
InParanoid-type algorithm3. For each ortholog group, zol will further compute evolutionary 120 
statistics, such as Tajima’s D49, and functional annotations, using several, diverse databases 121 
suitable for a variety of gene clusters, including those specific to phages50, virulence elements51, 122 
and BGCs52. Ultimately, zol will summarize data in a table report where each row corresponds 123 
to a distinct ortholog group. This report is automatically color formatted and provided as an 124 
XLSX spreadsheet to allow for easy interpretation of the data, which can span thousands of 125 
gene cluster instances.  126 

To promote consistency in gene calling across target genomes, we have incorporated 127 
computationally light-weight dependencies for de novo gene prediction in bacterial genomes53,54 128 
and protein-mapping in eukaryotic genomes55 within prepTG, to prepare and format target 129 
genomes for optimized gene cluster searching in fai (Figure 1B). prepTG also aims to provide a 130 
convenient interface to transform genomic or metagenomic datasets into a format ready for 131 
searching using fai. Options are available to download pre-built databases of distinct 132 
representative genomes for 18 commonly studied bacterial taxa56 or to build comprehensive 133 
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databases for any genus or species in the latest release of the Genome Taxonomy Database 134 
(GTDB)57. 135 

fai features two key features which are absent in most existing methods for gene cluster 136 
detection (Figure 1C; Table S1; Supplementary Text). First, it has an option to automatically 137 
filter secondary instances of query gene clusters identified in target genomes, removing 138 
potentially paralogous gene clusters from downstream investigations. Second, fai implements a 139 
mode for searching for gene clusters in draft quality genomes, MAGs, or unbinned 140 
metagenomic assemblies, where gene clusters might be fragmented across multiple scaffolds. 141 
When this mode is activated, fai relaxes requirements for reporting a gene cluster as present in 142 
a genome or metagenome if multiple homologous gene cluster regions are identified near 143 
scaffold edges in a target genome and instead assesses whether reporting criteria are met in 144 
unison across such instances (Figure S1). Similar to prepTG, fai also aims to provide 145 
convenience for users and can accept query gene clusters in different formats to ease 146 
searching for gene clusters and genomic islands cataloged in databases such as ICEberg58, 147 
MIBiG52, or IslandViewer59. Query gene clusters can be provided as a coordinate along a 148 
reference genome, in GenBank format, or as a set of proteins in FASTA format. In addition, to 149 
simplify conservation and novelty assessment of a single isolate’s BGCs, phages, and plasmids 150 
relative to other genomes from the same genus or species, specialized wrapper programs of fai 151 
are also provided within the zol suite (Figure S2). 152 

zol will infer ortholog groups for proteins across homologous gene clusters and then 153 
construct a tabular report with information on conservation, evolutionary trends, and annotation 154 
for each individual ortholog group (Figure 1D). To make annotated reports generated by zol 155 
more comprehensive for different types of gene clusters, several databases have been 156 
included, such as VOGs50, VFDB51, ISFinder60, and CARD61. In addition, zol incorporates 157 
HyPhy62 as a dependency and calculates various evolutionary statistics. Ultimately, beyond 158 
high-throughput inference of ortholog groups across diverse genomic datasets, the rich tabular 159 
report produced by zol provides complementary information to figures generated by 160 
comparative visualization software such as clinker46, CORASON44, gggenomes63, and Easyfig64.  161 

A key feature in zol is the ability to dereplicate gene clusters directly using skani65, which 162 
was recently shown to be more reliable at estimating average nucleotide identity (ANI) between 163 
genomes of variable contiguity relative to comparative methods. Dereplication can allow for 164 
more appropriate inference of evolutionary statistics to overcome availability or sampling biases 165 
in genomic databases66. It can also be used to subset distinct representative gene cluster 166 
instances to make investigation using visualization software more tractable. Another important 167 
ability of zol is a mode where users can provide a handful of known instances for a gene cluster 168 
to estimate optimal parameters to search for additional instances of the gene cluster using fai. 169 
We applied this functionality of zol on sets of homologous BGCs and phages to determine 170 
distributions for search parameters in fai which users could consult as priors (Figure S3; 171 
Supplementary Text). 172 

Finally, zol allows for comparative investigations of gene clusters based on taxonomic or 173 
ecological groupings67–69. For instance, users can designate a subset of gene clusters as 174 
belonging to a specific population to allow zol to calculate ortholog group conservation across 175 
just the focal set of gene clusters. In addition, zol will compute the fixation index70, FST, for each 176 
ortholog group to assess gene flow between the focal and complementary sets of gene clusters. 177 
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 178 
Longitudinal tracking of a virus within lake metagenomic assemblies 179 
 180 
 Metagenomic datasets represent a large reservoir of underexplored sequence 181 
space71,72. To demonstrate the ability of the zol suite to identify and investigate gene clusters in 182 
metagenomes, we applied it to track a virus in a longitudinal metagenomic dataset profiling a 183 
lake’s microbiome over space and time73.  184 

We first identified large (>20kb) viruses, that were also predicted to represent circular 185 
molecules, across a subset of the metagenomic assemblies corresponding to the earliest 186 
sampling date74. Afterwards, clustering based on the sequence and syntenic similarity of protein 187 
domains led to the identification of a ~36kb highly conserved virus in two of the metagenomes 188 
sampled from lower lake depths.  189 

All 16 metagenomic assemblies, spanning five distinct sampling timepoints and four 190 
distinct sampling depths, were processed through prepTG to identify coding sequences and 191 
construct a database ready to search for gene clusters using fai. GenBank files with coding 192 
sequence annotations for metagenomic assemblies generated by prepTG, amassing 27 Gb 193 
total in size, were further provided as input for cblaster makedb, which serves a similar role to 194 
prepTG in the cblaster suite to format genomic data for downstream gene cluster searches. 195 
However, cblaster makedb does not feature the ability to perform de novo gene-calling for either 196 
genomes or metagenomes and is not designed to accommodate the size of metagenomic 197 
assemblies. During database construction, cblaster makedb required around 30 Gb of memory, 198 
while prepTG needed less than 3 Gb of memory (Figure S4A). 199 

Next, fai was used to perform a rapid, targeted search for this ~36 kb Caudovirales virus 200 
across the full set of 16 metagenomes to identify additional instances of the virus. fai completed 201 
its search of the metagenomes, featuring >20 million proteins and 10.7 million contigs, in less 202 
than four minutes using 20 threads, performing similarly to cblaster, run using similar settings as 203 
fai (Figure S4B). Of the 16 total metagenomes, the virus was found in ten metagenomes, 204 
including all nine metagenomes surveying anoxic conditions (p<0.001; one-sided Fisher’s exact 205 
test; Figure 2A). This is concordant with inferences for the host for the virus being Rhodoferax, 206 
which are purple bacterium featuring species classified as anaerobic photoheterotrophs73,75,76. In 207 
addition, Rhodoferax classified MAGs from the metagenomic dataset were exclusively obtained 208 
from anoxic conditions73. To investigate how the gene repertoire of the virus evolved over time, 209 
we next applied zol. zol-based analysis revealed that 45 (72.6%) of the 62 total distinct ortholog 210 
groups were core to all instances of the virus across ten metagenomes with most completely 211 
conserved in sequence over the course of 2.5 months (Figure 2B; Table S2). Furthermore, 15 212 
of the 62 ortholog groups were not observed in the query viruses from the earliest sampling 213 
date, suggesting the potential acquisition or duplication of genes in the virus during the span of 214 
sampling at the lake. 215 

