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ABSTRACT
Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool
development to support rigor and transparency. Consequently, the complexity of the data pipeline has also
increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io
was developed to reduce these burdens and democratize modern neuroscience research across institutions and
career levels. Using community software and hardware infrastructure, the platform provides open-source data
standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io
automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and
transparency in neuroscience research. Here brainlife.io’s technology and data services are described and
evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and
3,200 participants, we demonstrate that brainlife.io’s services produce outputs that adhere to best practices in
modern neuroscience research.
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INTRODUCTION

Over the last 30 years, neuroimaging research has dramatically expanded our ability to study the structure and
function of the living human brain, leading to major advancements in understanding brain-related health and
disease 1–4. Today, neuroimaging modalities and techniques span multiple data types (e.g., magnetic resonance
imaging [MRI], positron emission tomography [PET], functional near-infrared spectroscopy [fNIRS],
electro-encephalography [EEG], and magnetoencephalography [MEG]), and have increased the feasibility of
large-scale, population-level, data collection efforts.1,5,6 At the same time, the field of neuroimaging has attracted a
large and ever-growing community of researchers 7,8. Furthermore, a process of adopting FAIR principles of data
stewardship (Findability, Accessibility, Interoperability, and Reusability9), data standardization, open science
methods, and increased data size, has been gaining grounds and in turns increasing requirements for rigorous
and transparent data analysis and reporting. However, such approaches require significant additional
technological support, posing new challenges to many researchers. We refer to these challenges as the burdens
of neuroscience (Fig. 1).

Figure 1. The burdens of neuroscience. a. A figurative representation of the current major burdens of performing
neuroimaging investigations. b. Our proposal for integrative infrastructure that coordinates services required to perform
FAIR, reproducible, rigorous, and transparent neuroimaging research thereby lifting the burden from the researcher. c.
brainlife.io rests upon the foundational pillars of the open science community such as data archives, standards, software
libraries and compute resources. Panels a and b adapted from Eke et al. (2021).

Datasets are growing in size, in large part because they support scientific rigor and reproducibility. Research on
the reproducibility of scientific findings indicates that limited sample sizes might have hindered the validity of
early, foundational results in hypothesis-driven cognitive neuroscience research,10–16 but reproducibility issues can
be found in biological science,17,18 psychology,12data science, and computational methods,19,20 cancer biology,21,
and artificial intelligence.13,22,23This is largely because small sample sizes increase the probability of reporting
spurious effects as statistically significant.1,24 Recent findings also make the case for increasing sample sizes into
the thousands when research focuses on discovery science.5 Notable examples of large-scale data sharing within
neuroscience and neuroimaging include the Human Connectome Project (HCP),25 the Cambridge Centre for
Ageing and Neuroscience study (Cam-CAN),26,27 the Adolescent Brain Cognitive Development (ABCD) study,28,29

the UK-Biobank,30 the Healthy Brain Network (HBN),31 the Pediatric Imaging Neurocognition and Genetics (PING)
study,32 the Natural Scene Dataset 33 and the thousands of individual brain datasets deposited on
OpenNeuro.org.34 These data-sharing projects not only serve the needs of the neuroscience community with
demonstrated impact 35, but also the incoming generation of AI research.36–38 However, larger datasets generally
entail greater complexity as well. The use of datasets so unprecedented in size requires a substantial scaling up of
resources and technical skills, and this in turn results in significant barriers to entry.

Traditionally, neuroimaging researchers have collected a few hours of neuroimaging data on a few dozen subjects
and analyzed it using laboratory computers and a single tool-kit or programming environment, often created
in-house. Current studies, by contrast, may require the analysis of hundreds (if not thousands) of hours of data,
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with an accompanying move of data away from individual laboratory computers toward high-performance
computing clusters and cloud systems requiring multiple steps and a variety of scripting and programming
languages (e.g., Unix/Linux shell, Python, MatLab, R, C++). The complexity of neuroimaging data pipelines and
code development stacks have increased concomitantly.39,40 To help ensure the reproducibility and rigor of
scientific results, the neuroimaging community has also developed data standards41 and software libraries for
data processing and analysis (FSL, Freesurfer, Nibabel, MRTrix, DIPY, DSI-STudio).42–68 More recently prebuilt data
processing pipelines that combine software from multiple libraries into unified partially preconfigured steps have
been also developed 69–73. These pipelines advance data processing standardization but still leave many choices
of parameters to users and often require technical input data formats.

As a result of all this progress for data and tools, neuroimaging researchers carry the burden of having to piece
together and track multiple processes, such as data ingestion and standardization, storage, and management,
preprocessing and feature extraction, all while also attending to tracking quality control, analyses, and publication
(Fig. 1a). Publication of results requires compliance with the FAIR principles which, though well explained in
theory, are often challenging to implement in practice. Submission of manuscripts often necessitates new
analyses at a later date, by which point software and data versions may have changed, and data might have been
removed from compute clusters or local servers. Existing approaches for managing these steps require manual
tracking of data and code versions, along with advanced technical skills.40,74 Currently, there exists no efficient
technology to help piece together and keep track of all of these (ever-changing) technology and data
requirements.

As the resources necessary to participate fully in modern neuroscience research have grown, barriers to entry and
funding have risen as well. Smaller universities, teaching colleges, undergraduate students, and other settings
that lack the resources to support significant investments in infrastructure and training are at a meaningful
disadvantage. Lack of resources and infrastructure is a key gap identified in surveys pertaining to both the
adoption of FAIR neuroscience 75 and the conduct of neuroscience research in low- and medium-income
countries 76,77. Without added support, FAIR neuroscience might evolve with an ever-increasing bias towards
high-resourced teams, institutions, and countries. Such an outcome would not only decrease representation and
diversity but would slow scientific progress. In support of simplicity, efficiency, transparency, and equity in big
data neuroscience research, our team has developed a community resource, brainlife.io (Fig. 1b). The brainlife.io
platform stands on the foundational pillars of the neuroimaging community and the mission of open science (Fig.
1c). brainlife.io provides free and secure reproducible neuroscience data analysis. brainlife.io’s technology works
for researchers serving automated tracking of data provenance, preprocessing steps, parameter sets, and
analysis versions. Our vision for brainlife.io is that of a trusted, interoperable, and integrative platform connecting
global communities of software developers, hardware providers, and domain scientists via cloud services.

In the remainder of this article, we describe the technology and utilization of brainlife.io. After that, we present the
results of our evaluations of the effectiveness of the technology. Experiments focused on the four axes of
scientific transparency: external validity, reliability, reproducibility, and replicability. Finally, we demonstrate the
platform’s potential for scientific utility in identifying human disease biomarkers.

RESULTS

Platform architecture

brainlife.io is a ready-to-use and ready-to-expand platform. As a ready-to-use system, it allows researchers to
upload and analyze data from MRI, MEG, and EEG systems. Data are managed using a secure warehousing
system that follows an advanced governance and access-control model. Data can be preprocessed and
visualized using version-controlled applications (hereafter referred to as Apps) compliant with major data
standards (the Brain Imaging Data Structure, BIDS41). As a ready-to-expand system, software developers may
contribute or modify existing Apps guided by standard methods and documentation describing how to write Apps
(github.com/brainlife/abcd-spec and brainlife.io/docs). The platform uses a combination of opportunistic
computing and publicly funded resources 78–80 that are functionally integrated and can be available for use by a
particular project or team of researchers. Computing resource managers can also register computer servers and
clusters on brainlife.io to make them available either to individual users or projects or to the larger community of
brainlife.io users (Fig. 2a and Fig. S2a). The Supplemental Platform architecture provides an extended
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description of the technology. The platform is available to any type of researcher from students to faculty
researchers, either without cost (through opportunistic use of freely contributed resources) or with performance
guarantees (through the use of dedicated hardware or payment for use of cloud resources).

Brainlife.io was founded via an initial investment from the U.S. BRAIN Initiative via a National Science Foundation,
followed by support from the National Institutes of Health, the Department of Defense, the Kavli Foundation, and
the Wellcome Trust. The platform’s geographically distributed computing and storage systems are securely
hosted by national supercomputing centers and funded by a combination of institutional, national, and
international awards (see Fig. S2). As of this paper, the Texas Advanced Computing Center, Indiana University
Pervasive Technology Institute, Pittsburgh Supercomputing Center, San Diego Supercomputing Center, and the
University of Michigan Advanced Research Computing Technology Services have supported the project. The
distributed platform is connected with and depends on other major infrastructure and software projects such as
OpenNeuro.org, osris.org, DataLad.org, BIDS, Freesurfer, FSL, nibabel, dipy.org, repronim.org, DSI-Studio,
jetstream-cloud.org, frontera-portal.tacc.utexas.edu, access-ci.org, and INCF.org.

The architecture of brainlife.io is based on an innovative, microservices-based approach, including authentication,
preprocessing, warehousing, event handling, and auditing. This architecture allows automated and decentralized
data management and processing. Microservices are handled by the meta-orchestration workflow system
Amaretti (Fig. 2a,b, and Table S1). Amaretti can deploy computational jobs on high-performance compute
clusters and cloud systems. This allows the utilization of publicly-funded supercomputers and clouds 80, as well
as commercial clouds, such as Google Cloud, AWS, or Microsoft Azure.

Data management on brainlife.io is centered around Projects and supported by a databasing and warehousing
system (github.com/brainlife/warehouse). Projects are the “one-stop-shop” for data management, processing,
analysis, visualization, and publication (Fig. S3c). Projects are created by users and are private by default, but can
also be made publicly visible inside the brainlife.io platform. A project can be populated with data using several
options (Fig. 2d). Several major archives and data repositories are currently docked by brainlife.io74 (see Fig. 2b).
Noticeable examples are OpenNeuro.org34 and the Nathan-Kline data-sharing project.81–83 Datasets can be
imported seamlessly into brainlife.io Projects by using either the portal brainlife.io/datasets 74 (see Video S2 and
Video S3), the standardization tool brainlife.io/ezbids (see Table S1 and Video S6) or a dedicated Command Line
Interface (CLI).

Data processing on brainlife.io utilizes an object-oriented and micro workflows service model. Data objects are
stored using predefined formats, Datatypes, that allow automated App concatenation and pipelining (Fig. 2c;
brainlife.io/Datatypes). Apps and Datatypes are the key components of a system that work together to allow
automated processing and provenance tracking for millions of data objects. Apps are composable processing
units written in a variety of languages using containerization technology.84,85 Apps are smart, and can
automatically identify, accept, or reject datasets before processing (Fig. 2 and Fig. S2b). Community-developed
data visualizers are served by brainlife.io to support quality control (see Table S1). Six new data visualizers have
been developed and released as part of the project (Table S1 and Video S7). Whenever possible, Datatypes are
made compatible with BIDS.41 BIDS Apps can be easily made into brainlife.io Apps and multiple examples exist
already brainlife.io/apps.

The data workflow on brainlife.io simplifies the complexity of the modern neuroimaging processing pipeline into
two steps, akin to Google’s MapReduce algorithm.86 An initial map step preprocesses data objects
asynchronously and in parallel using Apps, so as to extract features of interest (such as functional activations,
white matter maps, brain networks, or time series data; Fig. 2d). During the map step, Datatypes and Apps are
synchronized and moved to available compute resources automatically. Apps process data objects in parallel
across study participants in a Project. The map step is followed by a reduce step, wherein features extracted
using Apps are made available to pre-configured Jupyter notebooks87,88 served on the platform to perform
statistical analysis, machine-learning applications, and generate figures. Indeed, all statistical analyses and figures
in this paper are available in accessible Jupyter Notebooks (see Table S2). brainlife.io’s data workflow makes it
possible to integrate large volumes of diverse neuroimaging Datatypes into simpler sets of brain features
organized into Tidy data structures 89 (Fig. S3c).
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Figure 2. The brainlife.io platform concepts, architecture, and approach. a. brainlife.io’s Amaretti links data archives,
software libraries, and computing resources. Specifically, ‘Apps’ (containerized services defined on GitHub.com) are
automatically matched with data stored in the ‘Warehouse’ with computing resources. Statistical analyses can be
implemented using Jupyter Notebooks. b. brainlife.io provides efficient docking between data archives, processing apps,
and compute resources via a centralized service. c. Apps use standardized Datatypes and allow “smart docking” only with
compatible data objects. App outputs can be docked by other Apps for further processing. d. brainlife.io’s Map step takes
MRI, MEG and EEG data and processes them to extract statistical features of interest. brainlife.io’s reduce step takes the
extracted features and serves them to Jupyter Notebooks for statistical analysis. PS: parc-stats Datatype; TM:
tractmeasures Datatype; NET: network Datatype; PSD: power-spectrum density Datatype. CLI: Common Line Interface.

A key technological innovation developed for brainlife.io is the ability to automatically track all actions performed
by platform users on Datatypes and Apps. The platform captures data object IDs, Apps versions, and parameter
sets so as to track the full sequence of steps from data import to analysis and publication. A graph describing
provenance metadata for each Datatype can be visualized using the provenance visualizer or downloaded (see
Fig. S3d and Video S10). A shell script is automatically generated to allow the reproduction of full processing
sequences (Video S11). Finally, a single record containing data objects, Apps, and Jupyter Notebooks used in a
study can be made publicly available outside the platform bundled into a single record addressed by a unique
Digital Objects Identifier (DOI) 90. Whereas all other existing systems provide users with technology to track
analysis steps manually or require the use of coding, brainlife.io tracks automatically and do not require coding
nor user actions to generate a record of everything done by a user for data analysis. This automation technology
lowers the barriers of entry and democratizes FAIR, reproducible large-scale neuroimaging data analysis.

Platform evaluation

In the following section, we evaluate the utility of brainlife.io. To do so, we first present the level of engagement
with the platform by the growing community of users. After that, we describe the results of experiments on the
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robustness and validity of the platform. A detailed description of each section below describing each App and
step used can be found in the corresponding Supplemental Platform evaluation section.

Platform utilization

brainlife.io is developed following the FAIR principles. It is available worldwide and supports thousands of
researchers. First made accessible in Spring 2018, its utilization and assets have grown steadily (Fig. 3 and Fig.
S2c and S4). At the time of this writing, over 2,341 users across 43 countries have created a brainlife.io account.
Over 1,542 of these have been active users (Fig. 3a). Over 3,439 data management Projects have been created,
and a community of developers has implemented over 530 data processing Apps. Over 270 TBs of data have
been stored and processed using brainlife.io, for a total of 1,097,603 hours of compute time.

Researchers ranging from undergraduate students to faculty use brainlife.io (Fig. 3b), and analyses span the full
range of the neuroimaging data lifecycle. The most frequently used Apps pertained to diffusion tractography
(22%), model fitting (15%), and anatomical ROI generation (12%). Community-developed software libraries
provided the foundations for data processing, including Nibabel, Freesurfer, FSL, DIPY, MRTrix, the Connectome
Workbench, and MNE-Python. Terabytes of data have been uploaded (72%) or imported from OpenNeuro.org
(22%), the Nathan-Kline Institute data sharing projects (3%31,81,83), and other sources. This degree of world-wide
platform access highlights the global need for technology like brainlife.io (see Fig. S2e). More details can be
found in Supplemental platform utilization.

Figure 3. brainlife.io impact (2018-2022). a. Top left. Number of users submitting more than 10 jobs per month. Top middle.
Number of projects over time. Top right. Number of Apps over time. Bottom left. Data storage across all Projects. Bottom
middle. Compute hours across all Projects (data only available 6 months post project start). Bottom right. Lines of code in the
top 50 most-used Apps. b. Top left. User communities. Top right. App categories. Bottom left. Percent of total jobs launched
with the software library installed (percentage for jobs of top 50 most-used Apps). Bottom right. Datasets sources. See also
Fig. S2c for a world-wide distribution of the researchers that have accessed brainlife.io.

Platform testing

Experiments were performed to demonstrate the ability of the platform to provide accurate data processing and
analysis at scale. The experiments focused on the four axes of scientific transparency: data processing external
validity (DPEV), reliability, reproducibility, and replicability.91,92 Four data modalities (sMRI, fMRI, dMRI, MEG) were
evaluated using, among others, the test-retest HCPTR,

93 the Cam-CAN,27 the HBN,31 and the ABCD28 datasets. In
total, data from over 3,200 participants across 12 datasets were processed. Extracted brain features included
cortical parcel volumes, white matter tract profilometry, functional and structural network properties, functional
gradients, and peak alpha frequency (Fig. 4). Over 193,000 data objects and 22 Terabytes of data were generated
for the experiments. A detailed description of the experiments below can be found in the Supplemental platform
testing section. The brainlife.io Apps used for the experiments are reported in Table S3. Post-processing
analyses were performed using brainlife.io-hosted Jupyter Notebooks (see Table S2).

