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ABSTRACT

Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool
development to support rigor and transparency. Consequently, the complexity of the data pipeline has also
increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io
was developed to reduce these burdens and democratize modern neuroscience research across institutions and
career levels. Using community software and hardware infrastructure, the platform provides open-source data
standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io
automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and
transparency in neuroscience research. Here brainlife.io’s technology and data services are described and
evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and
3,200 participants, we demonstrate that brainlife.io’s services produce outputs that adhere to best practices in
modern neuroscience research.
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INTRODUCTION

Over the last 30 years, neuroimaging research has dramatically expanded our ability to study the structure and
function of the living human brain, leading to major advancements in understanding brain-related health and
disease ™. Today, neuroimaging modalities and techniques span multiple data types (e.g., magnetic resonance
imaging [MRI], positron emission tomography [PET], functional near-infrared spectroscopy [fNIRS],
electro-encephalography [EEG], and magnetoencephalography [MEG]), and have increased the feasibility of
large-scale, population-level, data collection efforts."*® At the same time, the field of neuroimaging has attracted a
large and ever-growing community of researchers 7®. Furthermore, a process of adopting FAIR principles of data
stewardship (Findability, Accessibility, Interoperability, and Reusability’), data standardization, open science
methods, and increased data size, has been gaining grounds and in turns increasing requirements for rigorous
and transparent data analysis and reporting. However, such approaches require significant additional
technological support, posing new challenges to many researchers. We refer to these challenges as the burdens
of neuroscience (Fig. 1).
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Figure 1. The burdens of neuroscience. a. A figurative representation of the current major burdens of performing
neuroimaging investigations. b. Our proposal for integrative infrastructure that coordinates services required to perform
FAIR, reproducible, rigorous, and transparent neuroimaging research thereby lifting the burden from the researcher. c.
brainlife.io rests upon the foundational pillars of the open science community such as data archives, standards, software
libraries and compute resources. Panels a and b adapted from Eke et al. (2021).

Datasets are growing in size, in large part because they support scientific rigor and reproducibility. Research on
the reproducibility of scientific findings indicates that limited sample sizes might have hindered the validity of
early, foundational results in hypothesis-driven cognitive neuroscience research,'®'® but reproducibility issues can
be found in biological science,''® psychology,'*data science, and computational methods,'®?° cancer biology,?',
and artificial intelligence.'®??This is largely because small sample sizes increase the probability of reporting
spurious effects as statistically significant."?* Recent findings also make the case for increasing sample sizes into
the thousands when research focuses on discovery science.® Notable examples of large-scale data sharing within
neuroscience and neuroimaging include the Human Connectome Project (HCP),* the Cambridge Centre for
Ageing and Neuroscience study (Cam-CAN),?5%" the Adolescent Brain Cognitive Development (ABCD) study,?3%
the UK-Biobank,*® the Healthy Brain Network (HBN),*' the Pediatric Imaging Neurocognition and Genetics (PING)
study,®® the Natural Scene Dataset ** and the thousands of individual brain datasets deposited on
OpenNeuro.org.®* These data-sharing projects not only serve the needs of the neuroscience community with
demonstrated impact *, but also the incoming generation of Al research.®%® However, larger datasets generally
entail greater complexity as well. The use of datasets so unprecedented in size requires a substantial scaling up of
resources and technical skills, and this in turn results in significant barriers to entry.

Traditionally, neuroimaging researchers have collected a few hours of neuroimaging data on a few dozen subjects
and analyzed it using laboratory computers and a single tool-kit or programming environment, often created
in-house. Current studies, by contrast, may require the analysis of hundreds (if not thousands) of hours of data,
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with an accompanying move of data away from individual laboratory computers toward high-performance
computing clusters and cloud systems requiring multiple steps and a variety of scripting and programming
languages (e.g., Unix/Linux shell, Python, MatLab, R, C++). The complexity of neuroimaging data pipelines and
code development stacks have increased concomitantly.®**° To help ensure the reproducibility and rigor of
scientific results, the neuroimaging community has also developed data standards*' and software libraries for
data processing and analysis (FSL, Freesurfer, Nibabel, MRTrix, DIPY, DSI-STudio).*?*® More recently prebuilt data
processing pipelines that combine software from multiple libraries into unified partially preconfigured steps have
been also developed ®73. These pipelines advance data processing standardization but still leave many choices
of parameters to users and often require technical input data formats.

As a result of all this progress for data and tools, neuroimaging researchers carry the burden of having to piece
together and track multiple processes, such as data ingestion and standardization, storage, and management,
preprocessing and feature extraction, all while also attending to tracking quality control, analyses, and publication
(Fig. 1a). Publication of results requires compliance with the FAIR principles which, though well explained in
theory, are often challenging to implement in practice. Submission of manuscripts often necessitates new
analyses at a later date, by which point software and data versions may have changed, and data might have been
removed from compute clusters or local servers. Existing approaches for managing these steps require manual
tracking of data and code versions, along with advanced technical skills.*>”* Currently, there exists no efficient
technology to help piece together and keep track of all of these (ever-changing) technology and data
requirements.

As the resources necessary to participate fully in modern neuroscience research have grown, barriers to entry and
funding have risen as well. Smaller universities, teaching colleges, undergraduate students, and other settings
that lack the resources to support significant investments in infrastructure and training are at a meaningful
disadvantage. Lack of resources and infrastructure is a key gap identified in surveys pertaining to both the
adoption of FAIR neuroscience ® and the conduct of neuroscience research in low- and medium-income
countries "®”". Without added support, FAIR neuroscience might evolve with an ever-increasing bias towards
high-resourced teams, institutions, and countries. Such an outcome would not only decrease representation and
diversity but would slow scientific progress. In support of simplicity, efficiency, transparency, and equity in big
data neuroscience research, our team has developed a community resource, brainlife.io (Fig. 1b). The brainlife.io
platform stands on the foundational pillars of the neuroimaging community and the mission of open science (Fig.
1c¢). brainlife.io provides free and secure reproducible neuroscience data analysis. brainlife.io’s technology works
for researchers serving automated tracking of data provenance, preprocessing steps, parameter sets, and
analysis versions. Our vision for brainlife.io is that of a trusted, interoperable, and integrative platform connecting
global communities of software developers, hardware providers, and domain scientists via cloud services.

In the remainder of this article, we describe the technology and utilization of brainlife.io. After that, we present the
results of our evaluations of the effectiveness of the technology. Experiments focused on the four axes of
scientific transparency: external validity, reliability, reproducibility, and replicability. Finally, we demonstrate the
platform’s potential for scientific utility in identifying human disease biomarkers.