 216 
Investigating population-level and species-wide evolutionary trends of BGCs in the 217 
eukaryotic species Aspergillus flavus 218 
 219 
 Low sensitivity for gene cluster detection in eukaryotic genome assemblies can arise 220 
from their incompleteness, leading to gene clusters being fragmented across multiple 221 
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scaffolds77,78, as well as challenges in ab initio gene prediction due to alternative splicing79,80. 222 
Therefore, many gene cluster detection software are either specific for bacterial genomes or 223 
require coding sequence annotations for eukaryotic genomes to be provided by the user. To 224 
overcome such challenges to user application, we integrated miniprot55 into prepTG which 225 
allows for mapping high-quality protein annotations from a reference genome to the remainder 226 
of the genomes available for a species or genus. We showcase the ability of prepTG and fai to 227 
simplify the reliable identification of gene clusters in eukaryotic genomes by using them to find 228 
instances of two BGCs across genomes belonging to the fungal species Aspergillus flavus. 229 

The genus of Aspergillus is a source of several natural products, including aflatoxins, a 230 
common and economically impactful contaminant of food81. The genus also contains species 231 
that are model organisms for studying fungal secondary metabolism34,82,83. Examination of the 232 
secondary metabolome of A. flavus has revealed that different clades or populations can exhibit 233 
variability in their metabolite production despite high conservation of core BGC genes encoding 234 
enzymes for synthesis of these metabolites37,84. For instance, population B A. flavus were 235 
identified as producing a greater abundance of the insecticide leporin B relative to populations A 236 
and C37,85. We showcase zol’s ability to aid comparative analysis of gene clusters from different 237 
populations through application to the leporin BGC. We further show how zol can detect 238 
variation in sequence conservation for different genes from the aflatoxin BGC and be inclusive 239 
of genes present in target genome annotations but missing in the query gene cluster, allowing 240 
for comprehensive profiling of BGC auxiliary content.  241 

Based on read alignment to a reference genome, the leporin cluster was recently 242 
identified to be a core component of the A. flavus genome37. However, a restricting factor in the 243 
direct prediction of gene clusters in A. flavus assemblies is the lack of gene annotations, with 244 
only 11 (5.1%) of 216 genomes from the species in NCBI’s GenBank database having coding 245 
sequence predictions (Figure 3A). Therefore, we mapped high-quality protein predictions for a 246 
reference A. flavus genome86 to the remainder of the 216 genomes available for the species. 247 
Running fai in “draft mode” led to the identification of the leporin BGC within 212 (98.1%) 248 
assemblies, consistent with the prior read mapping-based investigation suggesting that the BGC 249 
was core to the species37. In comparison, the CAGECAT server87, which runs cblaster45, was 250 
limited to genomes with protein coding annotations available on NCBI and thus unable to 251 
assess the remaining 205 genomes for the presence of the leporin BGC (Figure 3B). We also 252 
investigated the ability of non-targeted approaches for BGC detection to identify the leporin 253 
BGC by applying antiSMASH followed by BiG-SCAPE for clustering related BGCs and matching 254 
them to characterized BGCs in the MIBiG database. When this approach was applied using 255 
GenBank files prepared by prepTG, the gene cluster clan corresponding containing the leporin 256 
BGC was found in all A. flavus genomes provided as input. However, when antiSMASH was run 257 
using de novo gene prediction in antiSMASH based on GlimmerHMM88 with Cryptococcus gene 258 
annotation models, recovery of the leporin BGC was limited (Figure 3B). 259 

Of the 212 genomes with the leporin BGC identified by fai, 202 contained instances that 260 
were high-quality and not near scaffold edges. This set of 202 instances of the gene cluster was 261 
further investigated using zol with options to perform comparative investigation of BGC 262 
instances from A. flavus population B genomes to instances from other populations. High 263 
sequence conservation was observed for all genes in the leporin gene cluster as previously 264 
reported37 (Table S3). Further, alleles for genes in the BGC from population B genomes were 265 
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generally more similar to each other than to alleles from outside the population, as indicated by 266 
high FST values (>0.85 for 9 of 10 genes) (Figure 3C; Table S3). While regulation of secondary 267 
metabolites in Aspergillus is complex89, zol analysis showed that the three essential genes for 268 
leporin production85 also had the lowest variation in the 100 bps upstream their exonic 269 
coordinates (Figure S5). This suggests higher variability is occurring in the transcription of the 270 
accessory lep genes within the species. This supports experimental evidence that has shown 271 
gene knockouts depleting certain leporin species will still permit the production of others85. 272 

fai and zol were also applied to the BGC encoding aflatoxin across A. flavus90 (Table 273 
S4). Similar to the leporin BGC, the aflatoxin BGC was highly prevalent in the species and found 274 
in 71.8% of genomes. However, in contrast to the leporin BGC, the aflatoxin BGC contained 275 
several genes with positive Tajima’s D values, indicating greater sequence variability for these 276 
coding regions across the species (Figure 3D). One of the genes with a positive Tajima’s D 277 
value was aflX, which has been shown to influence conversion of the precursor veriscolorin A to 278 
downstream intermediates in the aflatoxin biosynthesis pathway91 (Figure 3E). An abundance 279 
of sites with mid-frequency alleles in the oxidoreductase encoding gene could represent 280 
granular control for the amount of aflatoxin relative to intermediates produced. The polyketide 281 
synthase gene pksA had the lowest Tajima’s D value of -2.4, which suggests it is either highly 282 
conserved or under purifying selection (Figure 3F). In addition, because the reference proteome 283 
used to infer genomic coding regions was constructed recently86, fai and zol detected several 284 
highly conserved genes within the aflatoxin BGC that are not represented in the original 285 
reference gene cluster input for fai52. This includes a gene annotated as a noranthrone 286 
monooxygenase and recently characterized as contributing to aflatoxin biosynthesis92,93 (Figure 287 
3D). 288 

 289 
Identification of the Enterococcal polysaccharide antigen and assessment of context 290 
restricted orthology inference 291 
 292 
 To demonstrate the ability of zol and fai to reliably identify ortholog groups across 293 
multiple species and thousands of genomes, we used the tools to assess the distribution of the 294 
enterococcal polysaccharide antigen (Epa) and its individual genes across the diverse genus of 295 
Enterococcus. Because previous comparative genomic investigations have been performed 296 
between epa loci from different species94,95, we also showcase how such prior insight can be 297 
used to tailor parameters in fai for searching for the locus across the full genus and how results 298 
from fai can be assessed for appropriate selection of parameter values in zol. 299 
 The Epa is a signature component of the cellular envelope of multiple species within 300 
Enterococcus94–97 and has mostly been characterized in the species Enterococcus faecalis96,98–301 
101. While molecular studies have provided evidence that the locus contributes to enterococcal 302 
host colonization100, evasion of immune systems102, and sensitivity to antibiotics103 and 303 
phages103,104, it was only recently that the structure of Epa was resolved and a model for its 304 
biosynthesis and localization formally proposed101. A homologous instance of the epa locus was 305 
identified in the other prominent pathogenic species from the genus, Enterococcus 306 
faecium94,95,105; however, the prevalence and conservation of epa across the diverse genus of 307 
Enterococcus106–108 remains poorly studied. 308 
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 We first assessed the performance of fai and zol to identify epa loci across 309 
representative genomes for each of the 92 species of Enterococcus in GTDB R21457 and 310 
subsequently delineate protein ortholog groups relative to other methods. Specifically, we 311 
compared the runtime and ortholog group predictions of fai and zol to the combination of 312 
cblaster and clinker as well as OrthoFinder, an established software for multi-species ortholog 313 
group delineation, run on full genomes. For this comparison, the parameter settings for fai and 314 
cblaster as well as zol and clinker were adapted to match each other more closely, with an 315 
exception being to run fai in draft-mode, which lacks an analogous feature in cblaster. The 316 
combination of fai and zol was the fastest of the three methods tested and able to identify 317 
ortholog groups for the epa locus in approximately one minute (Figure 4A, S6). Orthology 318 
inferences from fai and zol exhibited high overlap with orthology predictions by the alternate two 319 
methods, finding 96.3% of ortholog protein pairs identified by at least two of the three methods 320 
(Figure 4B). We also applied all three methods to determine epa locus orthologs across low 321 
quality representative genomes for each species to demonstrate the convenience of fai’s ability 322 
to be run in “draft mode” and improve sensitivity for detecting fragmented gene clusters in 323 
comparison to cblaster. fai identified 2.1-fold more exclusive ortholog pairs in common with 324 
OrthoFinder, expected to be relatively robust to the effects of assembly fragmentation, than the 325 
number of ortholog pairs shared exclusively by cblaster and clinker with OrthoFinder (Figure 326 
4C). In addition, we performed evolutionary-simulation of the epa locus, allowing for sequence 327 
gains and losses, and assessed context-limited orthology inference by zol, clinker and 328 
OrthoFinder (Figure S7; Supplementary Text). zol was able to recover a high fraction of true 329 
positive ortholog relations and was the best method at avoiding prediction of false positive 330 
orthologs. 331 