Data processing external validity (DPEV) was defined as the ability of data processed on brainlife.io to accurately
reflect brain properties proficiently processed by other teams. DPEV was estimated for four data modalities (sMRI,
dMRI, fMRI, and MEG) and five brain features (brain areas volumes, major white matter tracts fractional
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anisotropy, resting state functional connectivity, resting-state function gradients, and MEG peak alpha frequency).
Features values obtained using brainlife.io Apps were compared against data preprocessed by data originators,
specifically the HCP consortium or Cam-CAN project team (Fig. 4, Fig. S4d,e,h). Cortical area volume estimates
on 148 parcels were obtained using brainlife.io Apps and compared to corresponding estimates provided by the
HCP consortium (Fig. 4a; rvalidity=0.98, rmsevalidity=570.54mm3). Fractional anisotropy (FA) in 61 white matter tracts
was estimated using the raw and minimally preprocessed HCPTR dMRI data (Fig. 4b; rvalidity=0.95,
rmsevalidity=0.018). Functional connectivity estimates between 1172 nodes-pairs 94 were compared between raw
and minimally preprocessed HCPTR dMRI data (Fig. 4c; rvalidity=0.89, rmsevalidity=0.12). In addition, functional
gradients 95,96 were computed on 400 nodes estimated on raw and minimally processed HCPTR fMRI data (Fig. 4d;
rvalidity=0.59, rmsevalidity=0.036). Finally, the peak alpha frequency values were compared between Cam-CAN and
brainlife.io processed MEG data (Fig. 4e; rvalidity=0.94, rmsevalidity=0.30 Hz). Overall, the results show strong
similarity in feature estimates between data processed on brainlife.io versus those processed by external groups
(functional gradients demonstrated the lowest validity and data processing-type dependency based on fMRI
preprocessing procedures 97).

Figure 4. Data processing validity and reliability analysis. Top row: Validity measures derived using the HCP Test-Retest
data. Each dot corresponds to the ratio for a given subject between data preprocessed and provided by the HCP Consortium
vs data preprocessed on brainlife.io in a given measure for a given structure. Pearson’s correlation (r), root mean squared
error (rmse), and a linear fit between the test and retest results were calculated. a. Parcel volume (mm3). b. Tract-average
fractional anisotropy (FA). c*. Node-wise functional connectivity (FC). d*. Primary gradient value derived from resting-state
fMRI. e. Peak frequency (Hz) in the alpha band derived from MEG. Data from magnetometer sensors are represented as
squares, and data from gradiometer sensors are represented as circles. Bottom row: Test-retest reliability measures derived
from derivatives of the HCPTR dataset generated using brainlife.io. Each dot corresponds to the ratio between a test-retest
subject and a given measure for a given structure. Pearson’s correlation (r), root mean squared error (rmse), and a linear fit
between the test and retest results were calculated. f. Parcel volume (mm3). g. Tract-average fractional anisotropy (FA). h*.
Node-wise functional connectivity (FC). i*. Primary gradient value derived from resting-state fMRI. j. Peak frequency (Hz) in
the alpha band derived from MEG using the Cambridge (Cam-CAN) dataset. Data from magnetometer sensors are
represented as squares, and data from gradiometer sensors are represented as circles. Dark colors represent data within
+/-1 standard deviation (SD. 50% opacity represents data within 1-2 SD. 25% opacity represents data outside 2 SD. *A
representative 5% of data presented in c, d, h, i.

Data processing reliability (DPR) was defined as the ability to produce highly similar results on test and retest
measurements within a study participant. DPR was estimated for the four data modalities and five brain features
used above to estimate DPEV. Brain features estimated using brainlife.io Apps on test and retest measurements
(HCPTR dataset) or median splits data (Cam-CAN MEG) were compared. Reliability estimates of brain area
volumes, major tracts FA, networks FC, functional gradients, and Peak Alpha Frequency were obtained (see Fig.
4f-i and associated supplemental text). DPR varied between rreliability=0.99 and 0.73, with sMRI and dMRI
demonstrating the highest reliability (rreliability=0.99, 0.93, respectively). See also Fig. S4f-g,i for estimates on
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additional brain features and Table S4 for a full report of all correlation values obtained in all brain features. The
results show strong reliability of most of all the pipelines with the fMRI reliability being lowest, this is consistent
with previous reports 98. We also performed computational reproducibility (CR) experiments (see Fig. S4j-n and
associated text). These experiments demonstrated the similarity in estimates produced by brainlife.io Apps when
used twice to process the same dataset. Given the use of containerization technology for the Apps, this test was
expected to return high correlation values. Indeed, all correlations were above 0.99, demonstrating high
consistency. These experiments demonstrate the ability of the platform to conduct valid, reliable, and
reproducible data processing and analysis at scale across multiple data modalities and brain features.

Platform utility for scientific applications

Next, we evaluated the platform’s potential to support scientific findings. To do so, we evaluated whether data
processed using brainlife.io’s Apps contained meaningful patterns. We used over 1,800 participants from three
datasets: PING (Pediatric Imaging, Neurocognition, Genetics), HCPs1200, (HCP Young Adult 1,200), and Cam-CAN.
Data were collected across ages, but age ranges differed in each dataset (i.e., 3-20 years for PING, 20-37 years
for HCPs1200, and 18-88 years for Cam-CAN). The lifelong trajectory was plotted for multiple brain features (e.g.,
volumes of brain parts, FA of major tracts, network properties. MEG peak frequency, etc; Fig. 5). The collated age
range spanned 7 decades. Features were combined using brainlife.io’s Jupyter Notebooks.

Figure 5. Lifelong brain maturation estimated across datasets. Relationship between subject age and a. Right
hippocampal volume, b. Right inferior longitudinal fasciculus (ILF) fractional anisotropy (FA), c*. maximum node degree of
density network derived using the hcp-mmp atlas, d*.Within-network average functional connectivity (FC) derived using the
Yeo17 atlas, e. Functional gradient distance for visual resting state network derived from the Yeo17 atlas, and f. Peak
frequency in the alpha band derived from magnetometer (squares) and gradiometers (circles) from MEG data. These
analyses include subjects from the PING (purple), HCP1200 (green), and Cam-CAN (yellow) datasets. Linear regressions were
fit to each dataset, and a quadratic regression was fit to the entire dataset (blue). * All points in c, and d are presented. See
also Fig. S5 and Supplemental platform utility for scientific applications.

Multiple reports have shown inverted U-shaped lifelong trajectories across data modalities.99–103 We plotted brain
features derived for each data modality (sMRI, dMRI, fMRI, and MEG) as a function of age across datasets (Fig.
5). Six exemplary lifelong trajectories are shown (additional features are reported in Fig. S5). For each data
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modality, a quadratic model was fit across all three datasets between 3 and 88 years of age:
, (R2=0.152 ± 0.0773 s.d.). Mean quadratic term (a) across all data modalities was𝑦

𝑓𝑒𝑎𝑡𝑢𝑟𝑒
= 𝑎𝑥

𝑎𝑔𝑒
2 + 𝑏𝑥

𝑎𝑔𝑒
+ 𝑐

negative (-0.0514 ± 0.111 s.d.), demonstrating the expected inverted U-shape trajectory. Results show that, by
automatically analyzing data using brainlife.io Apps, it is possible to collate across datasets with substantial
differences in data acquisition parameters and signal-to-noise profiles. Additional details regarding these
experiments can be found in Supplemental platform utility for scientific applications.

Replication and generalization of previous results

We then evaluated the ability of brainlife.io to replicate previous results and generalize findings across datasets. A
more detailed description and additional experiments can be found in Supplemental replication and
generalization. First, we tested brainlife.io’s ability to replicate the results of three previous studies. A negative
correlation between cortical thickness and tissue orientation dispersion (ODI; roriginal =-0.46) has been reported in
the HCPs1200 dataset.104 brainlife.io Apps were created to estimate cortical thickness and ODI and analyze HCPs1200

dataset. A negative relationship between cortical thickness and ODI was estimated, replicating the original study
(Fig. 6a; rHCP-brainlife = -0.43 vs. roriginal). More examples of replications can be found in Fig. S6a,b.

Figure 6. Replication of previous studies using brainlife.io. a. Average cortical hcp-mmp parcel thickness (Nstruc = 322)
compared to parcel orientation dispersion index (ODI) from the NODDI model mapped to the cortical surface (inset) of the
HCP S1200 dataset (Nsub = 1,043) and Cam-CAN (Nsub = 492) dataset compared to the parcel-average cortical thickness. b.
Stressful life events obtained from Negative Life Events Schedule (NLES) survey from Healthy Brain Network participants (Nsub

= 42) compared to Uncinate-average normalized Quantitative Anisotropy (QA). Mean linear regression (blue line) fits and
standard deviation (shaded blue). c. Early life stress was obtained from multiple surveys collected from ABCD participants
(Nsub = 1,107) compared to Uncinate-average Fractional Anisotropy (FA). Linear regression (green line) fits the data with
standard deviation (shaded green).

Second, the generalization of the original findings to a different dataset was tested in three ways. The first test
was run using the cortical ODI estimated in the Cam-CAN dataset. A negative trend of about half the magnitude
of the original was estimated (Fig. 6a; rCam-CAN-brainlife = -0.28 vs. roriginal). The result generalizes the original results
and the reduced effect in a new dataset is consistent with reports on the reproducibility of scientific findings.12

The second generalization test focused on the reported relationship between life stressors and white matter
structural organization of the uncinate fasciculus (UF; r=-0.057).105 Two datasets were used to extend the finding
to new data, i.e., HBN and ABCD. The number of negative life events (Negative Life Events Schedule; NLES) in
the HBN dataset was correlated with subjects’ quantitative anisotropy (QA) in the right- and left-hemisphere UF.
Results show a negative correlation similar in magnitude as found in the original study (Fig. 6b rHBN_LEFT = -0.35,
p-value < 0.05; rHBN_RIGHT = -0.39, p-value < 0.05). The third and final attempt at the generalization of the same
result was made using the ABCD dataset. Early life stress was estimated as a composite score of traumatic life
events, environmental and neighborhood safety, and the family conflict subscale of the Family Environment
Scale.29 A negative relationship between UF FA and the composite score was estimated in the left- and right-UF
(Fig. 6c rABCD_LEFT = -0.12, p-value < 0.001; rABCD_RIGHT = -0.09, p < 0.01). Overall, these results demonstrate both the
robustness of the original results and the potential of brainlife.io services to detect meaningful associations in
large, heterogeneous datasets.

10

https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=id.b09atc49l3yh
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=id.80mdvkjdru3b
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=id.80mdvkjdru3b
https://paperpile.com/c/xDXTeT/swle
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=kix.qj3plrtwkd16
https://paperpile.com/c/xDXTeT/uZUP
https://paperpile.com/c/xDXTeT/452H
https://paperpile.com/c/xDXTeT/DpPb


Example applications to detecting disease

The final two tests evaluated the platform’s ability to identify human disease biomarkers. Data from individuals
with a sports-related concussion, eye disease (Choroideremia and Stargardt’s disease), and matched controls
were used (Fig. 7). A detailed description of the experiments can be found in Supplemental to detecting
disease. It has been reported that concussion can alter brain tissue both in cortical and deep white matter
tracts.106 We set out to measure the difference in cortical white matter tissue in concussed and matched controls.
FA was estimated from data collected within 24-48 hours post-concussion. The distribution of FA in the superior
temporal sulcus (STS) is reported (Fig. 7a). One representative athlete showed strong post-concussive symptoms
and low STS cortical FA (red). The result demonstrates the potential of brainlife.io processed data to report
meaningful changes in brain tissue following a concussion.

Figure 7. Using brainlife.io to identify and characterize clinical populations from healthy controls. a. Fractional
anisotropy (FA) values were estimated within the superior temporal sulcus (da: dorsal anterior) from 20 healthy athlete
controls (gray distribution) and 10 concussed athletes. Average FA, 10% low FA, and the lowest FA value across all
concussed athletes were measured (red arrows and dot). b. Retinal OCT images from healthy controls (top row), Stargardt’s
disease patients (middle row), and Choroideremia patients (bottom row). From these images, photoreceptor complex
thickness was measured for each group (Controls: gray; Choroideremia: green; Stargardt’s: blue) in two distinct areas of the
retina: the fovea (eccentricities 0-1 degrees) and the periphery (eccentricities 7-8 degrees). In addition, optic radiations
carrying information for each area of the retina were segmented and FA profiles were mapped. Average profiles with
standard error (shaded regions) were computed. One Stargardt and one Choroideremia participant were each identified as
having FA profiles that deviated from both healthy controls and the opposing retinal disorder.

Changes in the white matter of the optic radiation (OR) as a result of eye disease have been reported.107–111 We set
out to test the ability of brainlife.io Apps to detect similar changes in the OR white matter tissue in two eye
diseases for which OR white matter changes have not previously been reported. Individuals with Stargardt’s
disease (a deterioration of the retina initiating in the central fovea), and Choroideremia (retinal deterioration
initiating in the visual periphery), were compared to healthy controls. Retina photoreceptor complex thickness was
estimated in the fovea and peripheral using optical coherence tomography (0-1 and 7-90 degrees of visual
eccentricity, respectively; Fig. 7b). Choroideremia patients showed photoreceptor complex thickness comparable
to healthy controls in the fovea, but deviated in the periphery (Fig. 7b). The trend was opposite for Stargardt’s
patients. brainlife.io Apps were developed to automatically separate OR bundles projecting to different visual
eccentricity in cortical area V1. Average FA profiles for each patient group and controls were estimated for OR
fibers projecting to the fovea or periphery.112 113,114 Results show a reduction in FA in the component of the OR
projecting to the fovea (but not the periphery) in Stargardt’s patients (Fig. 7b, blue), and the opposite pattern (OR
fibers projecting to the periphery had lower FA than controls) in Choroideremia patients (Fig. 7b, blue). These
results demonstrate the ability of the platform technology to detect disease biomarkers.

A new approach to facilitate quality control at scale

brainlife.io offers a unique quality assurance (QA) approach to ensure processed data has the quality necessary to
serve large user bases. Reference ranges are often used in vision science to provide a reference for a
measurement, 115 and a similar approach was integrated within the brainlife.io data processing interface. To test it,
the mean, first, and second SD were estimated (via multiple Apps) for four brain features (tractmeasures,
parc-stats, networks, PSD) using the HCPs1200, Cam-CAN, and PING datasets. For each of the four brain features,
the estimated mean and estimated s.d. (referred to here as Reference ranges) are automatically calculated on the
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brainlife.io platform. That is, when a researcher uses an App to estimate one of the four features, the values of the
researcher’s dataset are automatically overlaid on top of the mean, first, and second s.d. marks provided as a
reference by brainlife.io. In this way, the mean and variability can be used by researchers to efficiently judge
whether a recently processed dataset returned appropriate values. For example, reference datasets can be used
to detect outlier data (Fig. 8a-d). Example reference datasets for four Datatypes are in Fig. 8e and an example of
platform interfaces reporting these reference datasets is shown in Fig. S8. A detailed description of the approach
used in this section can be found in Supplemental to quality control at scale. These reference ranges are an
additional source for quality assurance, alongside other options for QA such as online data visualization, the
automated generation of images and plots from the processed data as well as the detailed technical reports from
major BIDS Apps such as fMRIprep, QSIPrep, MRIQC, Freesurfer 69,70,72,116.

Figure 8. Reference datasets for quality assurance. Example workflow for building normative reference ranges for
multiple derived statistical products (cortical parcel volume, white matter tract profilometry, within-network functional
connectivity, and power-spectrum density (PSD)). a. Cortical volumes of the left hippocampus from HCP participants. Red
dots indicate outlier data points. b. Average fractional anisotropy (FA) profiles (blue line) plotted with two standard
deviations (shaded regions). Red lines indicate outlier profiles. c.Within-network functional connectivity for the nodes within
the Default-A network using the Yeo17 atlas. Red dots indicate outlier data points. d. Average PSD from occipital channels
using magnetometer sensors from Cam-CAN participants with one standard deviation (shaded regions). Red lines indicate
outlier participants. Peak alpha frequency distribution was also computed, and outliers were detected (inset). e. Normative
reference distributions for each derived statistical product across the PING (purple), HCP (blue), and Cam-CAN (orange)
datasets. These distributions have had outliers removed. An example of the brainlife visualization for reference datasets can
be found in Fig. S8.

DISCUSSION

The brainlife.io platform was developed with public funding to promote the progress of brain science and
education and to enable discovery and improve health. The platform connects researchers with publicly available
datasets, analysis code, data archives, and compute resources. brainlife.io is an end-to-end, turnkey data
analysis platform that provides researchers interested in the brain with services for data upload, management,
visualization, preprocessing, analysis, and publication–all integrated within a unique cloud environment and web
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interface. The platform uses opportunistic computing and publicly-funded resources for storage and computing,
78–80 but it can also use popular commercial clouds. The goal is to advance the democratization of big data
neuroscience by lowering the barriers of entry to multimodal data analysis, network neuroscience, and large-scale
analysis, all opportunities historically limited to a paucity of highly-skilled, high-profile research teams.39,99,117–122

The platform supports a rigorous and transparent scientific process spanning the research data lifecycle from
after data collection to sharing123 and automatically tracks complex sequences of interactions between
researchers, Apps, analysis notebooks, and data objects to support reproducibility. The FAIR data principles for
data stewardship and management 9 are generally used as guidelines for any data-centric project. Recently, it has
been proposed that a modern definition of neuroscience data should extend beyond measurements and data to
include metadata and software for analysis and management. 123 Each research asset on brainlife.io (i.e., data
derivatives, analysis software, and software services, as handled by the platform) is aligned with the FAIR data
principles (see Supplement on brainlife.io and the FAIR principles). The following discussion will include
descriptions of the resources available for getting started on brainlife.io, applications of brainlife.io to educational
settings, the platform’s strict data governance principles, increasing “data gravity” via brainlife.io, potential
expansion of the platform, and the platform’s current limitations.