RESULTS

Platform architecture

brainlife.io is a ready-to-use and ready-to-expand platform. As a ready-to-use system, it allows researchers to
upload and analyze data from MRI, MEG, and EEG systems. Data are managed using a secure warehousing
system that follows an advanced governance and access-control model. Data can be preprocessed and
visualized using version-controlled applications (hereafter referred to as Apps) compliant with major data
standards (the Brain Imaging Data Structure, BIDS*'). As a ready-to-expand system, software developers may
contribute or modify existing Apps guided by standard methods and documentation describing how to write Apps
(github.com/brainlife/abcd-spec and brainlife.io/docs). The platform uses a combination of opportunistic
computing and publicly funded resources %% that are functionally integrated and can be available for use by a
particular project or team of researchers. Computing resource managers can also register computer servers and
clusters on brainlife.io to make them available either to individual users or projects or to the larger community of
brainlife.io users (Fig. 2a and Fig. S2a). The Supplemental Platform architecture provides an extended
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description of the technology. The platform is available to any type of researcher from students to faculty
researchers, either without cost (through opportunistic use of freely contributed resources) or with performance
guarantees (through the use of dedicated hardware or payment for use of cloud resources).

Brainlife.io was founded via an initial investment from the U.S. BRAIN Initiative via a National Science Foundation,
followed by support from the National Institutes of Health, the Department of Defense, the Kavli Foundation, and
the Wellcome Trust. The platform’s geographically distributed computing and storage systems are securely
hosted by national supercomputing centers and funded by a combination of institutional, national, and
international awards (see Eig. S2). As of this paper, the Texas Advanced Computing Center, Indiana University
Pervasive Technology Institute, Pittsburgh Supercomputing Center, San Diego Supercomputing Center, and the
University of Michigan Advanced Research Computing Technology Services have supported the project. The
distributed platform is connected with and depends on other major infrastructure and software projects such as
OpenNeuro.org, osiris.org, Datalad.org, BIDS, Freesurfer, FSL, nibabel, dipy.org, repronim.org, DSI-Studio,
jetstream-cloud.org, frontera-portal.tacc.utexas.edu, access-ci.org, and INCF.org.

The architecture of brainlife.io is based on an innovative, microservices-based approach, including authentication,
preprocessing, warehousing, event handling, and auditing. This architecture allows automated and decentralized
data management and processing. Microservices are handled by the meta-orchestration workflow system
Amaretti (Fig. 2a,b, and Table S1). Amaretti can deploy computational jobs on high-performance compute
clusters and cloud systems. This allows the utilization of publicly-funded supercomputers and clouds &, as well
as commercial clouds, such as Google Cloud, AWS, or Microsoft Azure.

Data management on brainlife.io is centered around Projects and supported by a databasing and warehousing
system (github.com/brainlife/warehouse). Projects are the “one-stop-shop” for data management, processing,
analysis, visualization, and publication (Eig. S3c). Projects are created by users and are private by default, but can
also be made publicly visible inside the brainlife.io platform. A project can be populated with data using several
options (Fig. 2d). Several major archives and data repositories are currently docked by brainlife.io™ (see Fig. 2b).
Noticeable examples are OpenNeuro.org® and the Nathan-Kline data-sharing project.®"% Datasets can be
imported seamlessly into brainlife.io Projects by using either the portal brainlife.io/datasets " (see Video S2 and
Video S3), the standardization tool brainlife.io/ezbids (see Table S1 and Video S6) or a dedicated Command Line
Interface (CLI).

Data processing on brainlife.io utilizes an object-oriented and micro workflows service model. Data objects are
stored using predefined formats, Datatypes, that allow automated App concatenation and pipelining (Fig. 2c;
brainlife.io/Datatypes). Apps and Datatypes are the key components of a system that work together to allow
automated processing and provenance tracking for millions of data objects. Apps are composable processing
units written in a variety of languages using containerization technology.®*®® Apps are smart, and can
automatically identify, accept, or reject datasets before processing (Fig. 2 and Eig. S2b). Community-developed
data visualizers are served by brainlife.io to support quality control (see Table S1). Six new data visualizers have
been developed and released as part of the project (Table S1 and Video S7). Whenever possible, Datatypes are
made compatible with BIDS.*' BIDS Apps can be easily made into brainlife.io Apps and multiple examples exist

already brainlife.io/apps.

The data workflow on brainlife.io simplifies the complexity of the modern neuroimaging processing pipeline into
two steps, akin to Google’s MapReduce algorithm.®® An initial map step preprocesses data objects
asynchronously and in parallel using Apps, so as to extract features of interest (such as functional activations,
white matter maps, brain networks, or time series data; Fig. 2d). During the map step, Datatypes and Apps are
synchronized and moved to available compute resources automatically. Apps process data objects in parallel
across study participants in a Project. The map step is followed by a reduce step, wherein features extracted
using Apps are made available to pre-configured Jupyter notebooks®®® served on the platform to perform
statistical analysis, machine-learning applications, and generate figures. Indeed, all statistical analyses and figures
in this paper are available in accessible Jupyter Notebooks (see Table S2). brainlife.io’s data workflow makes it
possible to integrate large volumes of diverse neuroimaging Datatypes into simpler sets of brain features
organized into Tidy data structures ® (Fig. S3c).
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Figure 2. The brainlife.io platform concepts, architecture, and approach. a. brainlife.io’s Amaretti links data archives,
software libraries, and computing resources. Specifically, ‘Apps’ (containerized services defined on GitHub.com) are
automatically matched with data stored in the ‘Warehouse’ with computing resources. Statistical analyses can be
implemented using Jupyter Notebooks. b. brainlife.io provides efficient docking between data archives, processing apps,
and compute resources via a centralized service. ¢. Apps use standardized Datatypes and allow “smart docking” only with
compatible data objects. App outputs can be docked by other Apps for further processing. d. brainlife.io’s Map step takes
MRI, MEG and EEG data and processes them to extract statistical features of interest. brainlife.io’s reduce step takes the
extracted features and serves them to Jupyter Notebooks for statistical analysis. PS: parc-stats Datatype; TM:
tractmeasures Datatype; NET: network Datatype; PSD: power-spectrum density Datatype. CLI: Common Line Interface.

A key technological innovation developed for brainlife.io is the ability to automatically track all actions performed
by platform users on Datatypes and Apps. The platform captures data object IDs, Apps versions, and parameter
sets so as to track the full sequence of steps from data import to analysis and publication. A graph describing
provenance metadata for each Datatype can be visualized using the provenance visualizer or downloaded (see
Fig. S3d and Video S10). A shell script is automatically generated to allow the reproduction of full processing
sequences (Video S11). Finally, a single record containing data objects, Apps, and Jupyter Notebooks used in a
study can be made publicly available outside the platform bundled into a single record addressed by a unique
Digital Objects Identifier (DOI) . Whereas all other existing systems provide users with technology to track
analysis steps manually or require the use of coding, brainlife.io tracks automatically and do not require coding
nor user actions to generate a record of everything done by a user for data analysis. This automation technology
lowers the barriers of entry and democratizes FAIR, reproducible large-scale neuroimaging data analysis.

Platform evaluation

In the following section, we evaluate the utility of brainlife.io. To do so, we first present the level of engagement
with the platform by the growing community of users. After that, we describe the results of experiments on the
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robustness and validity of the platform. A detailed description of each section below describing each App and
step used can be found in the corresponding Supplemental Platform evaluation section.