Next, to properly and comprehensively assess the distribution of epa across the entire 332 
set of 5,291 genomes in GTDB classified as one of the 92 Enterococcus species57, we applied 333 
fai with more careful consideration of parameter values and requested more advanced features 334 
for gene cluster detection. A sensitive searching criterium was selected based on prior 335 
comparative genomics for the locus94,95 and its coordinates along the E. faecalis V583 genome 336 
as a reference99,101. For detection of epa orthologous regions, co-location of at least seven of 337 
the 14 epa genes previously identified as conserved in both E. faecalis and E. faecium was 338 
required. The default threshold for syntenic conservation of homologous instances to the query 339 
gene cluster was disregarded to increase sensitivity for the detection of epa in enterococcal 340 
species more distantly related to E. faecalis. In addition, key proteins were specified and the 341 
length of the flanking context to include as part of the loci was expanded. Using these criteria, 342 
5,085 of the genomes assessed were found to possess an epa locus, with phylogenomic 343 
investigations further revealing that the locus is highly conserved in three of the four major 344 
clades of Enterococcus (Figure 4D; Table S5).  345 

Based on fai’s reports, we realized that to achieve optimal clustering for ortholog groups 346 
across the diverse set of epa loci identified, we needed to lower the default thresholds for 347 
percent identity and coverage that protein pairs needed to exhibit for being considered as 348 
orthologs (Figure 4D; Table S5). We ran zol on both the full set of 5,052 high-quality epa loci 349 
and only loci from species representative genomes. For the comprehensive analysis, zol was 350 
able to identify 14 ortholog groups as core or near-core, found in >90% of loci instances (Table 351 
S6). When provided 30 threads, zol completed in 30.7 hours and had a maximum memory 352 
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usage of 101.3 GB. The more restricted analysis of zol to investigate epa instances from 65 353 
species representative genomes was to allow for assessing the quality of ortholog group 354 
predictions using phylogenetics (Table S7). After applying zol on epa from species 355 
representative genomes, orthology predictions were assessed through construction of a 356 
maximum-likelihood phylogeny of epa associated glycosyltransferases. Ortholog groups which 357 
corresponded to glycosyltransferases from E. faecalis V583 were labelled on the phylogeny and 358 
confirmed to match distinct phylogenetic clades, which suggests their appropriate delineation 359 
(Figure 4EF). zol further identified several epa associated glycosyltransferase ortholog groups 360 
that were absent in the E. faecalis representative genome and other representative genomes 361 
from the E. faecalis clade (Figure 4G). These distinct glycosyltransferases might impact the 362 
final structure or decoration of Epa in other Enterococcus species.  363 
 364 
zol identifies genetic diversity of epaX-like glycosyltransferases in E. faecalis 365 
 366 

zol features several options related to the dereplication of input gene clusters to retain 367 
only distinct representative instances for orthology inference and other downstream analytics 368 
(Figure S8). Importantly, the application of these methods can substantially reduce zol’s 369 
runtime and impact some of the evolutionary statistics computed (Figure S8, S9, S10, 370 
Supplementary Text). Whether dereplication is appropriate for a particular analysis should thus 371 
be carefully considered by users depending on their research aims. In particular, dereplication 372 
can impact investigations for highly sequenced bacterial taxa, including the opportunistic 373 
pathogen E. faecalis. For such pathogens, certain lineages, such as those commonly isolated at 374 
clinics, might be overrepresented in genomic databases, and the researcher may find it 375 
beneficial for the analysis to apply dereplication. 376 

To showcase the scalability of zol and its ability to expand knowledge for even well-377 
studied gene clusters, we applied it to high-quality, complete epa loci from 1,232 E. faecalis 378 
genomes without dereplication. In accordance with prior studies94,101, zol was able to distinguish 379 
core and strain-variable patterns. The report from zol showed that one end of the locus 380 
corresponds to genes which are highly conserved and core to E. faecalis (epaA-epaR), whereas 381 
the other end contained strain-specific genes (Figure 5A; Table S8). Using zol, we further 382 
found that variably conserved genes exhibit high sequence dissimilarity, as measured using 383 
both Tajima’s D and average sequence entropy, in comparison to the core genes of the locus 384 
(Figure 5BC). These statistics were robust to the application of dereplication and thus unlikely 385 
to be heavily impacted by well-sequenced lineages (Figure S9, S10).  386 

One ortholog group, corresponding to the glycosyltransferase epaX, exhibited 387 
substantially higher sequence variation than other epa associated glycosyltransferases (Figure 388 
5BD). This finding was further validated through phylogenetic analysis of glycosyltransferases 389 
from the species, which highlighted the breadth of diversity observed for the epaX ortholog 390 
group relative to other epa associated glycosyltransferases (Figure 5E). 391 
 392 
Discussion 393 
 394 

Here fai and zol are introduced to enable large-scale evolutionary investigations of gene 395 
clusters in diverse taxa. Together these tools overcome current bottlenecks in computational 396 
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biology to infer orthologous sets of genes at scale across thousands of diverse genomes and 397 
large metagenomic assemblies.  398 

The set of input gene clusters for zol does not need to be produced by fai. cblaster45 is 399 
another tool that can identify instances of a query gene cluster within a set of target genomes 400 
and extract them in GenBank format for downstream investigations using zol. For those lacking 401 
computational resources needed for fai analysis, cblaster offers remote searching of BGCs 402 
using NCBI’s BLAST infrastructure and non-redundant databases. More recently, CAGECAT87, 403 
a highly accessible web-application for running cblaster, was also developed and can similarly 404 
be used to identify and extract gene cluster instances from genomes represented in NCBI 405 
databases. In contrast to these tools, prepTG and fai feature algorithms and options for users 406 
interested in: (i) identification of gene clusters in metagenomes, (ii) performing standardized 407 
gene annotation across target genomes, (iii) improved sensitivity for gene cluster detection in 408 
draft-quality assemblies, and (iv) automated filtering of secondary, or paralogous, matches to 409 
query gene clusters. In addition, users can apply zol to further investigate homologous sets of 410 
gene clusters identified from IslandCompare109, BiG-SCAPE44, or vConTACT2110 analyses, 411 
which perform comprehensive clustering of predicted genomic islands, BGCs, or viruses. 412 

The application of fai to identify gene clusters in metagenomes is demonstrated here 413 
through rapid, targeted detection of a virus across lake metagenomic assemblies. We expect 414 
that both fai and zol will gain greater relevance for metagenomic applications in the future as 415 
long-read sequencing becomes cheaper. Importantly, the tools can be applied directly on 416 
assemblies without the need for binning scaffolds into MAGs, avoiding complications associated 417 
with binning111. In addition to their application to viral tracking, fai and zol’s application to 418 
metagenomes could be useful for assessing the presence of concerning transposons carrying 419 
antimicrobial resistance traits112–114 and identifying novel auxiliary genes within known BGCs 420 
which may tailor the resulting specialized metabolites and expand chemical diversity115,116. 421 