The brainlife.io project provides multiple resources for App developers, computing resource managers, and
neuroscience researchers to learn to use the platform or contribute to the project. A comprehensive overview of
the platform and tutorials for getting started with developing Apps or using the platform can be found in the
integrated documentation (brainlife.io/docs), as well as on a YouTube Channel that provides tutorials and
demonstrations of concepts (youtube.com/@brainlifeio). A public slack channel is used for managing user
communications, requests, feedback, and operations (brainlife.slack.com). Users can also ask questions to
developers and the community using the topic ‘brainlife’ on neurostars.org and adding GitHub issues. Finally, a
quarterly community engagement and outreach newsletter is sent to all users, and a Twitter account (@brainlifeio)
informs the wider community on critical events and connects to information relevant to the project.

brainlife.io and its user community are highly engaged in providing innovative training and education opportunities
for the next generation of students, postdocs, and clinicians interested in the intersection between neuroscience,
data science, and information. The platform allows new students and educators to access many complex data
files and analysis methods with minimal overhead. Educators have started using brainlife.io to teach neuroscience
and data science concepts in the classroom, and courses have been organized in Europe, the USA, Canada, and
Africa. These courses introduce basic concepts and teach students how to perform neuroimaging investigations
without the requirement of programming or computing expertise. The skills that can be learned using the platform
include data preprocessing, quality assurance, and statistical analyses. Integrative data management and analysis
provide opportunities for educators and students in under-resourced institutions or countries to perform research
and teach neuroscience with hands-on experience.

The project leadership and advisory team recognize the importance of ensuring that data processing workflows
are ethically responsible, legally compliant, and socially acceptable. Indeed, data governance is considered an
integral part of data processing. Data governance is defined as the principles, procedures, technologies, and
policies that ensure acceptable and responsible processing of data at each stage of the data life cycle.123 It
comprises the management of the availability, usability, integrity, quality, and security of data.123 The data
governance policies, processes, and technologies within brainlife.io cover three key elements: people, processes,
and technologies. A comprehensive set of advanced security measures and protocols guarantee that only
authorized individuals have access. These measures include end-to-end encrypted communication, strict access
control, and support for multi-factor authentication. Datasets uploaded by users using brainlife.io/ezBIDS are
pseudonymized,124 (i.e. direct identifiers are removed) at upload. The platform interface provides fields for project
managers to add Data Use Agreements (DUA) in alignment with the nature and context of their data. The platform
even provides template DUAs describing data users’ responsibilities and liabilities, including becoming the data
controller (the person who controls the purposes and means of processing the data). These governance
mechanisms comply with available regulations and mandates, such as the European Union's General Data
Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA) in the United
States, which require that personal data be stored and managed in a secure and compliant manner. Cloud
systems are designed to provide the level of protection necessary to ensure the privacy and confidentiality of
research participants. Finally, the incoming changes to data deposition and sharing mandates (such as that
recently released by the National Institutes of Health in the United States125,126) are likely to increase the workload
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for neuroscience researchers. The brainlife.io publication records are compatible with the NIH data sharing
mandates (for privacy, sharing, and preservation), and the platform is registered on fairsharing.org, datacite.org,
datasetsearch.research.google.com, and nitric.org.

Data gravity is the ability of datasets to attract utilization127 Neuroimaging research within the larger neuroscience
field has led the way in increasing data gravity. A long and growing list of tools orchestrated under a general label
of open science are being developed to support and facilitate data utilization and access. These tools can be
divided into four primary categories: software library, data archives and database systems, data standards, and
computing platforms.40 The data archives and systems closest to brainlife.io are the INDI,128,129 OpenNeuro.org,34

DANDI,130 BossDB,131 DataLad,74 NITRC,132 PING,32 Can-CAM,27 the Brain/MINDS project,133 and LORIS.134 The
web services most related to the current work are NeuroQuery,135 NeuroScout,136 CBRAIN,137 NeuroDesk,138

XNAT,139 NEMAR,140 EBRAINS 141, LONI, 142,143, the International Brain Lab data Instratructure 144, COINSTAC 145

and CONP 146. Most projects are open-source and provide various degrees of data access. brainlife.io end-to-end
integrated environment that brings researchers from raw data to Jupyter Notebooks and Tidy data tables while
tracking data provenance automatically is unique. But many other projects exist and given the fast-growing
landscape of neuroinformatics projects, we collected a table listing the major ones (see Table S5). The
International Neuroinformatics Coordinating Facility also provides a list of major projects
incf.org/infrastructure-portfolio. brainlife.io is one of the approved resources, as it complies with the INCF
requirement for FAIR infrastructure. The ability of the platform to utilize data from multiple modalities (MEG, EEG,
MRI) is a unique feature, connecting neuroimaging research sectors that have been historically siloed. However,
we envision additional opportunities for expanding the types of data managed by the platform, fostering further
data integration. For example, other data modalities could be mapped to brainlife.io Datatypes, and the
mechanism for data Integration with metadata capture toolkits 147 and data models 148 would provide additional
facilitation for the analysis domains of data currently not covered by the BIDS standard.

Improving the platform’s automation and interoperability is part of the vision and sustainability plan. For example,
despite the best efforts of App developers, errors occur (see Fig. S3d). Currently, researchers only have simple
interfaces that report technical output logs and error messages when Apps fail to process data, and parsing these
messages requires expertise. Users are required to either contact the brainlife.io team or parse the error logs
themselves. Planned improvements to brainlife.io’s error reporting interfaces will help users understand the
sources of errors and find solutions. In addition to error identification, identifying the optimal set of processing
steps or parameter sets at the beginning of a project can prove challenging. In addition, currently, researchers
identify the optimal data processing steps by looking at existing documentation or videos. In the future,
mechanisms that automatically identify processing steps can be implemented to suggest to researchers optimal
ways to process their data (e.g. given what other researchers might have already implemented on the platform).
Finally, improving connection with major archives and platforms such as OpenNeuro.org, DANDI, NeuroScout,
NeuroDesk, and neurosynth.org, would contribute to implementing the vision of a global interoperable ecosystem
for a FAIR, accessible, and democratized neuroscience.

In summary, the capabilities of brainlife.io are unique, open, accessible, and expandable. The expansion of
instrument capabilities in neuroimaging has in the last 30 years revolutionized our ability to collect data about the
brain and brain function. As the landscape of neuroscience big-data projects is only expected to grow in the
coming years, moving research data management and computing to cloud platforms will become not just a
brilliant option, but a serious requirement. Compliance with mandates for data privacy and sharing will ultimately
require researchers to move data management and processing to secure and professionally managed to compute
and storage systems. Our goal for brainlife.io is to facilitate this process and thereby revolutionize the ability to
rigorously and reliably make use of the wealth of data now available to understand brain function, leading to new
cures for brain disease. In so doing, brainlife.io will also make cutting-edge datasets and analysis resources more
accessible to students and researchers from traditionally underrepresented groups in high-, medium- and
low-income countries.
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ONLINE METHODS AND MATERIALS
Data collection approval. Multiple experiments were performed by individuals at various institutions using the platform.
Experiments were approved by the local institutional review boards (IRB), and only the personnel approved for a specific study
accessed the data in private projects on brainlife.io. Some of the secondary data usages were deemed IRB-exempt.

Data sources. Multiple openly available data sources were used for examining the validity, reliability, and reproducibility of
brainlife.io Apps and for examining population distributions. All information regarding the specific image acquisitions,
participant demographics, and study-wide preprocessing can be found in the following publications 27,28,31,149–153. Some data
sources are currently unpublished. For these, the appropriate information is provided.

Validity, reliability, reproducibility, replicability, developmental trends, & reference datasets
Human Connectome Project (HCP; Test-Retest, s1200-release) 149. Data from these projects were used to assess the validity,
reliability, and reproducibility of the platform. They were used to assess the abilities of the platform to identify developmental
trends in structural and functional measures, and they were used to generate reference datasets. Structural data (sMRI): The
minimally-preprocessed structural T1w and T2w images from the Human Connectome Project (HCP) from 1066 participants
from the s1200 and 44 participants from the Test-Retest releases were used. Specifically, the 1.25 mm ‘acpc_dc_restored’
images generated from the Siemens 3T MRI scanner were used for all analyses involving the HCP. For most examinations, the
already-processed Freesurfer output from HCP was used. Diffusion data (dMRI): To assess the validity of preprocessing on
brainlife.io, the unprocessed dMRI data from 44 participants from the HCP Test dataset was used. For reliability and all
remaining analyses, the minimally-preprocessed diffusion (dMRI) images from 1,066 participants from the s1200 and 44
participants from the Test-Retest releases from the 3T Siemens scanner were used. All processes incorporated the multi-shell
acquisition data. Functional data (fMRI): For validation, the unprocessed resting-state functional MRI (fMRI) from 44
participants from the HCP Test dataset was compared to the minimally-preprocessed BOLD data provided by HCP. For
reliability and all other analyses, the minimally-preprocessed BOLD data from 1,066 participants from the s1200 and 44
participants from the Test-Retest releases from the 3T Siemens scanner were used.

The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) 27. The data from this project were used to assess the
validity, reliability, and reproducibility of the platform and to assess the abilities of the platform to identify developmental
trends of structural and functional measures, and to generate reference datasets. Structural data (sMRI): The unprocessed
1mm isotropic structural T1w and T2w images from 652 participants from the Cambridge Centre for Ageing and Neuroscience
(Cam-CAN) study were used. Diffusion data (dMRI): The unprocessed 2mm isotropic diffusion (dMRI) images from 652
participants from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study were used. Functional data (fMRI):
The 3mm x 3mm x 4mm unprocessed resting-state fMRI images from 652 participants from the Cambridge Centre for Ageing
and Neuroscience (Cam-CAN) study were used. Electromagnetic data (MEG): The 1000 Hz resting-state filtered and unfiltered
datasets from 652 participants from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study were used.

Developmental trends & reference datasets
Pediatric Imaging, Neurocognition, and Genetics (PING) 32. The data from this project were used to assess the abilities of the
platform to identify developmental trends of structural measures and to generate reference datasets. Structural data (sMRI):
The unprocessed 1.2 x 1.0 x 1.0 mm structural T1w and the 1.0 mm isotropic T2w images from 110 participants from the
Pediatric Imaging, Neurocognition, and Genetics (PING) study were used. Diffusion data (dMRI): The unprocessed 2mm
isotropic diffusion (dMRI) images from 110 participants from the Pediatric Imaging, Neurocognition, and Genetics (PING) study
were used.

Replicability datasets
Adolescent Brain Cognitive Development (ABCD) 28,29. Structural data (sMRI): The unprocessed 1mm isotropic structural T1w
and T2w images from a subset of 1,877 participants from the Adolescent Brain Cognitive Development (ABCD release-2.0.0)
study were used. Diffusion data (dMRI): The unprocessed 1.77mm isotropic diffusion (dMRI) images from a subset of 1877
participants from the Adolescent Brain Cognitive Development (ABCD release-2.0.0) study were used. A single diffusion
gradient shell was used for these experiments (b=3000s/msec2). Research approved by the University of Arkansas IRB
(#2209425822).

Healthy Brain Network (HBN) 31. The data from this project were used to assess the abilities of the platform to replicate
previously published findings via the assessment of the relationship between microstructural measures mapped to segmented
uncinate fasciculi and self-reported early life stressors. Research approved by the University of Pittsburgh IRB
(#PRO17060350). Structural data (sMRI): The 0.8 mm isotropic structural T1w images from 42 participants from the Healthy
Brain Network (HBN) study were used. Diffusion data (dMRI): The unprocessed 1.8 mm isotropic diffusion (dMRI) images from
42 participants from the CitiGroup Cornell Brain Imaging Center site of the Healthy Brain Network (HBN) study were used.
Research approved by the University of Pittsburgh IRB (#PRO17060350).
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UPENN-PMC 154. The data from this project were used to assess the abilities of the platform to replicate previously published
findings via the assessment of the performance of an automated hippocampal segmentation algorithm. All procedures were
conducted under the approval of the Institutional Review Board at the University of Texas at Austin. Structural data (sMRI): The
T1w and T2w data were provided within the Automated Segmentation of Hippocampal Subfields (ASHS) atlas154.

Clinical-identification datasets
Indiana University Acute Concussion Dataset. The data from this project were used to assess the abilities of the platform to
identify clinical populations via the mapping of microstructural measures to the cortical surface. Neuroimaging was performed
at the Indiana University Imaging Research Facility, housed within the Department of Psychological and Brain Sciences with a
3-Tesla Siemens Prisma whole-body MRI using a 64-channel head coil. Within this study, 9 concussed athletes and 20 healthy
athletes were included. Research approved by Indiana University (IRB: 906000405). Structural data (sMRI): High-resolution
T1-weighted structural volumes were acquired using an MPRAGE sequence: TI = 900 ms, TE = 2.7 ms, TR = 1800 ms, flip
angle = 9°, with 192 sagittal slices of 1.0 mm thickness, a field of view of 256 x 256 mm, and an isometric voxel size of 1.0
mm3. The total acquisition time was 4 minutes and 34 seconds. High-resolution T2-weighted structural volumes were also
acquired: TE = 564 ms, TR = 3200 ms, flip angle = 120°, with 192 sagittal slices, a field of view of 240 x 256 mm, and an
isometric voxel size of 1.0mm3. Total acquisition time was 4 minutes 30 seconds. Diffusion data (dMRI): Diffusion data were
collected using single-shot spin-echo simultaneous multi-slice (SMS) EPI (transverse orientation, TE = 92.00 ms, TR = 3,820
ms, flip angle = 78 degrees, isotropic 1.5 mm3 resolution; FOV = LR 228 mm x 228 mm x 144 mm; acquisition matrix MxP =
138 x 138. SMS acceleration factor = 4). This sequence was collected twice, one in the AP fold-over direction and the other in
the PA fold-over direction, with the same diffusion gradient strengths and the number of diffusion directions: 30 diffusion
directions at b = 1000 s/mm2, 60 diffusion directions at b = 1,750 s/mm2, 90 diffusion directions at b = 2,500 s/mm2, and 19 b
= 0 s/mm2 volumes. The total acquisition time for both sets of dMRI sequences was 25 minutes and 58 seconds.

Oxford University Choroideremia & Stargardt’s Disease Dataset. The data from this project was used to assess the abilities of
the platform to identify clinical populations via mapping retinal-layer thickness via OCT and mapping of microstructural
measures along optic radiation bundles segmented using visual field information (eccentricity). Neuroimaging was performed
at the Wellcome Centre for Integrative Neuroimaging, Oxford with the Siemens 3T scanner. Research approved by the UK
Health Regulatory Authority reference 17/LO/1540. Structural data (sMRI): High-resolution T1-weighted anatomical volumes
were acquired using an MPRAGE sequence: TI = 904 ms, TE = 3.97 ms, TR = 1900 ms, flip angle = 8°, with 192 sagittal slices
of 1.0 mm thickness, a field of view of 174 mm x 192 mm x 192 mm, and an isometric voxel size of 1.0 mm3. The total
acquisition time was 5 minutes and 31 seconds. Diffusion data (dMRI): Diffusion data were collected using EPI (transverse
orientation, TE = 92.00ms, TR = 3600 ms, flip angle = 78 degrees, 2.019 x 2.019 x 2.0 mm3 resolution; FOV = 210 mm x 220
mm x 158 mm; acquisition matrix MxP = 210 x 210, SMS acceleration factor = 3). This sequence was collected twice, one in
the AP fold-over direction and the other in the PA fold-over direction. The PA fold-over scan contained 6 diffusion directions, 3
at b = 0 s/mm2 and 3 at b = 2000 s/mm2, and was used primarily for susceptibility-weighted corrections. The AP fold-over
scan contained 105 diffusion directions, 5 at b = 0 mm/s2, 51 at b = 1000 mm/s2, and 49 at b = 2000 mm/s2. The total
acquisition time for both sets of dMRI sequences was 7 minutes and 8 seconds.

General processing pipelines
Structural processing. For the ABCD, Cam-CAN, Oxford University Choroideremia & Stargardt’s Disease Dataset, and the
Indiana University Acute Concussion datasets, the structural T1w and T2w (sMRI) images (if available) were preprocessed,
including bias correction and alignment to the anterior commissure-posterior commissure (ACPC) plane, using A273 and A350
respectively. For PING data, no bias correction was performed but alignment to the ACPC plane was performed using A99 and
A116 for T1w and T2w data respectively. For HCP data, this data was already provided. The structural T1-weighted images for
each participant and dataset were then segmented into different tissue types using functionality provided by MRTrix3 (Tournier
et al, 2019) implemented as A239. For a subset of datasets, this was performed within the diffusion tractography generation
step using A319. The gray- and white-matter interface mask was subsequently used as a seed mask for white matter
tractography. The processed structural T1w and T2w images were then used for segmentation and surface generation using
the recon-all function from Freesurfer72 (A0). Following Freesurfer, representations of the cortical ‘midthickness’ surface were
computed by spatially averaging the coordinates of the pial and white matter surfaces generated by Freesurfer using the
wb_command -surface-cortex-layer function provided by Workbench command for the HCPTR, HCPs1200, ABCD, Cam-CAN,
PING, and Indiana University Acute Concussion datasets. These surfaces were used for cortical tissue mapping analyses.
Following Freesurfer and midthickness-surface generation, the 180 multimodal cortical nodes (hcp-mmp) atlas and the Yeo 17
(yeo17) atlas were mapped to the Freesurfer segmentation of each participant implemented as brainlife.io App A23. These
parcellations were used for subsequent cortical, subcortical, and network analyses. In addition, measures for cortical
thickness, surface area, volume, and summaries of diffusion models of microstructure were estimated using A383 and A389.
To estimate population receptive fields (pRF) and visual field eccentricity properties in the cortical surface in the Oxford
University Choroideremia & Stargardt’s Disease Dataset, the automated mapping algorithm developed by 155,156 was
implemented using A187. To segment thalamic nuclei for optic radiation tracking, the automated thalamic nuclei segmentation
algorithm provided by Freesurfer 72 was implemented as A222. Finally, visual regions of interest binned by eccentricity were
then generated using AFNI 157 functions implemented in A414. To assess the replicability capabilities of the platform, an
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automated hippocampal nuclei segmentation app (A262) was used to segment hippocampal subfields from participants within
the UPENN-PMC dataset provided within the ASHS atlas.