Platform utilization

brainlife.io is developed following the FAIR principles. It is available worldwide and supports thousands of
researchers. First made accessible in Spring 2018, its utilization and assets have grown steadily (Fig. 3 and Fig.
S2c and S4). At the time of this writing, over 2,341 users across 43 countries have created a brainlife.io account.
Over 1,542 of these have been active users (Fig. 3a). Over 3,439 data management Projects have been created,
and a community of developers has implemented over 530 data processing Apps. Over 270 TBs of data have
been stored and processed using brainlife.io, for a total of 1,097,603 hours of compute time.

Researchers ranging from undergraduate students to faculty use brainlife.io (Fig. 3b), and analyses span the full
range of the neuroimaging data lifecycle. The most frequently used Apps pertained to diffusion tractography
(22%), model fitting (15%), and anatomical ROl generation (12%). Community-developed software libraries
provided the foundations for data processing, including Nibabel, Freesurfer, FSL, DIPY, MRTrix, the Connectome
Workbench, and MNE-Python. Terabytes of data have been uploaded (72%) or imported from OpenNeuro.org
(22%), the Nathan-Kline Institute data sharing projects (3%3'%'%?), and other sources. This degree of world-wide
platform access highlights the global need for technology like brainlife.io (see Fig. S2e). More details can be
found in Supplemental platform utilization.
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Figure 3. brainlife.io impact (2018-2022). a. Top left. Number of users submitting more than 10 jobs per month. Top middle.
Number of projects over time. Top right. Number of Apps over time. Bottom left. Data storage across all Projects. Bottom
middle. Compute hours across all Projects (data only available 6 months post project start). Bottom right. Lines of code in the
top 50 most-used Apps. b. Top left. User communities. Top right. App categories. Bottom left. Percent of total jobs launched
with the software library installed (percentage for jobs of top 50 most-used Apps). Bottom right. Datasets sources. See also
Fig. S2c for a world-wide distribution of the researchers that have accessed brainlife.io.

Platform testing

Experiments were performed to demonstrate the ability of the platform to provide accurate data processing and
analysis at scale. The experiments focused on the four axes of scientific transparency: data processing external
validity (DPEV), reliability, reproducibility, and replicability.®"%? Four data modalities (sSMRI, fMRI, dMRI, MEG) were
evaluated using, among others, the test-retest HCP;; % the Cam-CAN,? the HBN,*' and the ABCD?® datasets. In
total, data from over 3,200 participants across 12 datasets were processed. Extracted brain features included
cortical parcel volumes, white matter tract profilometry, functional and structural network properties, functional
gradients, and peak alpha frequency (Fig. 4). Over 193,000 data objects and 22 Terabytes of data were generated
for the experiments. A detailed description of the experiments below can be found in the Supplemental platform
testing section. The brainlife.io Apps used for the experiments are reported in Table S3. Post-processing
analyses were performed using brainlife.io-hosted Jupyter Notebooks (see Table S2).

Data processing external validity (DPEV) was defined as the ability of data processed on brainlife.io to accurately
reflect brain properties proficiently processed by other teams. DPEV was estimated for four data modalities (sMRI,
dMRI, fMRI, and MEG) and five brain features (brain areas volumes, major white matter tracts fractional
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anisotropy, resting state functional connectivity, resting-state function gradients, and MEG peak alpha frequency).
Features values obtained using brainlife.io Apps were compared against data preprocessed by data originators,
specifically the HCP consortium or Cam-CAN project team (Fig. 4, Eig. S4d,e,h). Cortical area volume estimates
on 148 parcels were obtained using brainlife.io Apps and compared to corresponding estimates provided by the
HCP consortium (Fig. 4a; ry4qi,=0.98, rmse,q,=570.54mm?). Fractional anisotropy (FA) in 61 white matter tracts
was estimated using the raw and minimally preprocessed HCP;; dMRI data (Fig. 4b; r,,=0.95,
rmse,.isry=0.018). Functional connectivity estimates between 117% nodes-pairs ** were compared between raw
and minimally preprocessed HCP;; dMRI data (Fig. 4¢; r41,=0.89, rmse,q,=0.12). In addition, functional
gradients %% were computed on 400 nodes estimated on raw and minimally processed HCP;; fMRI data (Fig. 4d;
Nvaigiy=0.59, rmse,41,=0.036). Finally, the peak alpha frequency values were compared between Cam-CAN and
brainlife.io processed MEG data (Fig. 4€; r4y=0.94, rmse,,q.wy=0.30 Hz). Overall, the results show strong
similarity in feature estimates between data processed on brainlife.io versus those processed by external groups

(functional gradients demonstrated the lowest validity and data processing-type dependency based on fMRI
preprocessing procedures %).
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Figure 4. Data processing validity and reliability analysis. Top row: Validity measures derived using the HCP Test-Retest
data. Each dot corresponds to the ratio for a given subject between data preprocessed and provided by the HCP Consortium
vs data preprocessed on brainlife.io in a given measure for a given structure. Pearson’s correlation (r), root mean squared
error (rmse), and a linear fit between the test and retest results were calculated. a. Parcel volume (mm?®). b. Tract-average
fractional anisotropy (FA). ¢*. Node-wise functional connectivity (FC). d*. Primary gradient value derived from resting-state
fMRI. e. Peak frequency (Hz) in the alpha band derived from MEG. Data from magnetometer sensors are represented as
squares, and data from gradiometer sensors are represented as circles. Bottom row: Test-retest reliability measures derived
from derivatives of the HCP;z dataset generated using brainlife.io. Each dot corresponds to the ratio between a test-retest
subject and a given measure for a given structure. Pearson’s correlation (r), root mean squared error (rmse), and a linear fit
between the test and retest results were calculated. f. Parcel volume (mm?®). g. Tract-average fractional anisotropy (FA). h*.
Node-wise functional connectivity (FC). i*. Primary gradient value derived from resting-state fMRI. j. Peak frequency (Hz) in
the alpha band derived from MEG using the Cambridge (Cam-CAN) dataset. Data from magnetometer sensors are
represented as squares, and data from gradiometer sensors are represented as circles. Dark colors represent data within

+/-1 standard deviation (SD. 50% opacity represents data within 1-2 SD. 25% opacity represents data outside 2 SD. *A
representative 5% of data presented in ¢, d, h, i.

Data processing reliability (DPR) was defined as the ability to produce highly similar results on test and retest
measurements within a study participant. DPR was estimated for the four data modalities and five brain features
used above to estimate DPEV. Brain features estimated using brainlife.io Apps on test and retest measurements
(HCP;; dataset) or median splits data (Cam-CAN MEG) were compared. Reliability estimates of brain area
volumes, major tracts FA, networks FC, functional gradients, and Peak Alpha Frequency were obtained (see Fig.

4f-i and associated supplemental text). DPR varied between r,g.,iy=0.99 and 0.73, with sMRI and dMRI
demonstrating the highest reliability (feanin=0.99, 0.93, respectively). See also Fig. S4f-q.i for estimates on
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additional brain features and Table S4 for a full report of all correlation values obtained in all brain features. The
results show strong reliability of most of all the pipelines with the fMRI reliability being lowest, this is consistent
with previous reports %. We also performed computational reproducibility (CR) experiments (see Fig. S4j-n and
associated text). These experiments demonstrated the similarity in estimates produced by brainlife.io Apps when
used twice to process the same dataset. Given the use of containerization technology for the Apps, this test was
expected to return high correlation values. Indeed, all correlations were above 0.99, demonstrating high
consistency. These experiments demonstrate the ability of the platform to conduct valid, reliable, and
reproducible data processing and analysis at scale across multiple data modalities and brain features.