Reidentifying gene clusters in eukaryotic genomes remains difficult due to technical 422 
challenges in gene prediction owing to the presence of alternative splicing. The ability of fai and 423 
zol to perform population-level genetics on BGCs from the eukaryotic species A. flavus was 424 
demonstrated. While there are over 200 genomes of A. flavus in NCBI, only 5.1% have coding-425 
sequence information readily available. We used miniprot55 to map high quality gene coordinate 426 
predictions from a representative genome in the species86 to the remainder of genomic 427 
assemblies with prepTG which enabled high sensitivity detection of BGCs with fai. Our analysis 428 
provides additional support that the leporin BGC is conserved across the species37 using an 429 
assembly-based approach. 430 

The ability of zol to identify ortholog groups across 5,052 gene cluster instances from 71 431 
distinct species using limited computational resources was demonstrated through investigation 432 
of the epa locus across Enterococcus. While such large-scale investigations will be largely 433 
limited to those with access to a server, we expect datasets to often feature some degree of 434 
species level redundancy. For instance, 80.2% of the 5,052 epa instances were from only two 435 
species, E. faecalis and E. faecium. Thus, to alleviate computational costs, we have included 436 
functions for dereplication of gene clusters and reinflation of ortholog groups in zol. Applying 437 
these features to the comprehensive set of epa loci using 30 threads, reduced runtime from 438 
30.7 to 3.5 hours and maximum memory usage from 101.3 GB to 83.2 GB (Table S9). 439 
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We further assessed the quality of ortholog group predictions by fai and zol using 440 
phylogenetic investigations and comparisons with other software for homology inference. 441 
Specifically, we compared orthology inference results from fai and zol to predictions obtained 442 
from the combination of cblaster and clinker as well as  OrthoFinder117, which was used to 443 
detect ortholog groups at the genome-wide scale. Notably, clinker46, which is developed by the 444 
authors of cblaster, is primarily designed to produce interactive visualizations showing 445 
relationships between related gene cluster instances. clinker's application of single-linkage 446 
clustering to determine related sets of genes and to color matching genes in figures is expected 447 
to produce relatively coarse ortholog groups. OrthoFinder was chosen as a representative 448 
method for standard multi-species orthology inference because it has been shown to perform 449 
well for several criteria in prior benchmarking studies117,118.  Through application to identification 450 
of ortholog groups for diverse epa loci from multiple distinct species and evolutionary simulation 451 
of the locus from E. faecalis, we found zol produces reliable orthology predictions that are 452 
mostly in accordance with alternate orthology inference methods while exhibiting restraint for 453 
over clustering. In the future, we are considering further improving the algorithm for ortholog 454 
group classifications within zol. Specifically, we might take a similar approach to OrthoFinder in 455 
which coarse ortholog groups are first identified and later refined using phylogenetics. 456 

Our investigation of epa loci from multiple species revealed the presence of a multitude 457 
of glycosyltransferases associated with production or decoration of the polysaccharide, 458 
including some that are absent in the representative E. faecalis genome, the species in which 459 
the polysaccharide has been most extensively characterized. Through population-genetic 460 
investigations of the locus in E. faecalis using zol, we further determined that an ortholog group 461 
containing epaX-like glycosyltransferases possessed high sequence divergence relative to other 462 
glycosyltransferases associated with the locus. In addition to influencing the ability of E. faecalis 463 
to colonize hosts100, mutations in epaX and other genes from the ortholog group have also been 464 
shown to impact susceptibility to phage predation119–122. Therefore, we hypothesize that 465 
extensive evolution of the epaX ortholog group is a result of contrasting selective forces, 466 
pressuring E. faecalis to retain or (re-)acquire the glycosyltransferase to gain a fitness 467 
advantage within hosts but also lose the gene to escape phage predation. 468 
 469 
Conclusions 470 
 471 

Practically, zol presents a comprehensive analysis tool for comparative genetics of 472 
related gene clusters to facilitate detection of evolutionary patterns that might be less apparent 473 
from visual analysis. Fundamentally, the algorithms presented within fai and zol enable the 474 
reliable detection of orthologous gene clusters, and subsequently orthologous proteins, across 475 
multi-species datasets spanning thousands of genomes and help overcome a key barrier in 476 
scalability for comparative genomics.  477 

 478 
Methods 479 
 480 
Software availability 481 
 482 
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zol is provided as an open-source software suite, developed primarily in Python3 on GitHub at: 483 
https://github.com/Kalan-Lab/zol. Docker and Bioconda123 based installations of the suite are 484 
supported. For the analyses presented in this manuscript, we used v1.4.1 of the zol software 485 
package124. Version information for major dependencies of the zol suite53,55,62,65,125–132 and other 486 
software used44,74,133 for analyses in this study is provided in Table S10. Code and input files for 487 
generation of figures in this manuscript are provided separately on GitHub at: 488 
https://github.com/Kalan-Lab/Salamzade_etal_zol.  489 
 490 
Availability of data and materials 491 
 492 
Genomes and metagenomes used to showcase the application of fai and zol are listed with 493 
GenBank accession identifiers in Table S11. Total metagenomes and their associated 494 
information from Lake Mendota microbiome samplings were originally described in Tran et al. 495 
202373 and deposited in NCBI under BioProject PRJNA758276. Genomic assemblies available 496 
for A. flavus in NCBI’s GenBank database on Jan 31st, 2023 were downloaded in FASTA 497 
format using ncbi-genome-download (https://github.com/kblin/ncbi-genome-download). 498 
Genomic assemblies for Enterococcus that met quality and taxonomic criteria for belonging to 499 
the genus or related genera (e.g. Enterococcus_A, Enterococcus_B, etc.) in GTDB57 release 500 
R207 were similarly downloaded from NCBI’s GenBank database using ncbi-genome-download 501 
in FASTA format. 502 
 503 
Assessment of compute time, memory usage, and disk space: The UNIX time command was 504 
applied to measure the runtime and memory usage of programs. Specifically, the “Elapsed (wall 505 
clock) time” was regarded as the runtime and the “Maximum resident set size (kbytes)” as the 506 
maximum memory usage. The UNIX du command was used to measure the final disk space 507 
used by various programs. All analyses were computed on the same server running Ubuntu 508 
18.04.06 LTS with AMD EPYC 7451 24-Core processors, 472 GB of 288-Pin DDR4 random-509 
access memory, and a Samsung 970 Pro solid disk drive. 510 
 511 
Overview of tools and algorithms 512 
 513 
prepTG - processing and preparing target genomes for searching with fai: prepTG allows users 514 
to create a database of target genomes that can be searched for homologous instances of 515 
query gene clusters with fai. In addition to formatting and producing files for optimizing fai 516 
searches, prepTG integrates pyrodigal53, prodigal54, and miniprot55 for gene-calling or protein-517 
mapping in prokaryotic and eukaryotic genomes as well as metagenomes to aid consistency in 518 
fai’s performance and limit bias due to potential differences in gene-calling methods. For 519 
miniprot-based protein-mapping, coding sequence predictions are required to exhibit an identity 520 
of at least 80% to the reference protein and instances of overlapping mRNA and exon features 521 
are resolved by retaining only the highest scoring mappings.  522 

prepTG also features options to download pre-built databases for select bacterial taxa 523 
that are commonly studied56, such as ESKAPE pathogens, or to download all genomes 524 
belonging to any genus or species in GTDB R21457 and subsequently construct a database ab 525 
initio. 526 
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 527 
fai - automated identification of homologous instances of gene clusters: fai allows for rapid 528 
detection of gene clusters in target genomes. It accepts a target genomes database prepared 529 
by prepTG and query gene cluster(s). Query gene cluster(s) can be provided in one of three 530 
formats: (i) GenBank file(s) with CDS features, (ii) a coordinate along a reference genome, or 531 
(iii) a set of proteins. When using coordinates along a reference genome to define a gene 532 
cluster, fai reperforms gene-calling along the reference using pyrodigal53 and extracts a local 533 
GenBank file corresponding to the specified region.   534 