Diffusion (dMRI) processing. Preprocessing & model fitting: For a majority of the analyses involving the HCP dataset, the
minimally-preprocessed dMRI images were used and thus no further preprocessing was performed. However, to assess the
validity of the preprocessing pipeline, the unprocessed dMRI data from the HCP Test dataset, dMRI images were
preprocessed following the protocol outlined in 158 using A68. The same app was also used for preprocessing the dMRI
images for the ABCD, Cam-CAN, PING, Oxford University Choroideremia & Stargardt’s Disease Dataset, the Indiana University
Acute Concussion, and HBN datasets. Specifically, dMRI images were denoised and cleaned from Gibbs ringing using
functionality provided by MRTrix3 before being corrected for susceptibility, motion, and eddy distortions and artifacts using
FSL’s topup and eddy functions 44,159. Eddy-current and motion correction was applied via the eddy_cuda8.0 with the
replacement of outlier slices (i.e. repol) command provided by FSL 160–163. Following these corrections, MRTrix3’s dwigradcheck
functionality was used to check and correct for potential misaligned gradient vectors following top-up and eddy 164. Next,
dMRI images were debiased using ANT’s n4 functionality 165 and the background noise was cleaned using MrTrix3.0’s
dwidenoise functionality 166. Finally, the preprocessed dMRI images were registered to the structural (T1w) image using FSL’s
epi_reg functionality 167–169. Following preprocessing, brain masks for dMRI data using bet from FSL were implemented as
A163.

DTI, NODDI, and q-sampling model fitting. Following preprocessing, the diffusion tensor (DTI) model 170 and the neurite
orientation dispersion and density imaging (NODDI) 171,172 models were subsequently fit to the preprocessed dMRI images for
each participant using either A319 or A292 for DTI model fitting and A365 for NODDI fitting. Note, the NODDI model was only
fit on the HCP, Cam-CAN, Oxford University Choroideremia & Stargardt’s Disease Dataset, and the Indiana University Acute
Concussion datasets. For those datasets, the NODDI model was fit using an intrinsic free diffusivity parameter (d∥) of 1.7x10-3
mm2/s for white matter tract and network analyses, and a d∥ of 1.1x10-3mm2/s for cortical tissue mapping analyses, using
AMICO’s implementation172 as A365. The constrained spherical deconvolution (CSD) (Tournier et al, 2007) model was then fit
to the preprocessed dMRI data for each run across 4 spherical harmonic orders (i.e. Lmax) parameters (2,4,6,8) using
functionality provided by MRTrix3 implemented as brainlife.io App A238. For the PING datasets, the CSD model was fit using
the same exact code found in A238, but performed using the tractography App A319. For the HBN dataset, the isotropic spin
distribution function was obtained by reconstructing the diffusion MRI data with the Generalized q-sampling imaging method
173 using functionality provided by DSI-Studio66 (A423). Quantitative anisotropy (QA) was then estimated from the isotropic spin
distribution function.

Tractography. Following model fitting, the fiber orientation distribution functions (fODFs) for Lmax=6 and Lmax=8 were
subsequently used to guide anatomically-constrained probabilistic tractography (ACT; Smith et al, 2012) using functions
provided by MRTrix3 implemented as brainlife.io App A297 or A319. For the HCPTR, HCPs1200, and Oxford University
Choroideremia & Stargardt’s Disease datasets, Lmax=8 was used. For ABCD and Cam-CAN datasets, Lmax=6 was used. For the
HCP, ABCD, Cam-CAN, datasets, a total of 3 million streamlines were generated. For all datasets, a step-size of 0.2 mm was
implemented. For the HCPTR, HCPs1200, ABCD, and Cam-CAN datasets, minimum and maximum lengths of streamlines were
set at 25 and 250mm respectively, and a maximum angle of curvature of 35° was used. For the PING dataset, minimum and
maximum lengths of streamlines were set at 20 and 220mm respectively, and a maximum angle of curvature of 35° was used.

Whiter Matter Segmentation and cleaning. Following tractography, 61 major white matter tracts were segmented for each run
using a customized version of the white matter query language (Bullock et al, 2019) implemented as brainlife.io App A188.
Outlier streamlines were subsequently removed using functionality provided by Vistasoft and implemented as brainlife.io App
A195. Following cleaning, tract profiles with 200 nodes were generated for all DTI and NODDI measures across the 61 tracts
for each participant and test-retest condition using functionality provided by Vistasoft and implemented as A361.
Macrostructural statistics, including average tract length, tract volume, and streamline count was computed using functionality
provided by Vistasoft implemented as A189. Microstructural and macrostructural statistics were then compiled into a single
data frame using A397.

Segmentation of the optic radiation (OR). To generate optic radiations segmented by estimates of visual field eccentricity in the
Oxford University Choroideremia & Stargardt’s Disease Dataset, ConTrack 111 tracking was implemented as A252. 500,000
sample streamlines were generated using a step size of 1mm. Samples were then pruned using inclusion and exclusion
waypoint ROIs following methodologies outlined in 108,109.

Segmentation of uncinate fasciculus (UF). To assess the relationship between Uncinate tract-average quantitative anisotropy
(QA) and fractional anisotropy (FA) and Early Life Stressors within two independent datasets (Healthy Brain Network, ABCD),
the tract-average QA for the Left and Right Uncinates were computed from 42 participants from the HBN and the
tract-average FA were computed from 1107 participants from the ABCD dataset. For the HBN dataset, a full tractography
segmentation pipeline was used to preprocess the dMRI data and segment the uncinate fasciculus using A423. Automatic
fiber tracking was then performed to segment the uncinate fasciculus using default parameters and templates from a
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population tractography atlas from the Human Connectome Project 174. A threshold of 16 mm as the maximum allowed
threshold for the shortest streamline distance was then applied to remove spurious streamlines. The whole tract average QA
was then estimated. To probe stress exposure within the HBN dataset, we used the Negative Life Events Schedule (NLES), a
22-item questionnaire where participants were asked about the occurrence of different stressful life events. For the questions
pertaining to early life stressors, the ABCD dataset was used. The tract-average FA for the Left and Right Uncinates were
estimated using procedures described previously, then compared to the participant’s life stressors behavioral measures by
fitting a linear regression to the data.

Structural networks: Following tract segmentation, structural networks were generated using the multi-modal 180 cortical node
atlas and the tractograms for each participant using MRTrix3’s tck2connectome175 functionality implemented as A395.
Connectomes were generated by computing the number of streamlines intersecting each ROI pairing in the 180 cortical node
parcellation. Multiple adjacency matrices were generated, including count, density (i.e. count divided by the node volume of
the ROI pairs), length, length density (i.e. length divided by the volume of the ROI pairs), and average and average density AD,
FA, MD, RD, NDI, ODI, and ISOVF. Density matrices were generated using the -invnodevol option176. For non-count measures
(length, AD, FA, MD, RD, NDI, ODI, ISOVF), the average measure across all streamlines connecting and ROI pair was
computed using MRTrix3’s tck2scale functionality using the -precise option177 and the -scale_file option in tck2connectome.
These matrices can be thought of as the “average measure” adjacency matrices. These files were outputted as the ‘raw’
Datatype, and were converted to conmat Datatype using A393. Connectivity matrices were then converted into the ‘network’
Datatype using functionality from python functionality implemented as A335.

Cortical & subcortical diffusion & morphometry mapping. For the PING, HCPTR, HCPs1200, Cam-CAN, and Indiana University
Acute Concussion datasets, DTI and NODDI (if available) measures were mapped to each participant’s cortical white matter
parcels following methods found in Fukutomi and colleagues using functions provided by Connectome Workbench93

implemented as brainlife.io App A379. A Gaussian smoothing kernel (FWHM = ~4mm, σ = 5/3mm) was applied along the axis
normal to the midthickness surface, and DTI and NODDI measures were mapped using the wb_command
-volume-to-surface-mapping function. Freesurfer was used to map the average DTI and NODDI measures within each parcel
using functionality from Connectome Workbench using A389 and A483. Measures of volume, surface area, and cortical
thickness for each cortical parcel were computed using Freesurfer and A464. Freesurfer was also used to generate parcel
average DTI and NODDI measures for the subcortical segmentation (aseg) from Freesurfer using A383. Measures of volume for
each subcortical parcel were computed using Freesurfer and A272.

Resting-state Functional (rs-fMRI) preprocessing and functional connectivity matrix generation. For the HCPTR and
Cam-CAN datasets, unprocessed rs-fMRI datasets were preprocessed using fMRIPrep implemented as A160. Briefly,
fMRIPrep does the following preprocessing steps. First, individual images are aligned to a reference image for motion
estimation and correction using mcflirt from FSL. Next, slice timing correction is performed in which all slices are realigned in
time to the middle of each TR using 3dTShift from AFNI. Spatial distortions are then corrected using field map estimations.
Finally, the fMRI data is aligned to the structural T1w image for each participant. Default parameters provided by fMRIPrep
were used. For a subset of analyses involving the HCP Test and Retest datasets, the preprocessed rs-fMRI datasets provided
by the HCP consortium were used. Following preprocessing via fMRIPrep for the volume data, connectivity matrices were
generated using the Yeo17 parcellation and A369 and A532. Within-network functional connectivity for the 17 canonical
resting state networks was computed by computing the average functional connectivity values within all of the nodes
belonging to a single network. These estimates were used for subsequent analyses.

Resting-state Functional (rs-fMRI) gradient processing. For the HCPTR and Cam-CAN datasets, unprocessed rs-fMRI data
from HCP Test and the Cam-CAN datasets were preprocessed using fMRIPrep implemented as A267. Within this app, the
same preprocessing steps are undertaken as in A160, except for an additional volume-to-surface mapping using mri_vol2surf
from Freesurfer. The surface-based outputs were then used to compute gradients following methodologies outlined in 96 for
each participant in the HCPs1200, HCPTR, and Cam-CAN datasets using A574 using diffusion embedding 178 and functions
provided by BrainSpace 179. More specifically, connectivity matrices were computed from surface vertex values within each
node of the Schaffer 1,000 parcellation 180. Cosine similarity was then computed to create an affinity matrix to capture
inter-area similarity. Dimensionality reduction is then used to identify the primary gradients. A normalized-angle kernel was
used to create the affinity matrix, from which two primary components were identified. Gradients were then aligned across all
participants using a Procrustes alignment and joined embedding procedure 96. Values from the primary gradient and the cosine
distance used to generate the affinity matrices were used for subsequent analyses.

Magnetoencephalography (MEG) processing. For some analyses, raw resting-state magnetoencephalography (rs-MEG)
time series data from the Cam-CAN dataset was filtered using a Maxwell filter implemented as A476 and median split using
A529. For the remainder of the analyses, filtered data provided by the Cam-CAN dataset was used. For all MEG data,
power-spectrum density profiles (PSD) were estimated using functionality provided by MNE-Python 181 implemented as A530.
Following PSD estimation, peak alpha frequency was estimated using A531. Finally, PSD profiles were averaged across all
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nodes within each of the canonical lobes (frontal, parietal, occipital, temporal) using A599. Measures of power-spectrum
density and peak alpha frequency were used for all subsequent analyses.
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ABSTRACT
Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool
development to support rigor and transparency. Consequently, the complexity of the data pipeline has also
increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io
was developed to reduce these burdens and democratize modern neuroscience research across institutions and
career levels. Using community software and hardware infrastructure, the platform provides open-source data
standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io
automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and
transparency in neuroscience research. Here brainlife.io’s technology and data services are described and
evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and
3,200 participants, we demonstrate that brainlife.io’s services produce outputs that adhere to best practices in
modern neuroscience research.
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SUPPLEMENTAL RESULTS

Supplemental platform architecture

brainlife.io is a composition of microservices, including authentication, preprocessing, warehousing, event
handling, and auditing. Microservices are handled by a meta-orchestration workflow system, Amaretti (Fig. S2a,b,
and Table S1). Amaretti can deploy computational jobs on high-performance compute clusters and cloud
systems. Both jobs needed for platform operations and data analysis are handled by Amaretti. Amaretti is central
to brainlife.io’s opportunistic computing approach, i.e., the ability to use donated storage or computing resources.
Amaretti allows secure access to either clouds or supercomputers managing platform task scheduling, data
transfer, and job submission and monitoring. Amaretti’s core concepts are data- and resource awareness, i.e.,
data products or compute resources are specified as objects that the platform has explicit awareness of (e.g., the
platform can dock datatypes, or compute resources; Fig. S2b). For example, users and resource managers can
register a computing resource, making it available via brainlife.io either privately (to a specified set of users) or
widely (to the entire platform users base). A variety of resource architectures and job submission systems have
been tested and docked using Amaretti so far, including SLURM, PBS, OSG Engine, and CONDOR. Currently,
Amaretti is hosted by a public cloud 1,2 and connected to major data centers (via access-ci.org; see Fig. S2) and
commercial clouds.

Data processing on brainlife.io utilizes an object-oriented service model, based on micro workflows. Apps and
datatypes work together to allow smart docking and awareness (Fig. S2a, b, and c; Fig. S2b). Apps are modular,
composable processing units comprising either full pipelines 3–23 or small steps within a larger data-processing
workflow. Apps are written in a variety of languages following a lightweight specification
(github.com/brainlife/abcd-spec) and using containerization technology 24,25. Containerization allows deployment
on various compute resource architectures (hub.docker.com/u/brainlife). Apps code is hosted on github.com.
Code must be first registered on brainlife.io in order to become an App. An App registration process guides
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developers to map both input and output data objects to brainlife.io datatypes via a graphical interface. For
security reasons, platform administrator approval is required to allow Apps on compute resources. A DOI 26–28 is
issued for registered Apps to support scientific transparency and credit assignment to developers 29–39. App
specification requires developers to provide an informative readme file on GitHub with proper citations to software
and funding used for the App (Fig. S3a). After registration, platform users can access Apps via a graphical (GUI)
or command line interface (CLI). Apps can run on multiple resources, and Amaretti has methods for matching
Apps to resources based on criteria such as geolocation, performance profiles, and resource queue length.

Apps on brainlife.io are data-aware and can automatically identify datasets, dock them or send them elsewhere
for processing. This is because data objects are stored using predefined formats —datatypes. Datatypes allow
App concatenation and automated pipelining (Fig. 2c; brainlife.io/datatypes). Datatypes comprise collections of
files and folders organized into .tar archives to limit the number of inodes needed for storage. A platform-side
datatype validation service (github.com/brainlife/?q=validator-) assures that datatypes comply with their
definition. Data are physically stored using S3-like storage buckets organized following the pattern:
<s3bucketName>/<projectID>/<datasetID>.tar Buckets can live in multiple geolocations, so as to help with
international requirements 40 (Fig. 2b). Datatypes comply with BIDS41 (if the standard is defined for the data
objects).

Data management is centered around Projects and supported by a databasing and warehousing system
(github.com/brainlife/warehouse). Projects are the “one-stop-shop” for data management, processing, analysis,
visualization, and publication (Fig. S3b). Projects are created independently by users and are private by default,
but can be made public within the brainlife.io platform. Projects provide stratified access control mechanisms,
and data user agreements can be added to the landing page (see Video S1). A project can be populated with
data using several options (Fig. 2d). Major archives and data repositories are docked by brainlife.io42 (see Fig. 2b).
Noticeable examples are OpenNeuro.org 43, and the Nathan-Kline data-sharing project 44–46. Datasets can be
seamlessly imported into brainlife.io Projects via the portal brainlife.io/datasets (see Video S2 and Video S3).
MRI, EEG, and MEG files (e.g., DICOM, .fif, .ctf) can also be uploaded directly using either a GUI (Video S4) or
CLI (Video S5). A DICOM to BIDS conversion service has also been developed for MRI data standardization and
importing into Proejcts (brainlife.io/ezbids; see Table S1 and Video S6).

The data workflow in brainlife.io reduces the complexity of the neuroimaging processing pipeline into two steps
akin to the MapReduce algorithm 47. An initial map step preprocesses data objects asynchronously, is parallel
using Apps, so as to extract features of interest, such as functional or white matter maps, or time series data (Fig.
2d). During the map step, datatypes and Apps are synchronized and moved across available compute resources
automatically, as optimized by Amaretti. Apps process data objects automatically and in parallel across study
participants in a Project. A dedicated web interface exists to explore sequences of Apps and optimize the
parameters for each data set (Video S7). In addition, App sequences can be composed using a Pipeline builder
interface (Video S8).

The map step is followed by a reduce step. Features extracted using Apps are synchronized, brought together,
and made available to Jupyter notebooks48,49 for statistical analysis and to generate figures for scientific articles
(all figures in the following sections of this paper are available in Jupyter notebooks, see Table S2). App
developers can identify datatypes as “statistical features.” Datatypes that are made accessible via Jupyter Lab
interfaces hosted inside a Project (Fig. 2d left, Fig. S2a, and Video S9). The statistical features are automatically
organized by brainlife.io into Tidy data formats 50 (.tsv and .json; Fig. 2d) and can be exported using the pybrainlife
Python module (https://pypi.org/project/pybrainlife/). Jupyter Lab records are tracked for reproducibility and allow
data analysis in R, Python, or Octave 48,49.