Platform utility for scientific applications

Next, we evaluated the platform’s potential to support scientific findings. To do so, we evaluated whether data
processed using brainlife.io’s Apps contained meaningful patterns. We used over 1,800 participants from three
datasets: PING (Pediatric Imaging, Neurocognition, Genetics), HCP,;,q9, (HCP Young Adult 1,200), and Cam-CAN.
Data were collected across ages, but age ranges differed in each dataset (i.e., 3-20 years for PING, 20-37 years
for HCP,;,00, and 18-88 years for Cam-CAN). The lifelong trajectory was plotted for multiple brain features (e.qg.,
volumes of brain parts, FA of major tracts, network properties. MEG peak frequency, etc; Fig. 5). The collated age
range spanned 7 decades. Features were combined using brainlife.io’s Jupyter Notebooks.
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Figure 5. Lifelong brain maturation estimated across datasets. Relationship between subject age and a. Right
hippocampal volume, b. Right inferior longitudinal fasciculus (ILF) fractional anisotropy (FA), ¢*. maximum node degree of
density network derived using the hcp-mmp atlas, d*. Within-network average functional connectivity (FC) derived using the
Yeo17 atlas, e. Functional gradient distance for visual resting state network derived from the Yeo17 atlas, and f. Peak
frequency in the alpha band derived from magnetometer (squares) and gradiometers (circles) from MEG data. These
analyses include subjects from the PING (ourple), HCP,,o, (green), and Cam-CAN (yellow) datasets. Linear regressions were
fit to each dataset, and a quadratic regression was fit to the entire dataset (blue). * All points in ¢, and d are presented. See

also Fig. S5 and Supplemental platform utility for scientific applications.

Multiple reports have shown inverted U-shaped lifelong trajectories across data modalities.**'% We plotted brain
features derived for each data modality (sMRI, dMRI, fMRI, and MEG) as a function of age across datasets (Fig.
5). Six exemplary lifelong trajectories are shown (additional features are reported in Fig. S5). For each data


https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=id.s3bpu83uw2a
https://paperpile.com/c/xDXTeT/cgkX
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=kix.eq0zveb28ghn
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=id.cetmch34hlb8
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=id.b09atc49l3yh
https://paperpile.com/c/xDXTeT/WnpL+ga8A+0T0o+r5LE+V4n6
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=kix.fy1mp52y0cp0

modality, a quadratic model was fit across all three datasets between 3 and 88 years of age:
Y feature = ange+ bxage+ ¢, (R?=0.152 + 0.0773 s.d.). Mean quadratic term (a) across all data modalities was

negative (-0.0514 + 0.111 s.d.), demonstrating the expected inverted U-shape trajectory. Results show that, by
automatically analyzing data using brainlife.io Apps, it is possible to collate across datasets with substantial
differences in data acquisition parameters and signal-to-noise profiles. Additional details regarding these

experiments can be found in Supplemental platform utility for scientific applications.

Replication and generalization of previous results

We then evaluated the ability of brainlife.io to replicate previous results and generalize findings across datasets. A
more detailed description and additional experiments can be found in Supplemental replication and
generalization. First, we tested brainlife.io’s ability to replicate the results of three previous studies. A negative
correlation between cortical thickness and tissue orientation dispersion (ODI; r,,4,, =-0.46) has been reported in
the HCP,,,o, dataset. brainlife.io Apps were created to estimate cortical thickness and ODI and analyze HCPy; 5
dataset. A negative relationship between cortical thickness and ODI was estimated, replicating the original study
(Fig. 6a; rcp.prainire = ~0.43 VS. I,na). More examples of replications can be found in Fig. S6a.b.
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Figure 6. Replication of previous studies using brainlife.io. a. Average cortical hcp-mmp parcel thickness (Ng,. = 322)
compared to parcel orientation dispersion index (ODI) from the NODDI model mapped to the cortical surface (inset) of the
HCP S1200 dataset (Ng, = 1,043) and Cam-CAN (Ny,, = 492) dataset compared to the parcel-average cortical thickness. b.
Stressful life events obtained from Negative Life Events Schedule (NLES) survey from Healthy Brain Network participants (N,
= 42) compared to Uncinate-average normalized Quantitative Anisotropy (QA). Mean linear regression (blue line) fits and
standard deviation (shaded blue). c. Early life stress was obtained from multiple surveys collected from ABCD participants
(Nswo = 1,107) compared to Uncinate-average Fractional Anisotropy (FA). Linear regression (green line) fits the data with
standard deviation (shaded green).

Second, the generalization of the original findings to a different dataset was tested in three ways. The first test
was run using the cortical ODI estimated in the Cam-CAN dataset. A negative trend of about half the magnitude
of the original was estimated (Fig. 6a; rc.m.can-pranie = ~0.-28 VS. Iougna). The result generalizes the original results
and the reduced effect in a new dataset is consistent with reports on the reproducibility of scientific findings.'
The second generalization test focused on the reported relationship between life stressors and white matter
structural organization of the uncinate fasciculus (UF; r=-0.057)."® Two datasets were used to extend the finding
to new data, i.e., HBN and ABCD. The number of negative life events (Negative Life Events Schedule; NLES) in
the HBN dataset was correlated with subjects’ quantitative anisotropy (QA) in the right- and left-hemisphere UF.
Results show a negative correlation similar in magnitude as found in the original study (Fig. 6b r.gy gr = -0.35,
p-value < 0.05; rygy rignr = -0.39, p-value < 0.05). The third and final attempt at the generalization of the same
result was made using the ABCD dataset. Early life stress was estimated as a composite score of traumatic life
events, environmental and neighborhood safety, and the family conflict subscale of the Family Environment
Scale.® A negative relationship between UF FA and the composite score was estimated in the left- and right-UF
(Fig. 6C ragcp err=-0.12, p-value < 0.001; ragcp righr = -0.09, p < 0.01). Overall, these results demonstrate both the
robustness of the original results and the potential of brainlife.io services to detect meaningful associations in
large, heterogeneous datasets.
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Example applications to detecting disease

The final two tests evaluated the platform’s ability to identify human disease biomarkers. Data from individuals
with a sports-related concussion, eye disease (Choroideremia and Stargardt’s disease), and matched controls
were used (Fig. 7). A detailed description of the experiments can be found in Supplemental to detecting
disease. It has been reported that concussion can alter brain tissue both in cortical and deep white matter
tracts.'® We set out to measure the difference in cortical white matter tissue in concussed and matched controls.
FA was estimated from data collected within 24-48 hours post-concussion. The distribution of FA in the superior
temporal sulcus (STS) is reported (Fig. 7a). One representative athlete showed strong post-concussive symptoms
and low STS cortical FA (red). The result demonstrates the potential of brainlife.io processed data to report
meaningful changes in brain tissue following a concussion.
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Figure 7. Using brainlife.io to identify and characterize clinical populations from healthy controls. a. Fractional
anisotropy (FA) values were estimated within the superior temporal sulcus (da: dorsal anterior) from 20 healthy athlete
controls (gray distribution) and 10 concussed athletes. Average FA, 10% low FA, and the lowest FA value across all
concussed athletes were measured (red arrows and dot). b. Retinal OCT images from healthy controls (top row), Stargardt’s
disease patients (middle row), and Choroideremia patients (bottom row). From these images, photoreceptor complex
thickness was measured for each group (Controls: gray; Choroideremia: green; Stargardt’s: blue) in two distinct areas of the
retina: the fovea (eccentricities 0-1 degrees) and the periphery (eccentricities 7-8 degrees). In addition, optic radiations
carrying information for each area of the retina were segmented and FA profiles were mapped. Average profiles with
standard error (shaded regions) were computed. One Stargardt and one Choroideremia participant were each identified as
having FA profiles that deviated from both healthy controls and the opposing retinal disorder.