zol implements HMM-based and CDS separation-based approaches for determining 535 
homologous gene cluster instances in target genomes, which can further be combined in a 536 
hybrid approach. For both approaches, homologs of proteins from query gene clusters are first 537 
searched for in predicted proteomes of target genomes using DIAMOND alignment130. Then, in 538 
“Gene-Clumper” mode, which is the default, scaffolds with homologs of query proteins are 539 
dynamically assessed for whether homologs are within a maximum number of CDS predictions 540 
to be regarded as belonging to the same gene cluster. In “HMM” mode, scaffolds of target 541 
genomes are instead scanned gene-by-gene using an HMM and neighborhoods or sets of 542 
genes are regarded as being in a state of homology to the query gene cluster if several 543 
individual genes depict homology to the proteins from the query gene cluster(s). The algorithm 544 
is similar to lsaBGC-Expansion38, however, it is not dependent on a preliminary genome-wide 545 
orthology grouping analysis and thus features a different set of filters to still enable high-546 
throughput automated detection of homologous gene cluster segments as a result. lsaBGC-547 
Expansion is reliant on a preliminary orthology analysis to identify BGC-specific genes that 548 
could be used to differentiate true homologous instances of BGCs and customize weighting of 549 
HMM emission probabilities for distinct genes. It further requires the length of genes within 550 
putative homologous regions to be within a certain deviation from the median length of known 551 
gene instances. In contrast, fai has preconfigured emission probabilities which can be 552 
customized by users and has no length requirement for potential homologous instances of 553 
genes. fai further allows the “HMM-based” approach to be run with the parameter for 554 
aggregating CDS predictions for the “Gene-Clumper” mode, whereby, gene cluster segments 555 
detected by the HMM can be joined with other such segments if they are withing a certain 556 
number of CDS features from each other. Similar to lsaBGC-Expansion, syntenic similarity 557 
between candidate and query gene cluster segments can also be used to filter candidate 558 
segments using a gene cluster-wide correlation metric38. 559 

By default, fai requires filters pertaining to the number of genes from query gene clusters 560 
to be met for each homologous gene cluster candidate segment. However, in “draft mode”, 561 
thresholds for detection of gene clusters within target genomes are assessed in aggregate for 562 
putative gene cluster segments found near scaffold edges (< 2,000 bp). Visual reports produced 563 
by fai showcasing the sequence similarity of target genome proteins to the query protein(s) can 564 
then be manually investigated by users to assess the validity of fragmented gene cluster 565 
instances. In addition, fai features an option to filter for paralogous, overlapping candidate 566 
segments of a gene cluster in target genomes and offers an intuitive visualization of gene 567 
cluster segments, if requested, to allow users to assess their quality, including proximity of 568 
candidate segments to scaffold edges. Together, these options enable the large-scale 569 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2024. ; https://doi.org/10.1101/2023.06.07.544063doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.07.544063
http://creativecommons.org/licenses/by-nd/4.0/


 

14 
 

identification of orthologous gene clusters across genomes which can then be leveraged by zol 570 
to perform context-specific inference of protein ortholog groups. 571 

In addition to a directory of homologous gene clusters in GenBank format, to serve as 572 
input for zol analysis, and a small set of visual PDF files, fai generates an in-depth report on 573 
which target genomes have the query gene cluster as an XLSX spreadsheet. This spreadsheet 574 
includes information such as the average amino acid identity (AAI), syntenic similarity, and 575 
number of conserved genes for gene clusters from target genomes relative to the query gene 576 
cluster. The spreadsheet allows for easy sorting of various columns to assist identification of 577 
which target genomes feature a gene cluster to the desired degree of similarity for the user. 578 
 579 
zol - computes a variety of evolutionary statistics and can perform gene cluster specific 580 
dereplication: The zol workflow begins by processing the input directory of gene cluster 581 
GenBank files to assess validity and perform filtering of gene clusters or individual proteins. 582 
Filtering can be performed at the gene cluster level by requesting filtering of draft-quality gene 583 
clusters, those marked as being near scaffold edges, or low-quality gene clusters, those with 584 
>10% missing base-pairs (e.g. Ns) in their sequence. Filtering of individual proteins which are 585 
near scaffold edges can also be performed if fai was used to identify the input gene cluster set, 586 
because fai marks these proteins with a special feature tag in the resulting gene cluster 587 
GenBank files.  588 

Next, zol will perform dereplication of gene clusters, if requested by users, with skani65 589 
by clustering gene clusters which depict some user-defined coverage and identity thresholds 590 
using single linkage clustering or more resolved MCL-based clustering, for which the inflation 591 
parameter can be adjusted. Representative gene clusters are selected from each cluster as part 592 
of the dereplication based on maximum length and, if comparative analysis is requested, 593 
whether the representative gene cluster is part of the focal or focal-complement set of gene 594 
cluster instances specified by the user. 595 

The input set of gene clusters or set of dereplicated representative gene clusters is then 596 
used to identify protein ortholog groups with an InParanoid-type approach3. Briefly, 597 
DIAMOND130 is used to perform all vs. all pairwise alignment between proteins from the set of 598 
gene clusters after which the alignments are processed to identify reciprocal best hits (RBH) 599 
between pairs of gene clusters. In-paralogs are identified within each gene cluster based on 600 
whether two coding sequences depict more similarity to each other than one does to an RBH 601 
with a different gene cluster. Bitscores, standardized through division by reflexive bitscore 602 
values for query proteins, are used to assess homology. Specifically, the average normalized 603 
bitscore between each pair of orthologs and in-paralogs is recorded. Afterwards, bitscores 604 
between such protein pairs are further standardized through dividing them with the average 605 
values between pairs of gene clusters to aid proper clustering of proteins downstream. This is 606 
akin to the genome-wide normalization procedure recommended in OrthoMCL, owing to the 607 
realization that orthologs between distantly related species are also more likely to exhibit lower 608 
sequence similarity, which should be corrected for prior to MCL clustering2. This information is 609 
input into MCL with the inflation parameter set to 1.5, similar to other orthology inference 610 
methods7,117. The inflation parameter and minimum identity and coverage cutoffs to consider 611 
valid pairs of in-paralogs and orthologs are adjustable by users.  612 
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Reinflation can also be requested by users to expand ortholog groups to include proteins 613 
from the full input set of gene clusters if gene cluster dereplication was requested10. Reinflation 614 
of ortholog groups is performed by first performing comprehensive and granular clustering of 615 
proteins from all input gene clusters using CD-HIT128, requiring proteins to depict >98% 616 
sequence similarity and > 95% bi-directional coverage to the representative sequences of 617 
clusters. Proteins in CD-HIT clusters are then mapped to ortholog groups if they co-cluster with 618 
proteins from dereplicated gene clusters which are already assigned to ortholog groups. 619 
Dereplication and reinflation are not recommended if sequence redundancy amongst the set of 620 
input gene clusters is low. Stringent cutoffs used for CD-HIT clustering during reinflation assume 621 
that dereplication was also run with stringent parameters to only collapse highly similar gene 622 
clusters. Otherwise, reinflation could miss more distant instances of ortholog groups, resulting in 623 
an underestimation of ortholog group conservation amongst gene clusters. 624 

Next, zol will partition protein and nucleotide sequences from gene clusters according to 625 
ortholog groups, perform protein alignment using MUSCLE132, and create codon alignments 626 
using PAL2NAL134.  We also offer an option to use reference proteins to refine and filter 627 
sequences based on multiple sequence alignment using MUSCLE132, which might be useful to 628 
further filter intronic sequences in eukaryotic ORFs. Codon alignments are filtered for regions 629 
with high ambiguity (>10% gaps) using trimAL126 which are then used downstream for 630 
calculation of evolutionary statistics and to construct approximate maximum-likelihood 631 
phylogenies using FastTree 2127 for each ortholog group. Consensus protein sequences for 632 
each ortholog group are finally constructed using HMMER3129.  633 