The full data workflow (from import to preprocessing to analysis) makes possible the unification of large volumes
of diverse neuroimaging datatypes into simpler sets of features organized into Tidy data structures 50 (Fig. S3c).
The platform provides a variety of methods to visualize data, which aids in performing quality assurance,
identifying mistakes, and repeating the processing when needed. Community-developed visualizers are served on
the cloud side using docker containers (see Table S1), and six new web visualizers have been developed (Table
S1 and Video S7).
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Supplemental Figure 2ab Brainlife architecture and system components. a. Illustrative flowchart of the multi-faceted
architecture of brainlife.io. Data providers, developer community (datatypes), app developers, and resources providers. Data
providers upload their data to brainlife.io Projects via web UI/CLI, OpenNeuro or DataLad, or ezBIDS. These data are then
stored and organized into Projects organized as “datatypes” based on specifications from the developer community. App
developers develop self-contained Apps that can then be used to construct workflows from data inputs to final statistical
products. Visualizers and QA measures allow for better construction of workflows to ensure the highest statistical quality and
fidelity. These Apps run on compute resources provided by many resource providers, including HPC and cloud providers.
Once workflows have been optimized, batch processing can be performed via Pipeline rules. These rules automatically track
progress, including app completion and failures. Once statistical features of interest have been extracted, they are pushed to
the warehouse into JupyterHub, where collaborators can work together on analyzing the data for the entire project. Upon
completion, brainlife.io facilitates the publishing of the data and workflows via a Publications mechanism, where data and
workflow information are reorganized for easier download and dissemination and given a digital object identifier (DOI) for the
scientific community. b. An illustrative example of generating a network datatype on brainlife.io starting from structural (T1w)
and diffusion (DWI) data on brainlife.io. Datatypes get docked as inputs into apps, from which either modified versions of the
input are returned as output or entirely new datatypes are generated. Datatypes can be shared amongst other apps in the
workflow (arrows) allowing for the chaining together of Apps into entire workflows. The outputs of this workflow can then be
pushed to Jupyter Notebooks for statistical analysis.

The ABCD specification and brainlife.io Apps. The Application for Big Computational Data (ABCD;
github.com/brainlife/abcd-spec) is a lightweight, specification proprietary to brainlife.io that enables App
developers and resource managers to establish programming interfaces, to facilitate the integration of
applications with the job scheduling systems (PBS, CONDOR, SLURM, etc) associated with a resource. The
interfaces encompass the "start" entry point, used to initiate an service, the "status" interface, invoked to
track the progress of service’s job status and the "stop" interface, invoked to conclude the execution of service.

Amaretti decentralized resource awareness and prioritization. Amaretti is a meta-orchestration system able to run
any App or service published on GitHub and conforming with the ABCD specification. Amaretti is "meta" in the
sense that it make use of the underlying batch-scheduler (job-orchestration) mechanism already existing in
computing resources. Amaretti has the ability to run services distributedly on multiple computing resources. In the
event that a particular service is enabled on multiple resources, Amaretti utilizes a selection mechanism to choose
the optimal resource. For example, a data processing workflow can consists of multiple steps, each implemented
in a brainlife.io App or service. Amaretti allows sending each step in a sequence of processing steps on a different
resource. The same step may be sent to different resources everytime it is requested. The outputs resulting from
each step are then synchronized after execution is completed. If a user has access to multiple resources on which
an App or a service can be executed, Amaretti decides selects a resource using a series of heuristics. At runtime,
Amaretti computes the final resource and decides which resource to use for a service by using the following rules:

1. Resources scoring. Resource managers enable Apps or services on a resource. The manager can define a
default score for the App, the higher score the more likely that the resource will be selected to execute a
service. Find the default score configured for the resource. If not configured, the resource is disqualified from
being used (resource managers must give explicit permission to run the App)
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2. Inter-resources data transfer minimization. For each App data dependency, the score is incremented by 5 if the
resource is used to run the Apps that generate the prerequisite data. This increases the likelihood of reusing
the same resource where App runs produced data that is already available on the resource. This approach
mitigates data transfer.

3. Exclusive resource ownership criteria. An additional ten points are given to a resource if the user possesses
exclusive ownership of the resource. Users can define resources only assigned to them. In such case, rather
than utilizing a shared resource, it is advantageous to use the private resource.

4. Preferred resource ownership criteria. An increment of fifteen points is added to the score when the resource is
designated as the preferred resource to use, as stipulated by the user that submitted the App execution
request.

5. Public resource avoidance. A project can be configured by users to abstain from using public computing
resources. Public resources become ineligible for consideration if the App execution request originates from
such a project.

6. Connection failure. A resources is disqualified if the resource monitor service detects a connection or server
failure.

The resource with the highest score is chosen to execute the task, and a report detailing the rationale behind the
resource’s selection is added to a file within the service working directory

Tasks. Tasks are the atomic unit of computational work executed on various compute resources. Examples of
Tasks are, a job for batch systems, or a vanilla process running on a vanilla VM. Amaretti keeps track of tasks by
assigning each one of them a unique process ID.

Service. Any ABCD-compliant GitHub repository is a service for Amaretti. Apps are Amaretti services. When
users or the platform submit a task Amaretti retrieves the code service from GitHub. For example, if the user
requests to run the Task specified by github.com/brainlife/app-life App, Amaretti will retrieve the code from
GitHub, create a copy of the App for that task on a chosen resource and also move.

(Workflow) Instance. Amaretti provides DAG workflow capability by establishing dependencies between tasks.
Tasks that depend on parent tasks will simply wait for those parent tasks to complete. All Amaretti tasks belong to
a workflow instance (or instance for short).

Resource. Resource is a remote computing resource where Amaretti can securely connect and set up the App
execution through the ABCD interface. The resource can be a single computer, a head node of a large
high-performance computing cluster, or a submit node for high-throughput computing clusters. The code for the
brainlife.io platform is available at https://github.com/brainlife/.
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Supplemental Figure 2c. System components. c. Map the locations of critical facets of this research, including project
infrastructure (i.e. compute resources), collaborators, and data sources. As the United States and Europe are home to many
of the infrastructural resources, collaborators, and data sources, more details for these regions are provided (insets).

Supplemental Figure 2d. brainlife.io infrastructure geolocation (2023). d. Map of the locations of critical hubs for
brainlife.io
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Supplemental Figure 2e. brainlife.io user account geolocations. e. Map of the locations of the users that created an
account and accessed brainlife.io. This map is a proxy to the level of attention the platform achieved worldwide.

Supplemental Table 1: Platform services serving the brainlife.io platform.

The brainlife.io platform is an incorporation of many individual services working in concert to increase the
efficiency of neuroimaging analyses on the scale of thousands of participants and brain datasets. In addition to
our efforts to compile a list of currently available services provided by the greater scientific community, below we
provide a list of the many platform services that combine to make the brainlife.io platform (Table S1). Because
brainlife.io is an open platform for neuroscientific investigations, we provide the individual URLs pointing to the
code base of the individual services of the platform.

Supplemental Table 2: Jupyter notebooks for analyses performed.

The code used to analyze the thousands of datasets processed in this manuscript is openly accessible on
GitHub.com. Below we provide a list of the jupyter notebooks for performing the analyses outlined previously
(Table S2). For this, we provide the jupyter notebook name and the GitHub URL for the respective notebook.
Within each notebook, we describe the neuroimaging topic the notebook covers, including structural
morphometry (i.e. cortical thickness, surface, area, volume), diffusion profilometry, structural connectivity,
functional connectivity, functional gradients, MEEG, and optical coherence tomography (OCT). These notebooks
were used to summarize data for different measures and many individual analyses and figures outlined previously.
The goal of these notebooks is to document enough information for new users to re-use the notebooks for their
own analyses on their own datasets. These notebooks are freely available for use by the greater scientific
community.

Supplemental Table 3: Preprocessing Apps used for the experiments.

In addition to providing documentation to the code servicing brainlife.io, we openly release the App code for each
App used to analyze the thousands of datasets processed in this manuscript. Below we provide a list of the Apps
used for performing the analyses outlined previously (Table S3). For this, we provide the App name listed on
brainlife.io, the digital-object identifier (DOI) automatically assigned to each app, and the GitHub Repository where
the code for the App resides. The goal of this is to increase the transparency of the processing steps performed in
this investigation, and for researchers to validate and incorporate into their currently existing workflows.
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Supplemental Figure 3a. Brainlife App Github
template. 1. App DOI and ABCD specification. 2. App
name. 3. Description of the App. 4. Authors and
contributors. 5. Funding Acknowledgement. 6. Citations.
7. Instructions for running the app locally, including how
to set up the config.json file containing all of the
important information for the App including inputs and
configuration parameters. 8. Example datasets that can
be downloaded to test the app locally. 9. The outputs for
the App. 10. The software dependencies subserving the
App.

Developing processing Apps for the
platform

Here we describe the requirements for developing
Apps on the platform. Despite the over 500 apps
currently available on the platform, there still exist
possibilities for researchers to develop their own
processing Apps for performing specific steps that
might not already exist on the platform.

The development process for Apps has been
streamlined in order to make it as intuitive as
possible. Specifically, each App has a set of
requirements necessary for the App to be used on
the platform. The most important of these
requirements involves the creation of a README
file outlining all of the important information needed
to describe the contents of an App. On Github, we
have developed a set of App README templates
for App developers to use (Fig. S3a). On the
README file, the user must provide information
regarding the brainlife.io App DOI and the ABCD
specification. In addition, they must also document
the app name and a description of what steps the
App performs.

Users can also provide information regarding
specific authors, coauthors, funding sources, and
literature citations in order to provide proper credits
for the development of the App. Following these
descriptive details, the README should also
provide information regarding the usage of the App
both on brainlife.io and on local workstations,
including descriptions of the inputs, outputs, and
software library dependencies of the App. These
descriptions found in the README increase the
transparency of the App in order to increase the
findability and usability of the App.
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Using the platform
Here, we describe the user interface of the platform to help introduce the visual interfaces developed as part of
the project. These steps will be described in order of how they would be implemented by a typical researcher
designing their own set of experiments using the platform. In addition to visual and text descriptions, we also
provide a series of videos documenting each step of the process.

Upon creation of a brainlife.io account, a researcher will first set up a Project within which all of the data
processing, storing, and organization will occur (Fig. S3b; Video S1). Once their Project is created, users can then
update and assign details to the project, including a description of the project, access control to the project, a
project README file describing specific information about the project in a machine-readable format, information
regarding each participant in the study, and even limit which computing resources the Project will use to process
the data.

Supplemental Figure 3b. Brainlife project landing page. 1. Detail tab containing all of the important details and information
describing the Project. 2. Users can add Admins and members for proper project governance. 3. Projects can have README
descriptions, like those on GitHub, to describe important details of the project in a Markdown format. 4. Participant Info
contains tables of demographic information that may be helpful for performing an analysis. This is set and defined by the
Administrators of the Project. 5. Archive tab is where all of the stored files in the form of brainlife datatypes can be found. 6.
The Preprocess tab is where jobs can be launched and monitored. 7. Pipelines allow the investigator to batch process all of
the participants in their project for each App they need to run. 8. Once statistical features have been extracted,
Administrators can access Jupyter Notebooks within the Analysis tab to perform their statistical investigations across all of
the participants in the project. 9. Once the investigators are completed the investigation, they can use the Publication tab to
efficiently publish their data and the analysis workflows on brainlife.io. 10. Whenever a job launches, the App/Resource
Usage tab is automatically updated in order to provide provenance tracking of what and where the data processing was
performed. 11. Brainlife.io will search keywords in your project with previously published studies to identify any related
articles to your investigation in the Related Articles tab.
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Supplemental Video 1. A video documenting the process of creating a project on brainlife.io, including updating access
control and participant information. https://youtu.be/P2kz6E53nlo
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Supplemental Video 2. A video documenting the process of pulling datasets from the ‘datasets’ tab into a Project on
brainlife.io. https://youtu.be/N3UXteQ3tu8

Once this information is defined, users are then ready to either import raw datasets they collected or pull datasets
that have been openly released. For openly released datasets, users have a variety of options to pull data from
including other projects (Video S2), or projects hosted on OpenNeuro (Video S3). In a similar fashion, users have
a variety of options for uploading any newly collected datasets including a built-in GUI (Video S4), a CLI (Video
S5), or through a newly developed sister technology for automated converting of raw scanner data into
BIDS-standardized data files known as ezBIDS (Video S6). Each of these methods provide a streamlined, efficient
way to import data into a new project for future processing and analysis.
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Supplemental Video 3. A video documenting the process of pulling data from OpenNeuro into a Project on brainlife.io.
https://youtu.be/OZQyR9jLwYo
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Supplemental Video 4. A video documenting the process of uploading data to a brainlife project using the graphical user
interface (GUI) directly via the browser. https://youtu.be/5RGo_jY4Oqc
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Supplemental Video 5. A video documenting the process of uploading data to a brainlife project using brainlife.io’s
Command Line Interface (CLI). https://youtu.be/PUTLXJJSBqQ
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Supplemental Video 6. A video documenting the process of uploading data to a brainlife.io Project using the DICOM to
BIDS converter brainlife.io/ezBIDS. https://youtu.be/KvhIHxzHsl4
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Supplemental Video 7. A video documenting the process of running an App on brainlife.io, including data staging, job
monitoring, visualization, and archiving of the final data outputs. https://youtu.be/43yhZ1k6icQ

Upon importing data into a Project, users can directly interact with the data stored in the Archive tab of the project
in multiple ways. First, users can select a data object and visualize the data object using one of the many built-in
visualization services for that specific datatype. More importantly, users can then “stage” or move the data from
Archive into the Preprocess tab, from which users can select and launch any of the over 400 available Apps
(Video S7). Because Apps on brainlife are “data aware”, users will only be presented with the Apps that take in the
staged datatypes that they are designed to work with as inputs ultimately reducing the potential for user error.
From the Preprocess tab, users can monitor the status of the App, interact with the data files generated during the
App, and visualize the outputs. Once the user is satisfied with the outputs, data objects can be stored back into
the Archive tab directly from the Preprocess tab.
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Supplemental Video 8. A video documenting the process of defining a Pipeline rule on brainlife.io to perform batch
processing. https://youtu.be/1CSdsf8czL8

This process for running an App is useful under testing circumstances, but may not be appropriate for batch
processing of a large number of participants. To facilitate this, users can define Pipeline rules via the Pipeline tab
(Video S8). Within these rules, users specify the inputs including which data objects from the Archive to include or
exclude, the configuration parameters required by the App, and the archiving of output objects back into the
Archive. Upon launching a Pipeline rule, Amaretti will automatically stage all of the data that matches the input
criteria, identify the most appropriate compute resource for running the process, and archive the output data
objects back into the project Archive for storage. Outputs from one Pipeline can then be set as inputs to another
Pipeline, allowing for the chaining of Apps to develop the overall processing workflow required to get from raw
data to the final statistical features of interest needed for statistical analysis.
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Supplemental Video 9. A video documenting the process of launching a Jupyter Notebook for performing statistical
analyses within a brainlife project. https://youtu.be/tJW6374BcpQ

Once these statistical features of interest are extracted, users can then analyze them directly on the platform via
the Jupyter Notebooks provided by brainlife.io (Video S9). To facilitate this, a certain subset of all datatypes that
correspond to statistical features of interest are stored in a secondary warehouse, which can be directly loaded
via the Jupyter Notebooks. This ultimately reduces the number of potential data objects and storage size of the
objects required by brainlife.io to move into the Notebooks, ultimately making the process more efficient for users.
Common subsets of functions, including those useful for loading data into the Notebooks, have been packaged
into a Python package pybrainlife that can be imported directly into the Notebooks and used to load and compile
an entire study’s worth of statistical features. Upon completion of the analyses, these Notebooks can be directly
published and/or pushed to Github in order to increase the scientific transparency of the project.
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Supplemental Video 10. A video documenting the process of monitoring the steps taken to generate a datatype
(provenance). https://youtu.be/NzUObf8_x7g

In addition to the publication of the Notebooks, brainlife.io automatically keeps track of each individual step
performed to obtain a specific datatype (i.e. provenance) (Video S10). This visualizer contains all of the
information a user might need to validate that the proper steps were taken, and for any outsider users or
reviewers to rerun their analysis steps for purposes of replication. With this goal in mind, brainlife.io will also
generate a script for any data object to reproduce the individual steps to create that object locally
(reproduce.sh; Video S11). Finally, upon completion of processing and analysis, researchers can Publish their
datasets, Pipeline rules, and Analysis notebooks directly on the platform via the Publications tab (Video S12). All
of these individual features are designed with the goal of increasing the reproducibility of processing and analyses
performed via the platform.
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Supplemental Video 11. Video documenting the process of replicating the generation of a data object via a single bash
script that can be run on any machine (reproduce.sh). https://youtu.be/YMCFU0aQhvI
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Supplemental Video 12. Video documenting the process of creating a Publication on brainlife.io.
https://youtu.be/aUvjuEihWJA

21

https://youtu.be/aUvjuEihWJA


End-to-end reproducible scientific workflow

brainlife.io automatically tracks all actions performed by researchers during data analysis. Data object IDs, Apps
versions, and parameter sets used to launch an App, resources used, error logs, etc are all tracked automatically
by brainlife.io The full sequence of steps from data import to preprocessing, analysis and publication is captured
by the platform and is used to build a record of all the actions a researchers performed while implementing a data
analysis study.

A graph describing provenance metadata for each Datatype can be visualized using the provenance visualizer
and downloaded (see Video S10). Also, a linux shell script is automatically generated to allow the reproduction of
full processing sequences (Video S11).