Changes in the white matter of the optic radiation (OR) as a result of eye disease have been reported.'”""" We set
out to test the ability of brainlife.io Apps to detect similar changes in the OR white matter tissue in two eye
diseases for which OR white matter changes have not previously been reported. Individuals with Stargardt’s
disease (a deterioration of the retina initiating in the central fovea), and Choroideremia (retinal deterioration
initiating in the visual periphery), were compared to healthy controls. Retina photoreceptor complex thickness was
estimated in the fovea and peripheral using optical coherence tomography (0-1 and 7-90 degrees of visual
eccentricity, respectively; Fig. 7b). Choroideremia patients showed photoreceptor complex thickness comparable
to healthy controls in the fovea, but deviated in the periphery (Fig. 7b). The trend was opposite for Stargardt’s
patients. brainlife.io Apps were developed to automatically separate OR bundles projecting to different visual
eccentricity in cortical area V1. Average FA profiles for each patient group and controls were estimated for OR
fibers projecting to the fovea or periphery.'2 13114 Results show a reduction in FA in the component of the OR
projecting to the fovea (but not the periphery) in Stargardt’s patients (Fig. 7b, blue), and the opposite pattern (OR
fibers projecting to the periphery had lower FA than controls) in Choroideremia patients (Fig. 7b, blue). These
results demonstrate the ability of the platform technology to detect disease biomarkers.

A new approach to facilitate quality control at scale

brainlife.io offers a unique quality assurance (QA) approach to ensure processed data has the quality necessary to
serve large user bases. Reference ranges are often used in vision science to provide a reference for a
measurement, ''® and a similar approach was integrated within the brainlife.io data processing interface. To test it,
the mean, first, and second SD were estimated (via multiple Apps) for four brain features (tractmeasures,
parc-stats, networks, PSD) using the HCP,;,,,0, Cam-CAN, and PING datasets. For each of the four brain features,
the estimated mean and estimated s.d. (referred to here as Reference ranges) are automatically calculated on the
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brainlife.io platform. That is, when a researcher uses an App to estimate one of the four features, the values of the
researcher’s dataset are automatically overlaid on top of the mean, first, and second s.d. marks provided as a
reference by brainlife.io. In this way, the mean and variability can be used by researchers to efficiently judge
whether a recently processed dataset returned appropriate values. For example, reference datasets can be used
to detect outlier data (Fig. 8a-d). Example reference datasets for four Datatypes are in Fig. 8e and an example of
platform interfaces reporting these reference datasets is shown in Eig. S8. A detailed description of the approach
used in this section can be found in Supplemental to quality control at scale. These reference ranges are an
additional source for quality assurance, alongside other options for QA such as online data visualization, the
automated generation of images and plots from the processed data as well as the detailed technical reports from
major BIDS Apps such as fMRIprep, QSIPrep, MRIQC, Freesurfer 67072116,
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Figure 8. Reference datasets for quality assurance. Example workflow for building normative reference ranges for
multiple derived statistical products (cortical parcel volume, white matter tract profilometry, within-network functional
connectivity, and power-spectrum density (PSD)). a. Cortical volumes of the left hippocampus from HCP participants. Red
dots indicate outlier data points. b. Average fractional anisotropy (FA) profiles (blue line) plotted with two standard
deviations (shaded regions). Red lines indicate outlier profiles. c. Within-network functional connectivity for the nodes within
the Default-A network using the Yeo17 atlas. Red dots indicate outlier data points. d. Average PSD from occipital channels
using magnetometer sensors from Cam-CAN participants with one standard deviation (shaded regions). Red lines indicate
outlier participants. Peak alpha frequency distribution was also computed, and outliers were detected (inset). e. Normative
reference distributions for each derived statistical product across the PING (purple), HCP (blue), and Cam-CAN (orange)
datasets. These distributions have had outliers removed. An example of the brainlife visualization for reference datasets can
be found in Fig. S8.

DISCUSSION

The brainlife.io platform was developed with public funding to promote the progress of brain science and
education and to enable discovery and improve health. The platform connects researchers with publicly available
datasets, analysis code, data archives, and compute resources. brainlife.io is an end-to-end, turnkey data
analysis platform that provides researchers interested in the brain with services for data upload, management,
visualization, preprocessing, analysis, and publication—all integrated within a unique cloud environment and web

12


https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=kix.cvrxwbk9kod5
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=id.o26d9r852vy
https://paperpile.com/c/xDXTeT/jJ7a+KDYL+cBe7+XmN3
https://docs.google.com/document/d/1jk97IPM8ac9HYckGKLEMy3nKM_8SWOwtI2Ejw6XWyGo/edit#bookmark=id.osgvn4s79u5c

interface. The platform uses opportunistic computing and publicly-funded resources for storage and computing,
880 put it can also use popular commercial clouds. The goal is to advance the democratization of big data
neuroscience by lowering the barriers of entry to multimodal data analysis, network neuroscience, and large-scale
analysis, all opportunities historically limited to a paucity of highly-skilled, high-profile research teams.3%9%117-122
The platform supports a rigorous and transparent scientific process spanning the research data lifecycle from
after data collection to sharing’®® and automatically tracks complex sequences of interactions between
researchers, Apps, analysis notebooks, and data objects to support reproducibility. The FAIR data principles for
data stewardship and management ° are generally used as guidelines for any data-centric project. Recently, it has
been proposed that a modern definition of neuroscience data should extend beyond measurements and data to
include metadata and software for analysis and management. '*® Each research asset on brainlife.io (i.e., data
derivatives, analysis software, and software services, as handled by the platform) is aligned with the FAIR data
principles (see Supplement on brainlife.io_and the FAIR principles). The following discussion will include
descriptions of the resources available for getting started on brainlife.io, applications of brainlife.io to educational
settings, the platform’s strict data governance principles, increasing “data gravity” via brainlife.io, potential
expansion of the platform, and the platform’s current limitations.