Using protein consensus sequences of each ortholog group, zol is next able to linearize 634 
annotation of ortholog groups with various annotation databases including KOfam14, the PGAP 635 
database135, VFDB51, CARD61, MIBiG52, ISfinder60, the PaperBLAST database136, and Pfam137. 636 
A custom FASTA file can also be provided by users to annotate ortholog groups. The best hit 637 
per ortholog group for each annotation database is selected by score, if annotation is HMM 638 
based138, or bitscore, if it is DIAMOND alignment based130, and a default E-value cutoff of 1e-5. 639 
The E-value of the alignment is provided in the zol report for each putative annotation except 640 
Pfam domains. However, for Pfam annotations, only domains meeting trusted thresholds are 641 
reported.  642 

Next, zol will compute basic statistics per ortholog group including the consensus order, 643 
consensus directionality, whether proteins are single-copy across gene clusters, the median 644 
length of ortholog group sequences, their median GC% percentage, and GC skew values. The 645 
consensus order and directionality are performed similarly to lsaBGC-PopGene38. Afterwards, in 646 
the sixth step, zol will calculate evolutionary statistics for each ortholog group including Tajima’s 647 
D49, the proportion of filtered codon alignments which correspond to segregating sites, the 648 
average sequence entropy of the filtered codon alignment and the 100 upstream region, and the 649 
median and maximum Beta-RDgc. Beta-RDgc is a statistic that is derived from the Beta-RD 650 
statistic which we described in lsaBGC38 and measures the divergence of a pair of protein 651 
sequences based on the expected divergence between the gene clusters. Values below one 652 
suggest that protein divergence is larger for the pair than expected based on other shared 653 
proteins between the two gene clusters; conversely, the opposite trend might suggest high 654 
conservation of the particular protein between the gene clusters and potentially gene-specific 655 
horizontal gene transfer. Finally, we perform site-specific selection analyses using the FUBAR139 656 
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and GARD140 methods offered in the HyPhy suite. While highly scalable relative to comparable 657 
methods139, these analyses can still take considerable time and are turned off by default. 658 
Importantly, GARD recombination detection140 and partitioning of input alignments for ortholog 659 
groups can also be used for alternate HyPhy analyses with HyPhy Vision62, to extend beyond 660 
the site-specific selection analyses using FUBAR139 supported directly in zol. 661 

Prior to the generation of a final report, zol allows users to perform an optional 662 
comparative analysis between user-defined set(s) of focal and complementary or alternate gene 663 
cluster instances. In these comparative analyses, the conservation and fixation index70 is 664 
calculated for each ortholog group.  665 

Finally, we generate a consensus report and a spreadsheet in XLSX format where each 666 
row corresponds to an ortholog group and columns correspond to basic statistics, evolutionary 667 
statistics, and annotation information. Quantitative fields are automatically colored to make 668 
visual detection of patterns easier for users. A basic heatmap showing the presence of ortholog 669 
groups across gene clusters is also produced. 670 