Finally, a single record containing data objects, Apps, and Jupyter Notebooks used in a study can be made
publicly available outside the platform in a single record addressed by Digital Objects Identifiers (DOI) 51. Whereas
all other existing systems provide users with technology to track analysis steps manually or require the use of
coding, brainlife.io tracks automatically and does not require coding. This automation technology lowers the
barriers of entry to reproducible and transparent large-scale neuroimaging data analysis.

Supplemental Figure 3c,d. End-to-End steps to reproducible computational analysis. a. Pictorial description of the
end-to-end workflow for performing a scientific investigation using neuroimaging data. First, data is collected from
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measurement systems including MRI and MEG. Following this, data is converted into workable data formats, including NIFTI,
.tsv, and .json files, or into standardized file formats including BIDS. Following conversion, data is preprocessed where
common artifacts are removed to increase data quality. Model fitting and brain segmentation can then be performed on this
cleaned, preprocessed data. Following this, quality assurance (QA) efforts are usually undertaken to ensure the data is of a
high enough standard for publication. If the data does not meet a high standard of quality, adjustments to the preprocessing
and model fitting steps can be performed (circular arrows). Following this, statistical brain features of interest are extracted in
order for statistical analyses to be performed. Once the analyses are finalized, researchers then publish their results, data,
and code to the greater scientific community. All of these steps are supported by brainlife.io. b. Visualization of data
“provenance” automatically generated for each archived data object on brainlife.

Neuroimaging investigations involve a common workflow from data collection to study publication (Fig. S3c).
Data are first either collected from neuroimaging measurement systems, including MRI and MEG scanners.
Following collection, data is then converted to standardized file formats before they can be used by the
researcher. From here, common artifacts are removed from the data in a series of preprocessing steps. Once the
data is cleaned, models can be fit, brain structures can be segmented, and quality assurance assessments are
performed. If any mistakes occurred in the previous steps, adjustments can be made to each individual step in
order to increase data quality. Only once the data are of high enough quality are statistical brain features of
interest extracted, and statistical analyses are performed on the extracted features. Final results, data, and code
are then published to the greater scientific community to increase transparency and data gravity of the
investigation. Brainlife.io serves each step following data collection, with each step of the workflow tracked in
order to increase reproducibility.

Supplemental platform evaluation
Supplemental platform utilization
brainlife.io was developed with a FAIR model and made available worldwide. Any researcher can create an
account on brainlife.io, although all new accounts are reviewed by the project team. brainlife.io first became
publicly available in 2018. We tracked the usage of brainlife.io in the past 60 months. The platform community,
utilization, and research assets have grown steadily since project inception (Fig. 3 and Fig. S2c and S4). At the
time of writing, over 2,341 users across 43 countries have created a brainlife.io account. Over 1,542 active users
submitted more than 10 jobs per month (Fig. 3a). There were 3,439 data management Projects. The brainlife.io
developers' community had implemented 530 data processing Apps comprising 2,438,998 lines of code (top 50
apps), and these had been used to process over 270 TBs of data for a total of 3,951,372,037,289 hours of
compute time. Apps success rate on average has been 65.4% across 6,710,091 total job submissions (the
estimates contain high-failure rate App test-calls). This level of interest and reach, even prior to a formal
publication describing the platform, is a testament to brainlife.io’s potential for growth and impact.

Researchers ranging from undergraduate students to faculty have already used brainlife.io (Fig. 3b). The Apps
used spanned various aspects of the neuroimaging data lifecycle. The most frequently used Apps pertained to
tractography (22%), model fitting (15%), and ROI generation (12%). Community-developed software libraries
provided the foundations for data processing Apps, including Nibabel, Freesurfer, FSL, DIPY, MRTrix,
Connectome Workbench, and MNE-Python. Terabytes of data have been uploaded (72%) or imported from
OpenNeuro.org (22%), the Nathan-Kline Institute data sharing projects (3%; 44,46,52), and other sources. Early
community attention and adoption preceded this publication describing the project and platform. The worldwide
platform access highlights the global need for technology like brainlife.io (Fig. S2e).

Apps performance evaluation

Brainlife.io, like any technology, is not failure-proof. To examine the rate at which brainlife.io Apps fail, we
collected data regarding the failure rates of all Apps across the platform. Since the beginning of the platform, jobs
processed on brainlife.io have had a 34.6% failure rate across 6,710,091 submissions, with half estimated to be
due to initial App testing and development (Fig. S3e).
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Supplemental Figure 3e. Brainlife.io processing is not
error-proof. Distribution of brainlife.io App failure rates
(percentage) across all 568 Apps and their respective
submissions. Box-and-whisker plot indicates the overall
average failure rate across all Apps (dark black line), 25th and
75th percentiles (box), and overall range (whiskers). Each dot
is an individual App’s failure rate. Colors represent the number
of submissions for each App (grey: 0-100 submissions, light
blue: 100-1,000 submissions, light green: 1,000-10,000
submissions, dark green: 10,000-100,000 submissions).
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Supplemental Figure 4a-c. Overview of data used for
the study. a. Number of subjects across all datasets
examined. b. The number of subjects per imaging
modality. c. The number of brainlife.io datatypes (i.e.
freesurfer, parc-stats, tractmeasures, track/tck, NODDI,
tensor, csd, mask, network, conmat, parcellation, cortex
map, wmc, meeg/psd, meeg/mne/epochs, surface/data,
surface/vertices, surface/gradient) derived across all
subjects and datasets examined.

Supplemental platform testing

The effectiveness of the technology to provide good quality results were evaluated. We performed system load
experiments by processing large amounts of data and evaluating the results obtained. These experiments were
performed to demonstrate the ability of the platform to serve accurate data processing and analysis at scale.

Our experiments focused on the four axes of scientific transparency,53 namely: data processing validity 54 (Fig.
4a-e; Fig. S4d-g), reliability (Fig. 4f-j; Fig. S4h-i), reproducibility (Fig. S4j-n), and replicability (Fig. 7; Fig. S7a,b).
Four data modalities (sMRI, fMRI, dMRI, MEG) were evaluated using the test-retest HCPTR

55, the Cam-CAN 56, the
HBN 52, and the ABCD57 dataset. For all experiments, the Pearson’s correlation (r) and root mean-square-error
(rmse) were computed for each comparison using data products derived from apps on brainlife.io, where high
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correlations and low rmse would provide strength of evidence in each experiment. Herein we describe the
definitions of success for each experiment and the methods used to assess the performance of the platform. For
all reported correlations and root mean-square-error values for the data validity and reliability experiments, see
Table S3.

A total of 12 different datasets comprising over 4,200 participants were processed (Fig. S4a), of which 3,200
participants had sMRI, 3,100 had dMRI, 1,200 had fMRI, and 650 had MEG data objects (Fig. S4b). Derived data
products included cortical parcel volumes, white matter profilometry, functional and structural networks
properties, functional gradients, and peak alpha frequency (Fig. 4, Fig. S4c). In sum, over 193,000 objects and 22
Terabytes of data were generated for the experiments, using over 30 Apps (Table S3).

For each of the four data modalities, data processing validity was defined as the ability of a processing step to
accurately reflect ground-truth properties of the brain. Data processing validity was estimated by comparing
values obtained using brainlife.io Apps (see Table S3) against data preprocessed by the data originator (HCP or
Cam-CAN depending on the data modality). Cortical parcel volumes were estimated from minimally processed
HCPTR data using brainlife.io Apps A0, A462, A23, A272, and A464. Volume estimates were compared to
corresponding estimates provided by the HCP consortium (Fig. 4a; rvalidity=0.98, rmsevalidity=570.54mm3).

Fractional anisotropy (FA) in 61 white matter tracts was estimated using the raw and minimally preprocessed
HCPTR dMRI data. The composable processing pipeline comprised of the sequence of Apps: A68, A238, A297,
A305, A188, A195, and A361. These Apps were used to process either type of data, with the exception of A68,30

for which only raw data was used. The average FA for each tract was compared between these two processing
methods (Fig. 4b; rvalidity=0.95, rmsevalidity=0.018).

Functional connectivity estimates between 1172 nodes-pairs 58 were estimated using the raw and minimally
preprocessed HCPTR fMRI data. A160, A23, A369, and A532 were used to process either dataset, with the
exception of A160, 22 which was only used with raw data (Fig. 4c; rvalidity=0.89, rmsevalidity=0.12).

In addition, functional gradients 59,60 were computed on 400 nodes estimated on raw and minimally processed
HCPTR fMRI data using A604 and A574. The average primary gradient within each node was compared between
raw and minimally processed data (Fig. 4d; rvalidity=0.59, rmsevalidity=0.036).

Finally, the peak alpha frequency (Hz) was estimated from the Cam-CAN MEG data filtered by brainlife.io apps
and data Maxwell-filtered by Cam-CAN using A476 and A531 61,62. Peak alpha values were compared between the
two differently processed datasets (Fig. 4e; rvalidity=0.94, rmsevalidity=0.30 Hz).

For each data modality, data preprocessing reliability was defined as the ability to produce the same results given
repeated acquisitions from within a participant. Data processing reliability was examined by comparing brain
features estimated using brainlife.io Apps pipelines using either test-retest HCPTR data or a median split of
Cam-CAN MEG data.

Cortical parcel volumes from the test and retest dataset of HCPTR were obtained using A23, A272, and A464
brainlife.io Apps (see Table S3) and compared (Fig. 4f; rreliability=0.99, rmsereliability=278.11mm3).

Mean FA from 61 white matter tracts was estimated independently for test and retest HCPTR dMRI data using
A238, A297, A305, A188, A195, and A361. The average FA for each tract was compared between test and retest
conditions (rreliability=0.93, rmsereliability=0.017) (Fig. 4g).

Functional connectivity estimates between 1172 nodes-pairs were estimated using the test and retest HCPTR fMRI
data using A23, A369, and A532 (Fig. 4h; rreliability=0.73, rmsereliability=0.19).

In addition, functional gradients were computed on 400 nodes estimated on test and retest HCPTR fMRI data
using A604 and A574. The average primary gradient within each node was compared between datasets (Fig. 4i;
rreliability=0.85, rmsereliability=0.026).

Finally, the frequency of the amplitude peak (between 8 and 13 Hz from the occipital magnetometers and
gradiometers) was estimated from two median splits of Maxwell-filtered Cam-CAN MEG data using A529 and
A531. Peak alpha frequency values were compared between the two datasets (rreliability=0.85, rmsereliability=0.48 Hz;
Fig. 4j). All estimated validity and reliability estimates are reported in Table S4.
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Supplemental Figure 4d-g. Processing with brainlife.io is valid and test-retest reliability is high. Top rows: Validity
measures derived using the HCPTR data preprocessed and provided by the HCP Consortium compared to data preprocessed
on brainlife.io. Each dot corresponds to the ratio for a given subject between data preprocessed and provided by the HCP
Consortium vs data preprocessed on brainlife.io in a given measure for a given structure. Pearson’s correlation (r), root mean
squared error (rmse), and a linear fit between the test and retest results were calculated and provided. a. Destrieux Parcel
thickness (mm), surface area (mm2), and volume (mm3). b. HPC-mmp Parcel thickness (mm), surface area (mm2), and volume
(mm3). Dark colors represent data within +/- 1 standard deviation. 50% opacity represents data within 1-2 standard
deviations. 25% opacity represents data outside 2 standard deviations. Bottom rows: Test-retest reliability measures derived
from derivatives of the HCPTR dataset generated using brainlife.io. Each dot corresponds to the ratio between a test-retest
subject and a given measure for a given structure. Pearson’s correlation (r), root mean squared error (rmse), and a linear fit
between the test and retest results were calculated and provided. c. Destrieux Parcel thickness (mm), surface area (mm2),
and volume (mm3). d. HPC-mmp Parcel thickness (mm), surface area (mm2), and volume (mm3). Dark colors represent data
within +/- 1 standard deviation. 50% opacity represents data within 1-2 standard deviations. 25% opacity represents data
outside 2 standard deviations.

Computational reproducibility was defined as the ability to produce the same results given repeated runs of a
processing app. Computational reproducibility was estimated by comparing values obtained from repeated runs
of brainlife.io Apps.
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Cortical parcel volumes were estimated twice from the minimally processed HCPTR data (Nsub = 44) using A272.
Volume estimates between the repeat run were compared (Fig. S4j; rreproducibility = 0.99, rmsereproducilibity = 34.22 mm3).

Fractional anisotropy (FA) in 61 white matter tracts was estimated from the minimally processed HCPTR data (Nsub

= 43) using A361. The average FA for each tract was compared between repeated runs (Fig. S4k; rreprodubility = 0.99,
rmsereprodubility = 0.011).

Supplemental Figure 4h-i. Processing with brainlife.io is valid and test-retest reliability. Top row: Validity measures
derived using the HCPTR data preprocessed and provided by the HCP Consortium compared to data preprocessed on
brainlife.io. Each dot corresponds to the ratio for a given subject between data preprocessed and provided by the HCP
Consortium vs data preprocessed on brainlife.io in a given measure for a given structure. Pearson’s correlation (r), root mean
squared error (rmse), and a linear fit between the test and retest results were calculated and provided. e. Tract average AD,
FA, MD, and RD. Dark colors represent data within +/- 1 standard deviation. 50% opacity represents data within 1-2 standard
deviations. 25% opacity represents data outside 2 standard deviations. Bottom row: Test-retest reliability measures derived
from derivatives of the HCPTR dataset generated using brainlife.io. Each dot corresponds to the ratio between a test-retest
subject and a given measure for a given structure. Pearson’s correlation (r), root mean squared error (rmse), and a linear fit
between the test and retest results were calculated and provided. f. Tract average AD, FA, MD, and RD. Dark colors represent
data within +/- 1 standard deviation. 50% opacity represents data within 1-2 standard deviations. 25% opacity represents
data outside 2 standard deviations.

Functional connectivity estimates between 1172 node pairs were estimated using the minimally processed test
HCPTR data (Nsub = 32) using A532. Average node connectivity was compared between repeated runs (Fig. S4l;
rreproducibility = 1.0, rmsereproducibility = 0.0). In addition, functional gradients were computed on 400 nodes estimated
from the Cam-CAN data (Nsub = 613) using A574.

Finally, primary gradient values were compared between repeated runs (Fig. S4m; rreproducibility = 0.99, rmsereproducibilty
= 0.03). Finally, the peak alpha frequency (Hz) was estimated from the Maxwell-filtered MEEG Cam-CAN data
(Nsub = 501) using A531. Peak alpha values were compared between repeated runs (Fig. S4n; rreproducibility = 0.99,
rmsereproducibility = 0.0002).
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Supplemental Figure 4j-n. App computational reproducibility. Computational reproducibility values derived by repeating
runs of brainlife.io Apps using the HCPTR.dataset and the CAN dataset. Each dot corresponds to the ratio for a given subject
between repeated runs of each App for a given structure. Pearson’s correlation (r), root mean squared error (rmse), and a
linear fit between the repeated runs was calculated. a. Destrieux Atlas Parcels volume (mm3). b. Tract-average fractional
anisotropy (FA). c. Node-average functional connectivity (FC). d. Primary gradient values derived from resting state fMRI. e.
Peak alpha frequency (Hz) in the alpha band derived from MEG.

Supplemental platform utility for scientific applications
Evaluation of the scientific utility of the platform was performed on over 2,000 participants across three large
datasets with participant ages spanning over 7 decades—PING (Pediatric Imaging, Neurocognition, Genetics),
HCPs1200, (Human Connectome Project Young Adult 1,200) and Cam-CAN (Cambridge Center for Ageing
Neuroscience). Multiple brain features were derived, including fractional anisotropy of cortical parcels and
within-network functional connectivity of individual Yeo17 networks. Specifically, for structural MRI data, the
volumes of the cortical and subcortical structures segmented for each participant were compared to their age at
the time of scan acquisition on a per-structure basis. Volume measures were estimated using A464, A462, A272,
and A379. For diffusion MRI data, the average FA for each of the white matter tracts segmented for each
participant was compared to the participant age at scan acquisition on a per-structure basis. Tract average FA
values were estimated using A361. In addition to white matter tract FA, average FA within cortical regions was
computed using A383. For resting-state functional MRI connectivity, the average within-network connectivity
values, defined as the average connectivity values between all of the nodes within each resting state network of
the Yeo17 parcellation, was compared to the participant’s age at scan acquisition. Network connectivity matrices
were estimated using A532. For resting-state functional gradients, the cosine distance of the primary gradient for
each of the resting state networks in the Schaffer parcellation was compared to the participant’s age at scan
acquisition. Gradients were mapped using A574. Finally, for MEG data, the peak frequency in the alpha band
across all nodes was compared to the participant’s age at the time of acquisition. Peak frequency was estimated
using A531. For structural and diffusion MRI data, data from all three data sources (HCPs1200, Cam-CAN, PING)
was used. For the functional MRI data, data from only the HCPs1200 and Cam-CAN data sources were used. For
the MEG data, only the data from the Cam-CAN data source was used. To assess the relationship between each
of the measures and age within each structure investigated, a quadratic model ( ) was fit𝑦

𝑓𝑒𝑎𝑡𝑢𝑟𝑒
= 𝑎𝑥

𝑎𝑔𝑒
2 + 𝑏𝑥

𝑎𝑔𝑒
+ 𝑐

across all of the data, and a linear regression was fit within each data source, using functions from scikit-learn63

Two additional examples are presented in Fig. S5, specifically the average fractional anisotropy (FA) or cortical V1
(Fig. S5a) and the within-network average functional connectivity within the default mode (A) network derived
from the Yeo17 atlas (Fig. S5b). The quadratic model (R2=0.12 ± 0.015 s.d.) for these two examples demonstrated
the expected inverted U-shape trajectory, with the mean quadratic term (a) across each data modality being
negative (-3.70x10-6 ± 6.60x10-6 s.d.).
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Supplemental Figure 5. Additional examples of inverted U-shaped trajectories. Relationship between age of subject and
a. Cortical fractional anisotropy (FA) of the left V1, b. Within-network average functional connectivity (FC) from the Yeo17
Default Mode - A network. These analyses include subjects from the PING (purple), HCPs1200 (green), and CAN (yellow)
datasets. Linear regressions were fit to each dataset, and a quadratic regression was fit to the entire dataset (blue).