The brainlife.io project provides multiple resources for App developers, computing resource managers, and
neuroscience researchers to learn to use the platform or contribute to the project. A comprehensive overview of
the platform and tutorials for getting started with developing Apps or using the platform can be found in the
integrated documentation (brainlife.io/docs), as well as on a YouTube Channel that provides tutorials and
demonstrations of concepts (youtube.com/@brainlifeio). A public slack channel is used for managing user
communications, requests, feedback, and operations (brainlife.slack.com). Users can also ask questions to
developers and the community using the topic ‘brainlife’ on neurostars.org and adding GitHub issues. Finally, a
quarterly community engagement and outreach newsletter is sent to all users, and a Twitter account (@brainlifeio)
informs the wider community on critical events and connects to information relevant to the project.

brainlife.io and its user community are highly engaged in providing innovative training and education opportunities
for the next generation of students, postdocs, and clinicians interested in the intersection between neuroscience,
data science, and information. The platform allows new students and educators to access many complex data
files and analysis methods with minimal overhead. Educators have started using brainlife.io to teach neuroscience
and data science concepts in the classroom, and courses have been organized in Europe, the USA, Canada, and
Africa. These courses introduce basic concepts and teach students how to perform neuroimaging investigations
without the requirement of programming or computing expertise. The skills that can be learned using the platform
include data preprocessing, quality assurance, and statistical analyses. Integrative data management and analysis
provide opportunities for educators and students in under-resourced institutions or countries to perform research
and teach neuroscience with hands-on experience.

The project leadership and advisory team recognize the importance of ensuring that data processing workflows
are ethically responsible, legally compliant, and socially acceptable. Indeed, data governance is considered an
integral part of data processing. Data governance is defined as the principles, procedures, technologies, and
policies that ensure acceptable and responsible processing of data at each stage of the data life cycle.'® It
comprises the management of the availability, usability, integrity, quality, and security of data.'® The data
governance policies, processes, and technologies within brainlife.io cover three key elements: people, processes,
and technologies. A comprehensive set of advanced security measures and protocols guarantee that only
authorized individuals have access. These measures include end-to-end encrypted communication, strict access
control, and support for multi-factor authentication. Datasets uploaded by users using brainlife.io/ezBIDS are
pseudonymized,'* (i.e. direct identifiers are removed) at upload. The platform interface provides fields for project
managers to add Data Use Agreements (DUA) in alignment with the nature and context of their data. The platform
even provides template DUAs describing data users’ responsibilities and liabilities, including becoming the data
controller (the person who controls the purposes and means of processing the data). These governance
mechanisms comply with available regulations and mandates, such as the European Union's General Data
Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA) in the United
States, which require that personal data be stored and managed in a secure and compliant manner. Cloud
systems are designed to provide the level of protection necessary to ensure the privacy and confidentiality of
research participants. Finally, the incoming changes to data deposition and sharing mandates (such as that
recently released by the National Institutes of Health in the United States'®>'®) are likely to increase the workload
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for neuroscience researchers. The brainlife.io publication records are compatible with the NIH data sharing
mandates (for privacy, sharing, and preservation), and the platform is registered on fairsharing.org, datacite.org,
datasetsearch.research.google.com, and nitric.org.

Data gravity is the ability of datasets to attract utilization'®” Neuroimaging research within the larger neuroscience
field has led the way in increasing data gravity. A long and growing list of tools orchestrated under a general label
of open science are being developed to support and facilitate data utilization and access. These tools can be
divided into four primary categories: software library, data archives and database systems, data standards, and
computing platforms.*® The data archives and systems closest to brainlife.io are the INDI,'?%'2® OpenNeuro.org,*
DANDI,™ BossDB,"' DatalLad,” NITRC," PING,* Can-CAM,% the Brain/MINDS project,’®® and LORIS."™* The
web services most related to the current work are NeuroQuery,"®® NeuroScout,’®® CBRAIN,'®” NeuroDesk,®
XNAT,®® NEMAR,“® EBRAINS ', LONI, '“>'*3 the International Brain Lab data Instratructure '**, COINSTAC '
and CONP ', Most projects are open-source and provide various degrees of data access. brainlife.io end-to-end
integrated environment that brings researchers from raw data to Jupyter Notebooks and Tidy data tables while
tracking data provenance automatically is unique. But many other projects exist and given the fast-growing
landscape of neuroinformatics projects, we collected a table listing the major ones (see Table S5). The
International  Neuroinformatics Coordinating Facility also provides a list of major projects
incf.org/infrastructure-portfolio. brainlife.io is one of the approved resources, as it complies with the INCF
requirement for FAIR infrastructure. The ability of the platform to utilize data from multiple modalities (MEG, EEG,
MRI) is a unique feature, connecting neuroimaging research sectors that have been historically siloed. However,
we envision additional opportunities for expanding the types of data managed by the platform, fostering further
data integration. For example, other data modalities could be mapped to brainlife.io Datatypes, and the
mechanism for data Integration with metadata capture toolkits " and data models '“® would provide additional
facilitation for the analysis domains of data currently not covered by the BIDS standard.

Improving the platform’s automation and interoperability is part of the vision and sustainability plan. For example,
despite the best efforts of App developers, errors occur (see Fig. S3d). Currently, researchers only have simple
interfaces that report technical output logs and error messages when Apps fail to process data, and parsing these
messages requires expertise. Users are required to either contact the brainlife.io team or parse the error logs
themselves. Planned improvements to brainlife.io’s error reporting interfaces will help users understand the
sources of errors and find solutions. In addition to error identification, identifying the optimal set of processing
steps or parameter sets at the beginning of a project can prove challenging. In addition, currently, researchers
identify the optimal data processing steps by looking at existing documentation or videos. In the future,
mechanisms that automatically identify processing steps can be implemented to suggest to researchers optimal
ways to process their data (e.g. given what other researchers might have already implemented on the platform).
Finally, improving connection with major archives and platforms such as OpenNeuro.org, DANDI, NeuroScout,
NeuroDesk, and neurosynth.org, would contribute to implementing the vision of a global interoperable ecosystem
for a FAIR, accessible, and democratized neuroscience.

In summary, the capabilities of brainlife.io are unique, open, accessible, and expandable. The expansion of
instrument capabilities in neuroimaging has in the last 30 years revolutionized our ability to collect data about the
brain and brain function. As the landscape of neuroscience big-data projects is only expected to grow in the
coming years, moving research data management and computing to cloud platforms will become not just a
brilliant option, but a serious requirement. Compliance with mandates for data privacy and sharing will ultimately
require researchers to move data management and processing to secure and professionally managed to compute
and storage systems. Our goal for brainlife.io is to facilitate this process and thereby revolutionize the ability to
rigorously and reliably make use of the wealth of data now available to understand brain function, leading to new
cures for brain disease. In so doing, brainlife.io will also make cutting-edge datasets and analysis resources more
accessible to students and researchers from traditionally underrepresented groups in high-, medium- and

low-income countries.
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ONLINE METHODS AND MATERIALS

Data collection approval. Multiple experiments were performed by individuals at various institutions using the platform.
Experiments were approved by the local institutional review boards (IRB), and only the personnel approved for a specific study
accessed the data in private projects on brainlife.io. Some of the secondary data usages were deemed IRB-exempt.