zol additionally features two alternate modes that can be triggered via specific 671 
arguments. First, the “only-orthologs” argument will invoke zol to only compute ortholog groups 672 
and exist after determining them. Second, the “select_fai_params_mode” argument allows 673 
users to provide a handful of known instances for a gene cluster and determine appropriate 674 
thresholds for searching for additional instances of the gene cluster using fai. This mode 675 
assumes that the known instances provided are representative of the breadth of diversity 676 
expected for the gene cluster amongst the target genomes being searched. 677 
 678 
abon, atpoc, and apos – tools for assessing novelty and conservation of BGCs, phages, and 679 
plasmids from a single strain: The zol suite features three small wrapper programs called abon, 680 
atpoc, and apos which assess the conservation and novelty of a single genome’s BGC-ome, 681 
phage-ome, and plasmid-ome, respectively, relative to a target genome database constructed 682 
by prepTG. The target genomes database could be all other genomes belonging to the focal 683 
genome’s species or genus. The three programs are wrappers of fai but also offer a simple 684 
BLAST search alternative, to more thoroughly check for whether individual genes from BGCs, 685 
phages, and plasmids are present in the target genomes being searched. These tools accept 686 
results from standard software for annotation of BGCs133,141, phages74,142,143, and plasmids143,144 687 
but do not integrate them within the suite. Similar to fai and zol they produce auto-formatted 688 
XLSX spreadsheets as primary results. 689 
 690 
Application of fai and zol to track a virus within lake metagenomes 691 
 692 
VIBRANT was used to identify viral contigs or sub-contigs in the three total metagenomes from 693 
Tran et al. 202373 sampled on the earliest date of 07/24. Afterwards, predicted circular contigs 694 
were clustered using BiG-SCAPE44 which revealed a ~36 kb virus was found in two of the three 695 
metagenomes. 696 
  697 
prepTG was run on all 16 total metagenomic assemblies from the Tran et al. 2023 study, 698 
performing gene calling with pyrodigal in metagenomics mode53 to prepare for comprehensive 699 
targeted searching of the virus with fai. fai was run with largely default settings, with filtering of 700 
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secondary instances of the virus requested to retain only the best matching scaffold or scaffold 701 
segment resembling the queries. In addition, the syntenic correlation requirement of hits to the 702 
query gene clusters was turned off to account for the circular nature of the virus, which the 703 
assessment is not designed for. To assess the performance of cblaster for preparing the target 704 
metagenomes database and subsequently searching for the virus, we provided GenBank files 705 
with CDS features produced by prepTG as input for cblaster makedb and adjusted searching 706 
parameters for cblaster search to more closely match what we used for fai. 707 
 708 
Microevolutionary investigations of leporin and aflatoxin BGCs in Aspergillus flavus 709 
 710 
Genomic assemblies downloaded from NCBI GenBank were processed using prepTG. Of the 711 
217 genomic assemblies downloaded, one, GCA_000006275.3, was dropped from the analysis 712 
because the original GenBank file had multiple CDS features with the same name, leading to 713 
difficulties in performing BGC prediction with antiSMASH133, and because alternate assemblies 714 
were available for the isolate. prepTG was run on all assemblies with miniprot55 based gene-715 
mapping of the high-quality gene coordinate predictions available for A. flavus NRRL 3357 716 
(GCA_009017415.1)86  requested. Target genomes were then searched for the leporin 717 
(BGC0001445) and aflatoxin (BGC0000008) BGCs using GenBank files downloaded from 718 
MIBiGv352 as queries. For leporin, AFLA_066840, as represented in the MIBiG database, was 719 
treated as a key protein required for detection of the BGC. Similarly, for aflatoxin, PksA 720 
(AAS90022.1), as represented in the MIBiG database, was treated as a key protein required for 721 
detection of the BGC. Draft-mode and filtering of paralogous segments was requested. For both 722 
analyses, ortholog groups found in fewer than 5% of gene cluster instances were disregarded. 723 
 724 
We reidentified population B as previously delineated37 using k-mer based ANI estimation145 and 725 
neighbor-joining tree construction146. A discrete clade (n=81) in the tree was validated to feature 726 
all isolates previously determined as part of population B37 and thus regarded as such.  727 
 728 
For comprehensive and de novo BGC prediction, antiSMASH was run on the 216 genomic 729 
assemblies with ‘glimmerhmm’ requested for the option ‘--genefinding-tool’. Similarly, 730 
antiSMASH was also run on full GenBank files for genomes generated by prepTG from 731 
reference proteome-mapping via miniprot. For one genome, antiSMASH was unable to process 732 
the full GenBank created by prepTG due to an error related to “inconsistent exon ordering”. 733 
BGCs from each set of genome annotations were independently clustered using BiG-SCAPE 734 
with “mix” clustering analysis and MIBiG reference BGC integration requested. The gene cluster 735 
family and clan matching the reference leporin BGC in MIBiG (BGC0001445) were regarded as 736 
the leporin BGC. For remote cblaster45 analysis, CAGECAT87 was used to search NCBI’s nr 737 
database with proteins from the leporin BGC representative (BGC0001445) provided as a 738 
query. Only 13 scaffolds, belonging to 12 assemblies (including GCA_000006275.3), were 739 
identified. 740 
 741 
Evolutionary investigations of the epa locus across Enterococcus 742 
 743 
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All Enterococcus genomes represented in GTDB R20757 (n=5,291) were downloaded using 744 
ncbi-genome-download53. The same query for epa was used for all analyses. Specifically, 745 
coordinates extending from 2,071,671 to 2,115,174 along the E. faecalis V583 chromosome, 746 
corresponding to genes EF2164 to EF2200, were used as a query for the epa locus in fai to 747 
identify homologous instances in target genomes99,101.  748 
 749 
Comparing orthology/homology inferences between fai & zol, cblaster & clinker, and 750 
OrthoFinder: Representative genome assemblies were selected for each of the 92 species of 751 
Enterococcus in GTDB R21457 based on the N50 metric. One set of species representative 752 
genomes corresponded to those with the largest N50 values and the other set was comprised of 753 
genomes with the lowest N50 values. The two sets of species representative genomes were 754 
processed and investigated identically but independently. Gene calling was first performed for 755 
genomes using prepTG with pyrodigal53. To generate the input for OrthoFinder, proteins from 756 
prepTG’s genome-wide GenBank files were extracted in FASTA format. After, OrthoFinder was 757 
run with default settings. Phylogenetic hierarchical orthogroups inferred by OrthoFinder were 758 
used for comparisons. To perform gene cluster specific homology prediction with cblaster and 759 
clinker, we first used cblaster makedb to convert the genome-wide GenBank files from prepTG 760 
into a database that could be searched with cblaster search. cblaster search was run using the 761 
criteria: (i) DIAMOND alignment sensitivity mode set to very-sensitive, (ii) the percentage of 762 
query genes required to be present in a cluster set to 25%, (iii) 1e-10 as the maximum E-value 763 
for protein hits to be considered, (iv) 0% as the minimum coverage for protein hits to be 764 
considered, (v) 0% as the minimum identity for protein hits to be considered, (vi) the maximum 765 
flanking context for the gene cluster to gather set to 0 bp, (vii) request for intergenic proteins to 766 
be included, and (viii) a maximum of 4620 bp allowed to separate protein hits for them to be 767 
considered as part of the same gene cluster, which should approximately correspond to the 768 
aggregate length of 5 bacterial genes on average147. Next, cblaster extract_clusters was used to 769 
extract gene clusters found in target genomes by cblaster in GenBank format and provide them 770 
as input for clinker. clinker was run using default settings but with only an output and matrix 771 
output file requested to cut time needed to render an interactive figure, its primary intended 772 
result file. To aid appropriate comparisons in orthology prediction, fai was largely run using 773 
similar criteria as cblaster search: (i) DIAMOND alignment sensitivity mode set to very-sensitive, 774 
(ii) the percentage of query genes required to be present in a cluster set to 25%, (iii) 1e-10 as 775 
the maximum E-value for protein hits to be considered, (iv) the maximum flanking context for the 776 
gene cluster to gather set to 0 bp, (v) a maximum of 5  proteins allowed to separate hits for 777 
them to be considered as part of the same gene cluster, and (vi) syntenic similarity assessment 778 
between target gene clusters and the query gene cluster turned off. However, draft-mode was 779 
enabled in fai, which is not available in cblaster, to showcase the program’s ability to improve 780 
sensitivity for draft-quality assemblies. zol was applied with mostly default settings but with the 781 
flags “only-orthologs”, to stop after it determined ortholog groups, and “allow_edge_cds”, to 782 
allow usage of CDS features marked by fai to be near scaffold edges. All three methods were 783 
provided 20 threads wherever possible. 784 
 785 
Comprehensive and tailored usages of fai and zol for finding epa in Enterococcus: Based on 786 
prior comparative analyses that had shown that gene conservation and gene order can be 787 
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slightly variable between epa loci from E. faecalis and E. faecium94,95, we relaxed the syntenic 788 
similarity requirement of candidate gene cluster matches in target genomes to the query in fai 789 
from 0.6 to 0.0.  In addition, we relaxed the minimum percentage of query proteins needed to 790 
report a homologous instance of the epa locus to 10%. Instead, we required the presence of 791 
50% of key epa proteins found in both E. faecalis and E. faecium, defined as 792 
epaABCDEFGHLMOPQR, for the identification of valid homologous instances of the epa locus. 793 
The E-value cutoff to determine presence for the key epa proteins was lowered from 1e-20 to 794 
1e-10 to be inclusive of shorter genes and allow for higher levels of sequence divergence 795 
across the Enterococcus genus. To gather auxiliary genes flanking the core epa region in target 796 
genomes, we further requested the inclusion of CDS features found within 20 kb of the 797 
boundary genes in detected instances of the epa locus within the resulting GenBank files 798 
produced by fai. A phylogenetic heatmap was constructed for the presence of the epa locus 799 
across a species tree using species representative genomes, selected based on largest 800 
assembly N50, where the values of the heatmap corresponded to the maximum percent identity 801 
of a query protein to their best match in target genomes. Because EF2173 and EF2185 are 802 
identical transposases, they were shown as one column in the heatmap. The species tree was 803 
constructed using GToTree148 using HMMs for proteins regarded as largely single-copy core to 804 
the phylum Bacillota. The phylogenetic heatmap visual was created using iTol149. 805 

From inspection of fai’s resulting XLSX spreadsheet, zol’s parameters were adjusted to 806 
relax identity and coverage thresholds for assessing protein pairs for orthology prior to MCL 807 
clustering to 20% and 25%, respectively. Identical processing was performed for the full set of 808 
epa loci and epa loci from only species representative genomes. During the comprehensive 809 
processing of all high-quality epa loci identified, one instance was dropped during zol analysis 810 
despite meeting requirements because all CDS features in it were found near scaffold edges 811 
and, by default, such features are not used in zol to aid more accurate inference of ortholog 812 
groups and assessment of their sequence variation. A third run of zol was performed using 813 
identical settings and all the gene cluster instances but leveraging the dereplication and 814 
reinflation options to showcase how the combination of the options can reduce the runtime 815 
needed for comprehensive processing. For dereplication of gene clusters, alignment fraction 816 
was increased from the default of 95% to 99% and MCL was used for clustering to gather more 817 
resolute representative gene clusters. Major ortholog groups determined between the 818 
comprehensive and the dereplication + reinflation runs were found to be similarly conserved 819 
based on matching to known epa genes.  820 
 821 
Phylogenetic assessment of glycosyltransferase orthology predictions: Proteins from ortholog 822 
groups determined by zol analysis of species representative genomes were extracted based on 823 
whether the ortholog group was annotated as featuring the keywords: “glycosyl” and 824 
“transferase” in Pfam protein domain annotations150. Two additional ortholog groups were 825 
included and featured the Pfam domain “Bacterial sugar transferase”, including epaR, which is 826 
also regarded as a glycosyltransferase101. The comprehensive set of glycosyltransferases were 827 
next aligned using MUSCLE with the default align mode132. Filtering of the alignment was next 828 
performed using trimal with options “-keepseqs -gt 0.9” to filter sites composed largely of gaps 829 
and further filtered for sequences which were composed of >10% gaps or ambiguous 830 
characters (“X”). IQ-TREE151 was used to construct a maximum-likelihood phylogeny with 831 
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ModelFinder limited to the WAG and LG substitution models. The phylogeny was visualized 832 
using iTol149 with classifications for ortholog groups most closely matching E. faecalis V583 epa 833 
glycosyltransferases marked on leaves. Ortholog groups were assigned to specific epa gene 834 
designations based on sequence alignment of their consensus sequences to E. faecalis V583 835 
epa-associated proteins. Best matching ortholog groups for each E. faecalis V583 epa 836 
glycosyltransferase were identified based on E-value. 837 
 838 
Large-scale evolutionary investigations of epa loci from E. faecalis 839 
 840 
The full set of epa loci identified by fai in E. faecalis genomes were processed through zol 841 
requesting for retention of only complete instances that were also distant from scaffold edges. 842 
For projection of conservation, Tajima’s D, and sequence entropy statistics onto genes for the 843 
epa locus in E. faecalis V583, sequence alignment was used to identify the best matching 844 
ortholog groups based on E-value. For the identical transposases, EF2173 and EF2185, data 845 
from a common ortholog group was used for both. 846 
 847 
Investigation of glycosyltransferase phylogenetic diversity: A similar phylogeny of 848 
glycosyltransferases was constructed for the E. faecalis analysis as was done for the 849 
investigation of epa glycosyltransferases across species representatives of Enterococcus. 850 
Glycosyltransferase ortholog groups were identified based on Pfam domains featuring the 851 
keywords “glycosyl transferase” or because they matched epa genes regarded as 852 
glycosyltransferases in prior studies101. To accommodate for the larger number of sequences: (i) 853 
only ortholog groups found in >1% of epa loci instances were regarded, (ii) MUSCLE132 super5 854 
mode was used for alignment, and (iii) FastTree 2127 was used for approximate maximum-855 
likelihood phylogeny construction. After trimal based filtering of sites, only sequences which 856 
featured greater than 20% gaps or ambiguous characters (“X”) were filtered to retain epaA in 857 
the final alignment prior to phylogeny construction. 858 
 859 
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 861 
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Figure 1: Overviews of fai and zol. A) A cartoon schematic of how prepTG, fai, and zol are integrated to