Supplemental replication and generalization
In addition to the replication experiments, five sets of generalization experiments were performed (Fig. 6; Fig.
S6a,b). First, we tested brainlife.io’s ability to replicate scientific results from five previous studies 64–66. A key
finding from each previous study was identified as the target found to be reproduced. We then followed the
processing methods as outlined in the original study but performed these processing methods using brainlife.io
Apps. Post-processing analyses were performed in line with the original study using brainlife.io-hosted Jupyter
Notebooks (see Table S2). Replicability success was measured by comparing trends in the data obtained with
brainlife.io Apps and those reported in the original study.

Replicability was defined as the ability to reproduce individual experiments already published by other members
of the scientific community. Within replicability are two pillars: the ability to reproduce results within the same
dataset, and the ability to generalize results to new datasets. Three sets of experiments were performed to assess
the ability of the platform to replicate previously published findings. The first experiment attempted to replicate a
reported negative correlation between a cortical region’s thickness and its tissue orientation organization within
the HCPs1200 dataset. Cortical regions found within the HCP multi-modal parcellation (hcp-mmp) parcellation were
first mapped to each participant’s Freesurfer surfaces using A23. Brainlife apps A464, A462, A272, and A379
were then used to map and estimate each region’s cortical thickness and orientation dispersion index (ODI),
respectively. The relationship between ODI and cortical thickness was assessed by computing the correlation
between these values across all parcels within the hcp-mmp parcellation (Fig. 6a). The second experiment
attempted to replicate the improved ability to segment the Inferior Longitudinal Fasciculus from the HCPs1200

dataset (Fig. S6a) 32. The Right Inferior Longitudinal Fasciculus (ILF) was segmented from the HCPs1200 dataset
using an automated segmentation algorithm (A174). The same improved ability of tract segmentation was
obtained (Fig. S6a; AUCLAP = 0.77, AUCNN_DR_MAM = 0.66). The third study used to assess replicability investigated
the performance of an automated hippocampal subfield segmentation as compared to hand-drawn regions of
interest (ROIs)67. The original implementation was performed with a dice coefficient ranging from 0.525-0.823. An
App (A262) was created to implement this segmentation on brainlife. The method was implemented on
participants from the UPENN-PMC dataset. Improved model performance was obtained for segmenting
hippocampal subfields (Fig. S6b; dice range = 0.838-0.945).
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Supplemental Figure 6a,b. Replication of previous studies using brainlife.io a. Receiver operator curves (ROC)
comparing the performance of segmentation of the Right ILF using two automated segmentation methods (LAP: blue,
NN_DR_MAM: green) in a subset of the HCP S1200 dataset (Nsub = 15). b. Dice coefficients between manual and automated
segmentation of the hippocampus using AHSS method in UPENN dataset.

In addition to the replication experiments, three sets of generalization experiments were performed. The first
experiment attempted to generalize the same relationship between a cortical region’s thickness and orientation
dispersion index found within the HCPs1200 dataset to the Cam-CAN dataset (Fig. 6a). brainlife.io Apps A464,
A462, A272, and A379 were then used to map and estimate each region’s cortical thickness and orientation
dispersion index (ODI), respectively. The relationship between ODI and cortical thickness was assessed by
computing the correlation between these values across all parcels within the hcp-mmp parcellation. A negative
trend of about half the magnitude of the original was estimated (Fig. 6a; rCam-CAN-brainlife = -0.28 vs. roriginal). The
second and third experiments attempted to generalize a relationship between the average quantitative anisotropy
(QA) and fractional anisotropy (FA) of the left and right uncinate with the presence of stressful life events as an
adolescent (Fig. 6b,c). The second experiment assessed tract organization within the UF of 42 participants from
within the HBN dataset using A423 to extract the UFs and to map QA to each, respectively. These values were
then compared to the number of negative life events as reported on the Negative Life Events Schedule (NLES)
collected by the HBN group. A negative relationship between UF QA and number of stressful life events was
identified (Fig. 6b rHBN_LEFT = -0.35, p-value < 0.05; rHBN_RIGHT = -0.39, p-value < 0.05). The third experiment
attempted to find the same relationship using FA within 1,107 participants from the ABCD dataset. For this, an
end-to-end white matter processing pipeline composed of A68, A238, A297, A305, A188, A195, and A361 was
used to extract the UF and to map FA to each tract. These values were then compared to the measure of early life
stress was estimated as a composite score by z-scoring separately and then summing across the following
questionnaires: traumatic life events reported by the parent, environmental and neighborhood safety reported by
both parent and adolescent, and the Family Environment Scale-Family Conflict Subscale Modified from PhenX
reported by both parent and adolescent 68. A negative relationship between UF FA and the composite score was
estimated in the left- and right-UF (Fig. 6c rABCD_LEFT = -0.12, p-value < 0.001; rABCD_RIGHT = -0.09, p < 0.01).

Supplemental to detecting disease
The final two tests to demonstrate the platform’s potential and scientific utility focused on identifying human
disease biomarkers. We examined data from multiple clinical populations including sports-related concussions,
glaucoma, Stargardt’s, Choroiderema, and healthy populations who have experienced stressful life events to
assess the ability to identify unique clinical characteristics using the platform; Fig. 7). It has been reported that
concussions can alter brain tissue properties both in the cortex and in deep white matter tracts 69. Here, the
differences in cortical white matter tissue in concussed and matched controls were tested. Specifically, for
sports-related concussion, 10 concussed athletes and 10 healthy within-sport control athletes from the Indiana
University Acute Concussion dataset (in prep) was used. FA was estimated in 358 cortical parcels from the
Human Connectome Project multimodal parcellation 70 using a pipeline composed of A23, A272, A379, and A464.
The distribution of FA in the superior temporal sulcus (STS) is reported in Fig. 7a. One example athlete with strong
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post-concussive symptoms and low FA (red arrow) is compared to the distribution of controls (gray) to
demonstrate the ability to detect meaningful changes in brain tissue following a concussive event.

Changes in the visual white matter as a result of eye disease have been reported 38,71–74. Individuals with
Stargardt’s disease (a deterioration of the human retina initiating in the central fovea), and Choroideremia (retinal
deterioration initiating in the visual periphery), were compared to healthy controls. Optical coherence tomography
(OCT) data were processed using A346 (Fig. 7b). Photoreceptor complex thickness (microns) was estimated for
foveal and peripheral (0-1 and 7-90 degrees of visual eccentricity) regions. Choroideremia patients showed similar
levels of photoreceptor complex thickness compared to healthy controls in the foveal bundle but deviated in the
peripheral bundle (Fig. 7b). This trend was the opposite for Stargardt’s participants. To study the degree to which
retinal damage affects the brain’s white matter (the optic radiation, OR), data were processed using a series of
Apps (A273, A462, A187, A414, A233, A361, A68, A238, and A346). Visual eccentricity maps in area V1 were
separated between foveal (0-1° of visual angle) and peripheral (7-90° of visual angle) regions 75,76. Tractography
was used to separate OR bundles projecting to the foveal and peripheral maps, and average FA profiles for each
group and bundle were computed 77 78,79. Results show a reduction in FA in the component of the OR projecting to
foveal (but not peripheral) V1 in Stargardt’s patients (Fig. 7b, blue). Results also show a reduction in FA in the
Choroideremia patients’ peripheral (but not foveal) bundle (Fig. 7b, blue). Taken together, these results
demonstrate the ability of the technology implemented in the platform to measure disease biomarkers.

Supplement to quality control at scale
To assure quality in processed data, brainlife.io provides a unique approach to quality assurance (QA).
State-of-the-art approaches to QA provide users with the ability to assess quality after data processing is
compiled into QA reports 22,23,80–83. The platform supports QA reports outputted by state-of-the-art processing
pipelines (A160, A246, A160, A462, A423, A399), as well as via QA images, which can be assessed by individuals
or groups. Here we propose an additional approach to QA via normalized reference ranges, in which brain
properties derived from many participants, modalities, and sources of variability are collated together for quick
identification of aberrant brain derivatives 84.

Normalized reference ranges were generated and are served on the brainlife.io platform in addition to the standard
QA reports that are generated within Apps for individual datasets. To generate the reference ranges, the brain
properties derived from the three datasets (PING, HCPs1200, and Cam-CAN) and four data modalities in 1,751
participants generated for the load testing of the platform (as described in the previous sections) were curated
(removed of outliers) and collated for brainlife.io datatype. For each datatype, a single JSON file was created
reporting the mean and ±1 and 2 standard deviations of the outlier-removed measure (e.g., the volume of a brain
parcel, fractional anisotropy of a white matter tract, functional connectivity of a network, power-spectrum density
across MEG sensors, etc). The JSON files were saved on a repository (github.com/brainlife/reference) and the
brainlife.io datatype validator service made use of the JSON to automatically visualize a plot of the data. We call
these JSON files reference datasets. Users utilizing Apps (A272, A463, A483, A361, A530, A531, A532) that
generate datatypes for which a reference dataset was created will find the values of the features estimated by the
App on any new dataset overlaid on top of the corresponding reference dataset (see Fig. S8). We report examples
of reference dataset plots for four major datatypes, with outliers data overlaid on top (Fig. 8a-d) and the final
reference datasets for each datatype and data source.

A critical aspect to democratizing big data neuroscience is the ability of investigators to perform quality assurance
(QA), because there is no value in increasing dataset size unless quality can be assured for each dataset.
State-of-the-art approaches provide users with the ability to assess quality after data processing is compiled into
QA reports 22,23,80–83, or through the use of citizen science 85. The brainlife.io platform supports visualization of the
QA reports outputted by state-of-the-art processing pipelines (A160, A246, A160, A462, A423, A399), as well as
via QA images, which can be assessed by individuals or groups. Here we propose an additional approach to QA
via normalized reference ranges, in which brain properties derived from many participants, modalities, and
sources of variability are collated together for quick identification of abnormal brain derivatives 84. For more details
of the generation of these reference ranges, see Methods. Here we provide an example of the brainlife.io
visualizations of reference datasets (Fig. S8).

The brain properties derived from the three datasets (PING, HCPs1200, and CAN) and four data modalities in 1,751
participants generated for the load testing of the platform (as described in the previous sections) were curated
(removed of outliers) and collated for brainlife.io datatype. For each datatype, a single JSON file was created
reporting the mean and ±1 and 2 standard deviations of the outlier-removed measure (e.g., the volume of a brain
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parcel, fractional anisotropy of a white matter tract, functional connectivity of a network, power-spectrum density
across MEG sensors, etc). The JSON files were saved on a repository (https://github.com/brainlife/reference) and
the brainlife.io datatype validator service made use of the JSON to automatically visualize a plot of the data. We
call these JSON files reference datasets. Users utilizing Apps (A272, A463, A483, A361, A530, A531, A532) that
generate datatypes for which a reference dataset was created will find the values of the features estimated by the
App on any new dataset overlaid on top of the corresponding reference dataset (Fig. S8).

Supplemental Figure 8. brainlife.io interface can visualize reference datasets. Validation services for datatypes
containing statistical feature information automatically generate a visualization of newly generated data (blue line) overlaid on
reference dataset ranges for the three data sources used to generate reference datasets (i.e. HCPS1200 (red), PING (green),
CAN (purple). These reference ranges can be used to quickly assess the quality of the estimated statistical features of
interest.

Public services for promoting transparency and data gravity in neuroscience research.

In the previous section, we described the system architecture for the platform. These components and
architectures were implemented in order to reduce barriers of entry to performing neuroimaging investigations and
to ultimately increase data gravity and representation in neuroscience. These goals coincide with a push within
the neuroimaging community to increase data gravity and representation by providing standardization of data
formatting, software libraries, and computing resources. From this push has come an ever-growing list of publicly
available services and platforms for increasing data gravity in neuroimaging. However, there currently exists only
one compiled list of the services available 86. To address this, and to help increase transparency in neuroscientific
research, we provide a non-comprehensive list of currently available services and platforms for increasing data
gravity across the greater neuroimaging community (Table S5). This list is not designed to cover all currently
available services and platforms, but to provide a sense of the scope of available technologies developed by the
neuroscientific community.
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The FAIR principles.
Recently, it has been proposed that platforms should respect the FAIR principle 87. brainlife.io was built with the
FAIR principles in mind and below, we pair each FAIR principle with the modern definition of neuroscience data. In
the brainlife.io project, each principle is applied to multiple research assets, data derivatives, analysis software,
and software services.

The three primary research assets pertaining to the brainlife.io project are (1) data, derivatives, and metadata, (2)
processing applications and data analysis code, and (3) data and analysis management services are each made
FAIR via the brainlife.io project.

Findable. Research data services available on brainlife.io such as data sets, processing App, web services and
analysis code are either automatic or manual mechanisms to make them findable. brainlife.io assigns
Digital-Objects-Identifiers (DOI) using DataCite as a partner project. DOIs are automatically assigned to
publication records consisting of datasets, as well as versioned preprocessing and analysis software. These
brainlife.io publication records are compliant with schema.org and as such are also compliant with Google
Dataset search (https://datasetsearch.research.google.com). DOIs are also assigned to each published App.

Accessible. Data and metadata can be retrieved using a number of access methods via Web Interfaces and
Command Line Interfaces. Metadata is also accessible programmatically via a web API. Metadata remains
available even in the case that data must be removed (e.g., in cases of human subjects concerns). Authentication
is necessary to access the data and users’ identities are checked by humans to assure compliance with more
restrictive data-access policies such as the GDPR. A full record of data management and processing is made
accessible. So not just data or analysis streams are accessible but a full record reporting the provenance of each
individual data product. The code underlying each processing App is accessible via GitHub, and can be modified
or used via common GitHub mechanisms (push requests, pull requests). Previously published datasets can be
downloaded to a local machine or copied to a new project.

Interoperable. Data can be submitted to brainlife.io either using standard file types such as NifTis, but also data
from multiple vendors can be used to map the data to the BIDS standard and uploaded on the system using the
brainlife.io/ezBIDS web tool. The brainlife.io/ezBIDS system allows data from multiple vendors and type of
sequences to be mapped to the Brain Imaging Data Structure (BIDS) and from there to be pushed to brainlife.io
Projects, to OpenNeuro.org or downloaded. Furthermore, datasets can be mapped from major archives and
projects such as NKI, and OpenNeuro.org using DataLad.org. Finally, brainlife.io Apps on their own also use are
FAIR, as they are publicly available both as services on brainlife.io and code implementing the services on
GitHub. The Apps can be stored either on individual user or organization accounts or on the brainlife.io team
GitHub account depending on the level of commitment of the app developer to maintaining the Apps. The
brainlife.io team maintains a bl2bids (https://github.com/brainlife/abcd-spec/blob/master/hooks/bl2bids.py) and
the BIDS Walked (https://github.com/brainlife/cli/blob/master/bids-walker.js) script that together allow mapping
BIDS data types to brainlife.io DataTypes. As a result the BIDS standard is the data exchange approach used to
increase data interoperability.

Reusable. The brainlife.io project has multiple aspects of its technology that is developed with a mindset focus of
reuse. First, the whole platform is developed as open source and published on GitHub.com. Second, the data
processing Applications are developed using a lightweight specification that is compatible with BIDS and can be
easily used without brainlife.io interfaces on local computers or clusters. Finally, data assets can be shared within
the platform across users and projects but also outside of the platform by downloading the data as
BIDS-compliant datasets. Data derivatives, processing apps, and analysis notebooks can be accessed in multiple
ways via web graphical user interfaces, command line interfaces, or directly via local download. Analysis
notebooks in the form of Jupyter notebooks can be pushed to GitHub directly, allowing for instantaneous reuse
by the broader community. Data pipelines can be copied and reused within a given project. All configuration
parameters for each App are stored, allowing users to reuse previously defined optimal parameters for their given
data. The brainlife.io publication modelis a key component to implementing a vision of an integrated project
publication containing data, and preprocessing for future reuse.
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Supplemental Table 1: Platform services serving the brainlife.io platform.

Service Description GitHub Repos

UI Platform entrypoint, providing an user interface that
integrates the diverse services in Brainlife https://github.com/brainlife/warehouse/tree/master/ui

Warehouse Data storage and management https://github.com/brainlife/warehouse/

Amaretti
Automated scheduling servicer identifying
appropriate compute resources and staging and
archiving data

https://github.com/brainlife/amaretti/

ezBIDS DICOM to BIDS conversion https://github.com/brainlife/ezbids/

Vis Services available for running visualizations within
the platform https://github.com/brainlife/brainlife/tree/master/vis

Event Event-driven integrator, to provide real-time
feedback for users https://github.com/brainlife/event/

Service
Monitoring Monitors individual actions performed by the site https://github.com/brainlife/servicemonitor

CLI Command-line interface for performing data
manipulations and data scrubbing https://github.com/brainlife/cli

Auth Centralized authentication for the multiple Brainlife
services https://github.com/brainlife/auth

Supplemental Table 1. Table with list of all platform services, name, scope, service URL (pointer to brainlife page if available as direct
URL) and github URL for code.