Data sources. Multiple openly available data sources were used for examining the validity, reliability, and reproducibility of
brainlife.io Apps and for examining population distributions. All information regarding the specific image acquisitions,
participant demographics, and study-wide preprocessing can be found in the following publications 27283114153 Some data
sources are currently unpublished. For these, the appropriate information is provided.

Validity, reliability, reproducibility, replicability, developmental trends, & reference datasets

Human Connectome Project (HCP; Test-Retest, s1200-release) *°. Data from these projects were used to assess the validity,
reliability, and reproducibility of the platform. They were used to assess the abilities of the platform to identify developmental
trends in structural and functional measures, and they were used to generate reference datasets. Structural data (sSMRI): The
minimally-preprocessed structural T1w and T2w images from the Human Connectome Project (HCP) from 1066 participants
from the s1200 and 44 participants from the Test-Retest releases were used. Specifically, the 1.25 mm ‘acpc_dc_restored’
images generated from the Siemens 3T MRI scanner were used for all analyses involving the HCP. For most examinations, the
already-processed Freesurfer output from HCP was used. Diffusion data (AMRI): To assess the validity of preprocessing on
brainlife.io, the unprocessed dMRI data from 44 participants from the HCP Test dataset was used. For reliability and all
remaining analyses, the minimally-preprocessed diffusion (dMRI) images from 1,066 participants from the s1200 and 44
participants from the Test-Retest releases from the 3T Siemens scanner were used. All processes incorporated the multi-shell
acquisition data. Functional data (fMRI): For validation, the unprocessed resting-state functional MRI (fMRI) from 44
participants from the HCP Test dataset was compared to the minimally-preprocessed BOLD data provided by HCP. For
reliability and all other analyses, the minimally-preprocessed BOLD data from 1,066 participants from the s1200 and 44
participants from the Test-Retest releases from the 3T Siemens scanner were used.

The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) #. The data from this project were used to assess the
validity, reliability, and reproducibility of the platform and to assess the abilities of the platform to identify developmental
trends of structural and functional measures, and to generate reference datasets. Structural data (sMRI): The unprocessed
1mm isotropic structural T1w and T2w images from 652 participants from the Cambridge Centre for Ageing and Neuroscience
(Cam-CAN) study were used. Diffusion data (dMRI): The unprocessed 2mm isotropic diffusion (dMRI) images from 652
participants from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study were used. Functional data (fMRI):
The 3mm x 3mm x 4mm unprocessed resting-state fMRI images from 652 participants from the Cambridge Centre for Ageing
and Neuroscience (Cam-CAN) study were used. Electromagnetic data (MEG): The 1000 Hz resting-state filtered and unfiltered
datasets from 652 participants from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study were used.

Developmental trends & reference datasets

Pediatric Imaging, Neurocognition, and Genetics (PING) *. The data from this project were used to assess the abilities of the
platform to identify developmental trends of structural measures and to generate reference datasets. Structural data (sMRI):
The unprocessed 1.2 x 1.0 x 1.0 mm structural T1w and the 1.0 mm isotropic T2w images from 110 participants from the
Pediatric Imaging, Neurocognition, and Genetics (PING) study were used. Diffusion data (dMRI): The unprocessed 2mm
isotropic diffusion (dMRI) images from 110 participants from the Pediatric Imaging, Neurocognition, and Genetics (PING) study
were used.

Replicability datasets

Adolescent Brain Cognitive Development (ABCD) 2%, Structural data (sMRI): The unprocessed 1mm isotropic structural T1w
and T2w images from a subset of 1,877 participants from the Adolescent Brain Cognitive Development (ABCD release-2.0.0)
study were used. Diffusion data (dMRI): The unprocessed 1.77mm isotropic diffusion (dMRI) images from a subset of 1877
participants from the Adolescent Brain Cognitive Development (ABCD release-2.0.0) study were used. A single diffusion
gradient shell was used for these experiments (b=3000s/msec?). Research approved by the University of Arkansas IRB
(#2209425822).

Healthy Brain Network (HBN) 3'. The data from this project were used to assess the abilities of the platform to replicate
previously published findings via the assessment of the relationship between microstructural measures mapped to segmented
uncinate fasciculi and self-reported early life stressors. Research approved by the University of Pittsburgh IRB
(#PRO17060350). Structural data (sMRI): The 0.8 mm isotropic structural T1w images from 42 participants from the Healthy
Brain Network (HBN) study were used. Diffusion data (dMRI): The unprocessed 1.8 mm isotropic diffusion (dMRI) images from
42 participants from the CitiGroup Cornell Brain Imaging Center site of the Healthy Brain Network (HBN) study were used.
Research approved by the University of Pittsburgh IRB (#PRO17060350).
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UPENN-PMC . The data from this project were used to assess the abilities of the platform to replicate previously published
findings via the assessment of the performance of an automated hippocampal segmentation algorithm. All procedures were
conducted under the approval of the Institutional Review Board at the University of Texas at Austin. Structural data (sMRI): The
T1w and T2w data were provided within the Automated Segmentation of Hippocampal Subfields (ASHS) atlas™*.

Clinical-identification datasets

Indiana University Acute Concussion Dataset. The data from this project were used to assess the abilities of the platform to
identify clinical populations via the mapping of microstructural measures to the cortical surface. Neuroimaging was performed
at the Indiana University Imaging Research Facility, housed within the Department of Psychological and Brain Sciences with a
3-Tesla Siemens Prisma whole-body MRI using a 64-channel head coil. Within this study, 9 concussed athletes and 20 healthy
athletes were included. Research approved by Indiana University (IRB: 906000405). Structural data (sMRI): High-resolution
T1-weighted structural volumes were acquired using an MPRAGE sequence: Tl = 900 ms, TE = 2.7 ms, TR = 1800 ms, flip
angle = 9°, with 192 sagittal slices of 1.0 mm thickness, a field of view of 256 x 256 mm, and an isometric voxel size of 1.0
mm?®. The total acquisition time was 4 minutes and 34 seconds. High-resolution T2-weighted structural volumes were also
acquired: TE = 564 ms, TR = 3200 ms, flip angle = 120°, with 192 sagittal slices, a field of view of 240 x 256 mm, and an
isometric voxel size of 1.0mm?. Total acquisition time was 4 minutes 30 seconds. Diffusion data (dMRI): Diffusion data were
collected using single-shot spin-echo simultaneous multi-slice (SMS) EPI (transverse orientation, TE = 92.00 ms, TR = 3,820
ms, flip angle = 78 degrees, isotropic 1.5 mm?® resolution; FOV = LR 228 mm x 228 mm x 144 mm; acquisition matrix MxP =
138 x 138. SMS acceleration factor = 4). This sequence was collected twice, one in the AP fold-over direction and the other in
the PA fold-over direction, with the same diffusion gradient strengths and the number of diffusion directions: 30 diffusion
directions at b = 1000 s/mm?, 60 diffusion directions at b = 1,750 s/mm?, 90 diffusion directions at b = 2,500 s/mm?, and 19 b
= 0 s/mm? volumes. The total acquisition time for both sets of dMRI sequences was 25 minutes and 58 seconds.