perform evolutionary investigations by searching for gene-clusters. Certain statistics in the zol report will not

be calculated if not enough instances of an ortholog group are identified, resulting in non-available (NA)

values being reported. Squiggles correspond to arbitrary text pertaining to functional annotation information,

etc. B) An overview of the prepTG, C) fai, and D) zol algorithms and workflows. Inputs and outputs for the

programs are indicated with bolder coloring.
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Figure 2: Targeted viral detection in metagenomes using fai. A) Total metagenomes from a single site in Lake Mendota across multiple depths and timepoints from Tran et al. 2023

were investigated using fai for the presence of a virus found in two of the three earliest microbiome samplings (red box). The presence of the virus is indicated by a virus icon. Metagenome

samples are colored according to whether they corresponded to oxic, oxycline, or anoxic. The most shallow sampling depths varied for different dates and consolidated as a single row

corresponding to a sampling depth of either 5 or 10 meters. D) The pangenome of the virus is shown based on the consensus order and directionality of coding sequences inferred by zol.

Bar heights correspond to the conservation of the ortholog groups across the ten metagenomes the virus was detected in. BioRender was used in generation of this figure.
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Figure 3: Evolutionary trends of common BGCs in A. flavus. A) The proportion of 216 A. flavus genomes from

NCBI’s GenBank database with coding-sequence predictions available. B) Comparison of the sensitivity of fai and

alternate approaches based on assemblies for detecting the leporin BGC. The dashed violet line indicates the total

number of genomes (n=216) assessed and the dashed pink line indicates the number of genomes with CDS

features available on NCBI (n=11). Dark grey indicates instances identified by CAGECAT/cblaster or fai or as

belonging to the same GCF as the reference leporin BGC from MIBiG by antiSMASH and BiG-SCAPE analysis.

Lighter grey indicates the number of similar BGCs identified by BiG-SCAPE, belonging to the same clan but not to

the same GCF as the reference leporin BGC. A schematic of the (C) leporin and (D) aflatoxin BGCs is shown with

genes present in > 10% of samples shown in consensus order and relative directionality. Coloring of genes in (C)

corresponds to FST values and in (D) to Tajima’s D values, as calculated by zol. Grey bars in the legends, at (C)

0.92 and (D) -0.98, indicate the mean values for the statistics across genes in the BGC. *For the leporin BGC, lepB

corresponds to an updated open-reading frame (ORF) prediction by Skerker et al. 2021 which was the combination

of AFLA_066860 and AFLA_066870 ORFs in the MIBiG entry BGC0001445 used as the query for fai. For the

aflatoxin BGC, ORFs which were not represented in the MIBiG entry BGC0000008 but predicted to be within the

aflatoxin BGC by mapping of gene-calls from A. flavus NRRL 3357 by Skerker et al. 2021 are shown in gold. The

major allele frequency distributions are shown for (E) aflX and (F) pksA, which depict opposite trends in sequence

conservation according to their respective Tajima’s D calculations.
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Figure 4: Searching for the epa locus across the diverse genus of Enterococcus. A) Overview of the time needed to run orthology/homology inference methods on the

92 genomes with the highest N50 for each distinct Enterococcus species. OrthoFinder was run at the genome-wide scale, while fai and cblaster were used to first identify

genomic regions corresponding to the epa locus from E. faecalis V583 and subsequently zol and clinker were applied to determine ortholog groups, respectively. The red

asterisks denote that manual assessment or filtering of homologous gene clusters identified by fai and cblaster is encouraged and thus additional time might be required for

them. Counts showing the overlap in orthologous protein pair predictions by the three different methods are shown following their application to representative genomes from

GTDB R214 with the B) highest N50 and C) lowest N50 for the 92 different species. D) The distribution of the epa locus, based on criteria used for running fai, is shown

across a species phylogeny for 92 genomes representative of distinct Enterococcus species in GTDB R214. The coloring of the heatmap corresponds to the percent identity

of the best matching protein from each genome to the query epa proteins from E. faecalis V583. E) A schematic of the epa gene cluster from E. faecalis V583 (from EF2164

to EF2200) with glycosyltransferase encoding genes shown in color. F) A maximum-likelihood phylogeny of zol-identified ortholog groups corresponding to

glycosyltransferases in epa loci across Enterococcus. G) Distribution of different glycosyltransferase ortholog groups across the four major clades of Enterococcus are shown.
For D and F the tree scales correspond to the number of amino acid substitutions along the alignments used for phylogeny construction.
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Figure 5: High sequence diversity of epaX-like glycosyltransferases amongst E. faecalis . A schematic of the epa locus from E. faecalis V583 with

evolutionary statistics, A) conservation, B) Tajima’s D and C) sequence entropy, gathered from the best corresponding ortholog group for each protein. Ortholog

groups were inferred from zol investigation of 1,232 epa loci from the species. Genes upstream of and including epaR were recently proposed to be involved in

Epa decoration by Guerardel et al. 2020. “//” indicates that the ortholog group was not single-copy in the context of the gene-cluster and calculation of

evolutionary statistics for these genes was avoided (grey in panels B and C). Note, the same ortholog group was regarded for EF2173 and EF2185 which

correspond to an identical ISEf1 transposase. The length of proteins in the locus schematic are the median lengths of the corresponding ortholog groups. D)

The major allele frequency is depicted across the alignment for the ortholog group featuring epaX. Sites predicted to be under negative selection by FUBAR,

Prob(𝛼>𝛽) > 0.9, are marked in red. E) An approximate maximum-likelihood phylogeny of glycosyltransferase ortholog groups identified by zol which were found

in >1% of epa instances. Ortholog groups identified by zol are indicated by colored circular nodes with names of epa genes from E. faecalis V583 noted where

possible. The number of leaves/proteins for each clade is provided for labeled ortholog groups. The tree scale corresponds to the number of amino acid

substitutions along the input protein alignment used for phylogeny construction.
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