Supplemental Table 2: Jupyter notebooks for analyses performed.

Notebook Name Topic Analysis/Figure Datatype(s) Measure(s) Github URL

blp-analysis-struct
ural-mri-volume.ipy
nb

Structural
morphometry

Validity, reliability,
reproducibility,
development,
references

neuro/parc-stats

Cortical parcel
volume, thickness,
surface area,
Fractional
Anisotropy (FA),
Axial Diffusivity
(AD), Radial
Diffusivity (RD),
Mean Diffusivity
(MD), Neurite
density index
(NDI), Orientation
dispersion index
(ODI), Isotropic
volume fraction
(IsoVF)

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-structural-m
ri-volume.ipynb

blp-analysis-diffusi
on-mri-tract-profile
s.ipynb

Diffusion
profilometry

Validity, reliability,
reproducibility,
development,
references

neuro/tractmeasures

White matter tract
Fractional
Anisotropy (FA),
Axial Diffusivity
(AD), Radial
Diffusivity (RD),
Mean Diffusivity
(MD), Neurite
density index
(NDI), Orientation
dispersion index
(ODI), Isotropic

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-diffusion-mr
i-tract-profiles.ipyn
b
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volume fraction
(IsoVF)

blp-analysis-diffusi
on-mri-structural-c
onnectivity.ipynb

Structural
connectivity

Validity, reliability,
reproducibility,
development,
references

neuro/network Max node degree

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-diffusion-mr
i-structural-connect
ivity.ipynb

blp-analysis-functi
onal-mri-functional
-connectivity.ipynb

Functional
connectivity

Validity, reliability,
reproducibility,
development,
references

neuro/network Within-network
connectivity

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-functional-
mri-functional-conn
ectivity.ipynb

blp-analysis-functi
onal-mri-gradients
y.ipynb

Functional
gradients

Validity, reliability,
reproducibility,
development,
references

neuro/gradients Distance of
primary gradient

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-functional-
mri-gradientsy.ipyn
b

blp-analysis-meeg-
power-spectrum-d
ensity.ipynb

MEEG

Validity, reliability,
reproducibility,
development,
references

neuro/meeg/psd
Peak alpha
frequency, power
spectrum density

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-meeg-powe
r-spectrum-density.
ipynb

blp-analysis-concu
ssion-structural-mr
i.ipynb

Cortical diffusion Clinical
populations neuro/parc-stats

Cortical parcel
volume, thickness,
surface area,
Fractional
Anisotropy (FA),
Axial Diffusivity
(AD), Radial
Diffusivity (RD),
Mean Diffusivity
(MD), Neurite
density index
(NDI), Orientation
dispersion index
(ODI), Isotropic
volume fraction
(IsoVF)

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-concussion
-structural-mri.ipyn
b

blp-analysis-inherit
ed-retinal-disease.i
pybn

Diffusion
profilometry,
optical
coherence
tomography
(OCT)

Clinical
populations

neuro/tractmeasures,
neuro/microperimetry

White matter tract
Fractional
Anisotropy (FA),
Photoreceptor
thickness

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-inherited-ret
inal-disease.ipynb

blp-analysis-usage
-statistics.ipynb

Platform usage
statistics NA NA NA

https://github.com/
bacaron/bp-notebo
oks/bl_paper/blp-a
nalysis-usage-statis
tics.ipynb

Supplemental Table 2. Description and web-links to the open-source code used for each analysis outlined previously in the
form of individual Jupyter Notebooks.
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Supplemental Table 3: Preprocessing Apps used for the experiments.

Name Brainlife DOI Github Repository

Anatomically Constrained Tractography
using precomputed 5tt & CSD 10.25663/brainlife.app.297 bacaron/app-mrtrix3-act

mrtrix3 - WMC Anatomically Constrained
Tractography (ACT) 10.25663/brainlife.app.319 brainlife/app-mrtrix3-act

Compile tract macro-structural and
profile data 10.25663/brainlife.app.397 brainlife/app-compile-macro-micro-tract-stats

Compute summary statistics of diffusion
measures from subcortical segmentation 10.25663/brainlife.app.389 brainlife/app-freesurfer-stats

Compute summary statistics of diffusion
measures mapped to the cortical surface
- Deprecated Surface

10.25663/brainlife.app.383 brainlife/app-cortex-tissue-mapping-stats

Conmat 2 Network 10.25663/brainlife.app.393 filipinascimento/bl-conmat2network

Convert network neuro matrix to conmat 10.25663/brainlife.app.335 brainlife/app-network-matrices-2-mat

Cortex Tissue Mapping (Native &
Template Space) 10.25663/brainlife.app.379 brainlife/app-cortex-tissue-mapping

Fit Constrained Deconvolution Model for
Tracking 10.25663/brainlife.app.238 bacaron/app-mrtrix3-act

Freesurfer 10.25663/bl.app.0 brainlife/app-freesurfer

Freesurfer Statistics 10.25663/brainlife.app.272 brainlife/app-freesurfer-stats

FSL Anat (T1) 10.25663/brainlife.app.273 brainlife/app-fsl-anat

Align T1 to ACPC Plane (HCP-based) 10.25663/bl.app.99 brainlife/app-hcp-acpc-alignment

FSL Anat (T2) 10.25663/brainlife.app.350 brainlife/app-fsl-anat

FSL Brain Extraction (BET) on DWI 10.25663/brainlife.app.163 brainlife/app-FSLBET

mrtrix3 preprocess 10.25663/bl.app.68 brainlife/validator-neuro-dwi

Multi-Atlas Transfer Tool (w/surface
output) 10.25663/bl.app.23 faskowit/app-multiAtlasTT

Noddi Amico 10.25663/brainlife.app.365 brainlife/app-noddi-amico

Parcellation Statistics - Surface -
Deprecated Datatype 10.25663/brainlife.app.464 brainlife/app-freesurfer-stats

Remove Tract Outliers 10.25663/brainlife.app.195 brainlife/validator-neuro-wmc

Tissue-type segmentation 10.25663/brainlife.app.239 brainlife/app-mrtrix3-5tt

Tract Analysis Profiles 10.25663/brainlife.app.361 brainlife/app-tractanalysisprofiles

Tractography quality check 10.25663/brainlife.app.189 brainlife/app-tractographyQualityCheck

White Matter Anatomy Segmentation 10.25663/brainlife.app.188 brainlife/validator-neuro-wmc

Align T2 to ACPC Plane (HCP-based) 10.25663/brainlife.app.116 brainlife/app-hcp-acpc-alignment/tree/1.4

fMRIPrep - Volume Output 10.25663/brainlife.app.160 brainlife/app-fmriprep/tree/20.2.3-2

pRFs / Benson14-Retinotopy -
Deprecated

10.25663/brainlife.app.187 davhunt/app-benson14-retinotopy/tree/master

Segment thalamic nuclei 10.25663/brainlife.app.222 brainlife/app-segment-thalamic-nuclei/tree/v1.0

Track The Human Optic RAdiation
(THORA): Contrack - Eccentricity

10.25663/brainlife.app.252 brainlife/app-contrack-optic-radiation/tree/v1.1

Automated Segmentation of
Hippocampal Subfields (ASHS)

10.25663/brainlife.app.262 svincibo/app-ashs-segment/tree/master

fMRIPrep - Surface Output 10.25663/brainlife.app.267 brainlife/app-fmriprep/tree/20.2.1
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FSL DTIFIT 10.25663/brainlife.app.292 brainlife/app-fslDTIFIT/tree/v1.1

fMRI Timeseries Extraction 10.25663/brainlife.app.369 faskowit/app-fmri-2-mat/tree/0.1.6

Structural Connectome MRTrix3
(SCMRT) - No labels or weights

10.25663/brainlife.app.395 brainlife/app-sift2-connectome-generation/tree/no
sift2_v1.2_centers_netneuro

Generate Visual Regions of Interest
Binned by Eccentricity Estimates (Benson
Atlas) - Diffusion Space

10.25663/brainlife.app.414 brainlife/app-roiGenerator/tree/visual-white-matter
-eccentricity-dwi-v1.2

dsi-studio-atk 10.25663/brainlife.app.423 frankyeh/dsi-studio-atk/tree/master

Apply Maxwell filter on MEG signals
using MNE-python

10.25663/brainlife.app.476 brainlife/app-maxwell-filter/tree/master

Compute summary statistics of diffusion
measures mapped to cortical surface

10.25663/brainlife.app.483 brainlife/app-cortex-tissue-mapping-stats/tree/up
dated-surface-dtype-v1.1

Split MEG file 10.25663/brainlife.app.529 guiomar/app-meg-split-fif/tree/main

PSD: Power Spectral Density (Welch
method)

10.25663/brainlife.app.530 guiomar/app-psd/tree/main

Find frequency peak of PSD data 10.25663/brainlife.app.531 guiomar/app-peak-frequency/tree/master

Time series to network 10.25663/brainlife.app.532 filipinascimento/bl-timeseries2network/tree/0.2

Connectivity Gradients 10.25663/brainlife.app.574 anibalsolon/app-connectivity-gradient/tree/main

Average channels 10.25663/brainlife.app.599 guiomar/app-average-channels/tree/main

Supplemental Table 3. Description and web links to the open-source code and open cloud services used to perform the
evaluation experiments described in the main article.

38

https://doi.org/10.25663/brainlife.app.292
https://doi.org/10.25663/brainlife.app.369
https://doi.org/10.25663/brainlife.app.395
https://doi.org/10.25663/brainlife.app.414
https://doi.org/10.25663/brainlife.app.423
https://doi.org/10.25663/brainlife.app.476
https://doi.org/10.25663/brainlife.app.483
https://doi.org/10.25663/brainlife.app.529
https://doi.org/10.25663/brainlife.app.530
https://doi.org/10.25663/brainlife.app.531
https://doi.org/10.25663/brainlife.app.532
https://doi.org/10.25663/brainlife.app.574
https://doi.org/10.25663/brainlife.app.599


Supplementary Table 4. Validity and reliability correlation tables.

Modality Measure Analysis Parcellation r rmse

Structural MRI Cortical thickness Validity Destrieux 0.8667 0.2332

“ Cortical surface area Validity Destrieux 0.9774 173.9724

“ Cortical volume Validity Destrieux 0.9817 570.543

“ Cortical thickness Reliability Destrieux 0.9569 0.121

“ Cortical surface area Reliability Destrieux 0.9930 97.4636

“ Cortical volume Reliability Destrieux 0.9948 2378.1114

“ Cortical thickness Validity hcp-mmp 0.8449 0.2416

“ Cortical surface area Validity hcp-mmp 0.9835 78.1686

“ Cortical volume Validity hcp-mmp 0.9727 265.6

“ Cortical thickness Reliability hcp-mmp 0.9402 0.1394

“ Cortical surface area Reliability hcp-mmp 0.9952 41.7407

“ Cortical volume Reliability hcp-mmp 0.9933 123.118

Diffusion MRI Tract AD Validity wma 0.9572 0.0309

“ Tract FA Validity wma 0.9515 0.0181

“ Tract MD Validity wma 0.9167 0.0200

“ Tract RD Validity wma 0.9817 0.0228

“ Tract AD Reliability wma 0.9204 0.0402

“ Tract FA Reliability wma 0.9312 0.0167

“ Tract MD Reliability wma 0.806 0.0292

“ Tract RD Reliability wma 0.8447 0.0282

Functional MRI Node connectivity Validity Yeo17 0.8853 0.1219

“ Node connectivity Reliability Yeo17 0.7264 0.1889

“ Primary gradient Validity Shaffer400 0.5934 0.0358

“ Primary gradient Reliability Shaffer400 0.8496 0.0259

MEEG Peak alpha frequency Validity NA 0.9385 0.2964

“ Peak alpha frequency Reliability NA 0.8484 0.4751

Supplemental Table 4. Pearson correlation (r) and root mean square error (rmse) for all validity and reliability experiments
performed.
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Supplemental Table 5: Resources for data storage, archiving, and computational analysis.

Location(s) Archive Name Web URL Type Archive
Representative Data Modality (-ies) Type of

access
Reference
(publication)

U.S.A
BRAIN Initiative
Cell Census
Network (BICCN)

www.biccn.org/ service registry

Multiple; the Allen
Institute has an NIH
grant to build and
host this site, through
the Brain Cell Data
Center (BCDC)

human, mouse; single cell
RNA-Seq, Patch-Seq, cell
morphologies,
electrophysiological
recordings (NWB files),
multiple histological image
modalities, mFISH

US BRAIN BICCN Single Cell
Portal

singlecell.broadinstitute.org/single_
cell service registry

Broad Institute
scp-support@broadin
stitute.zendesk.com

Multiple single cell
datasets N/A

US BRAIN OpenNeuro.org OpenNeuro.org Archive Russ Poldrack human MRI, PET, EEG,

US BRAIN DABI archive dabi.loni.usc.edu/home Archive TOGA, ARTHUR W EEG, MEG, iEEG

US BRAIN Allen Brain Map portal.brain-map.org service registry
Allen Institute -
multiple teams
involved

human, mouse, rhesus
macaque

US BRAIN DANDI www.dandiarchive.org/ Archive Satrajit Ghosh Neurophysiology (EPhys,
ICEphys, Ophys)

US BRAIN NeMO nemoarchive.org/ Archive Owen R. White Multi-omics data

US BRAIN Brain Image
Library (BIL) www.brainimagelibrary.org/ service registry ROPELEWSKI,

ALEXANDER J Brain imaging data

US BRAIN BossDB bossdb.org/ Archive WESTER, BROCK A. EM

US BRAIN MiCRONS Explorer microns-explorer.org/ web-service Multiple EM

US BRAIN [their main site] www.braininitiative.org/resources/ service registry aggregator

US BRAIN brainlife.io brainlife.io computational
platforms Franco Pestilli MRI/EEG/MEG Governed via

license
Australian
Initiative neurodesk.org web-service

Japan
Initiative SRPBS www.cns.atr.jp/decnefpro/ service registry Saori Tanaka, Mitsuo

Kawato Brain imaging data

Japan
Initiative

Brain/MINDS
Beyond mriportal.umin.jp/ service registry

Kiyoto Kasai, Takashi
Hanakawa, Saori
Tanaka

Brain imaging data
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Japan
Initiative Brain/MINDS www.brainminds.riken.jp/ service registry Alex Woodward

Marmoset atlas, fMRI,
dMRI, tracer, gene
expression

Open to
collaborators

China Initiative Linked Brain Data www.linked-brain-data.org/ service registry

Korea InitiativeKorea BrainInitiative kbrain-map.kbri.re.kr:8080/ service registry Sung-Jin Jeong

mouse; single cell
RNA-Seq, EM data
(current); omics data,
behavioural data,
electrophysiology data (in
future)

European
Human Brain
Project

EBRAINS ebrains.eu/ service registry Jan Bjaalie

Brain imaging data, omics
data, behavioural data,
electrophysiology data,
models etc

Closed

Canadian
Open
Neuroscience
Platform

CONP conp.ca/ service registry CONP committee

Brain imaging data, omics
data, behavioural data,
electrophysiology data,
models etc

Governed via
license

BlueBrainProj
ect channelpedia.epfl.ch/ service registry

DataLad datasets.datalad.org/ service registry Fully open
(CC-00)

NITRC service registry

USA WebPlotDigitizer automeris.io/WebPlotDigitizer/ web-service Ankit Rohatgi

USA Brain Map
Database brainmap.org web-service Peter Fox Brain Imaging data Governed via

license

USA NeuroSynth
Database neurosnyth.org web-service Alejandro de la Vega Brain Imaging data Fully open

(CC-00)

France NeuroQuery https://neuroquery.org web-service INRIA/
Jérôme Dockès Brain Imaging data Fully open

(CC-00)

OSF osf.io Archive Unspecified / Open Unspecified

U.S.A. COINSTAC https://coinstac.org/ Downloadable Georgia State
University Brain Imaging Data Unspecified

Supplemental Table 5. Description and web links to the many available platforms and services for increasing data gravity in the neuroimaging field.
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Supplemental Table 6: Processed dataset published as part of this article.

Project DOI Brainlife Publication URL

Human Connectome
Young Adult - Test - Retest https://doi.org/10.25663/brainlife.pub.38 https://brainlife.io/pub/640a3da8c538c16a826f912e

Human Connectome
Young Adult - Full Dataset https://doi.org/10.25663/brainlife.pub.40 https://brainlife.io/pub/640a3f9dc538c16a826f9b1a

Cambridge Centre for
Ageing and Neuroscience
- Full Dataset

https://doi.org/10.25663/brainlife.pub.39 https://brainlife.io/pub/640a3f0cc538c16a826f9648

MEG [fif] Cam-Can https://doi.org/10.25663/brainlife.pub.41 https://brainlife.io/pub/640a40fec538c16a826fa468

MEG [fif] Run1 vs Run2 https://doi.org/10.25663/brainlife.pub.42 https://brainlife.io/pub/640a4155c538c16a826fa5b9

MEG [fif] CamCan-maxfilt https://doi.org/10.25663/brainlife.pub.43 https://brainlife.io/pub/640a41abc538c16a826fa6e6
ASHS Segmentation of
Hippocampal Subfields -
Replication derivatives

https://doi.org/10.25663/brainlife.pub.44 https://brainlife.io/pub/640a4267c538c16a826fb09a

Supplemental Table 1. Table with list of all platform services, name, scope, service URL (pointer to brainlife page if available as direct
URL) and github URL for code.
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