Oxford University Choroideremia & Stargardt’s Disease Dataset. The data from this project was used to assess the abilities of
the platform to identify clinical populations via mapping retinal-layer thickness via OCT and mapping of microstructural
measures along optic radiation bundles segmented using visual field information (eccentricity). Neuroimaging was performed
at the Wellcome Centre for Integrative Neuroimaging, Oxford with the Siemens 3T scanner. Research approved by the UK
Health Regulatory Authority reference 17/LO/1540. Structural data (sMRI): High-resolution T1-weighted anatomical volumes
were acquired using an MPRAGE sequence: Tl = 904 ms, TE = 3.97 ms, TR = 1900 ms, flip angle = 8°, with 192 sagittal slices
of 1.0 mm thickness, a field of view of 174 mm x 192 mm x 192 mm, and an isometric voxel size of 1.0 mm?. The total
acquisition time was 5 minutes and 31 seconds. Diffusion data (dMRI): Diffusion data were collected using EPI (transverse
orientation, TE = 92.00ms, TR = 3600 ms, flip angle = 78 degrees, 2.019 x 2.019 x 2.0 mm? resolution; FOV = 210 mm x 220
mm x 158 mm; acquisition matrix MxP = 210 x 210, SMS acceleration factor = 3). This sequence was collected twice, one in
the AP fold-over direction and the other in the PA fold-over direction. The PA fold-over scan contained 6 diffusion directions, 3
at b = 0 s/mm? and 3 at b = 2000 s/mm?, and was used primarily for susceptibility-weighted corrections. The AP fold-over
scan contained 105 diffusion directions, 5 at b = 0 mm/s?, 51 at b = 1000 mm/s?, and 49 at b = 2000 mm/s?. The total
acquisition time for both sets of dMRI sequences was 7 minutes and 8 seconds.

General processing pipelines

Structural processing. For the ABCD, Cam-CAN, Oxford University Choroideremia & Stargardt’s Disease Dataset, and the
Indiana University Acute Concussion datasets, the structural T1w and T2w (sMRI) images (if available) were preprocessed,
including bias correction and alignment to the anterior commissure-posterior commissure (ACPC) plane, using A273 and A350
respectively. For PING data, no bias correction was performed but alignment to the ACPC plane was performed using A99 and
A116 for T1w and T2w data respectively. For HCP data, this data was already provided. The structural T,-weighted images for
each participant and dataset were then segmented into different tissue types using functionality provided by MRTrix3 (Tournier
et al, 2019) implemented as A239. For a subset of datasets, this was performed within the diffusion tractography generation
step using A319. The gray- and white-matter interface mask was subsequently used as a seed mask for white matter
tractography. The processed structural T1w and T2w images were then used for segmentation and surface generation using
the recon-all function from Freesurfer’® (AQ). Following Freesurfer, representations of the cortical ‘midthickness’ surface were
computed by spatially averaging the coordinates of the pial and white matter surfaces generated by Freesurfer using the
wb_command -surface-cortex-layer function provided by Workbench command for the HCP;5, HCP,;,4,, ABCD, Cam-CAN,
PING, and Indiana University Acute Concussion datasets. These surfaces were used for cortical tissue mapping analyses.
Following Freesurfer and midthickness-surface generation, the 180 multimodal cortical nodes (hcp-mmp) atlas and the Yeo 17
(veo17) atlas were mapped to the Freesurfer segmentation of each participant implemented as brainlife.io App A23. These
parcellations were used for subsequent cortical, subcortical, and network analyses. In addition, measures for cortical
thickness, surface area, volume, and summaries of diffusion models of microstructure were estimated using A383 and A389.
To estimate population receptive fields (pRF) and visual field eccentricity properties in the cortical surface in the Oxford
University Choroideremia & Stargardt’s Disease Dataset, the automated mapping algorithm developed by '*°'%® was
implemented using A187. To segment thalamic nuclei for optic radiation tracking, the automated thalamic nuclei segmentation
algorithm provided by Freesurfer "2 was implemented as A222. Finally, visual regions of interest binned by eccentricity were
then generated using AFNI " functions implemented in A414. To assess the replicability capabilities of the platform, an
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automated hippocampal nuclei segmentation app (A262) was used to segment hippocampal subfields from participants within
the UPENN-PMC dataset provided within the ASHS atlas.

Diffusion (dMRI) processing. Preprocessing & model fitting: For a majority of the analyses involving the HCP dataset, the
minimally-preprocessed dMRI images were used and thus no further preprocessing was performed. However, to assess the
validity of the preprocessing pipeline, the unprocessed dMRI data from the HCP Test dataset, dMRI images were
preprocessed following the protocol outlined in '*® using A68. The same app was also used for preprocessing the dMRI
images for the ABCD, Cam-CAN, PING, Oxford University Choroideremia & Stargardt’s Disease Dataset, the Indiana University
Acute Concussion, and HBN datasets. Specifically, dMRI images were denoised and cleaned from Gibbs ringing using
functionality provided by MRTrix3 before being corrected for susceptibility, motion, and eddy distortions and artifacts using
FSLU’s topup and eddy functions *'%°. Eddy-current and motion correction was applied via the eddy_cuda8.0 with the
replacement of outlier slices (i.e. repol) command provided by FSL %%, Following these corrections, MRTrix3’s dwigradcheck
functionality was used to check and correct for potential misaligned gradient vectors following top-up and eddy . Next,
dMRI images were debiased using ANT’s n4 functionality ' and the background noise was cleaned using MrTrix3.0’s
dwidenoise functionality . Finally, the preprocessed dMRI images were registered to the structural (T1w) image using FSL’s
epi_reg functionality '®-'®, Following preprocessing, brain masks for dMRI data using bet from FSL were implemented as
A163.

DTIl, NODDI, and g-sampling model fitting. Following preprocessing, the diffusion tensor (DTI) model ' and the neurite
orientation dispersion and density imaging (NODDI) "' models were subsequently fit to the preprocessed dMRI images for
each participant using either A319 or A292 for DTl model fitting and A365 for NODDI fitting. Note, the NODDI model was only
fit on the HCP, Cam-CAN, Oxford University Choroideremia & Stargardt’s Disease Dataset, and the Indiana University Acute
Concussion datasets. For those datasets, the NODDI model was fit using an intrinsic free diffusivity parameter (d ;) of 1.7x10-3
mm?/s for white matter tract and network analyses, and a d, of 1.1x10-3mm?/s for cortical tissue mapping analyses, using
AMICO’s implementation'” as A365. The constrained spherical deconvolution (CSD) (Tournier et al, 2007) model was then fit
to the preprocessed dMRI data for each run across 4 spherical harmonic orders (i.e. L) parameters (2,4,6,8) using
functionality provided by MRTrix3 implemented as brainlife.io App A238. For the PING datasets, the CSD model was fit using
the same exact code found in A238, but performed using the tractography App A319. For the HBN dataset, the isotropic spin
distribution function was obtained by reconstructing the diffusion MRI data with the Generalized g-sampling imaging method
8 using functionality provided by DSI-Studio® (A423). Quantitative anisotropy (QA) was then estimated from the isotropic spin
distribution function.

Tractography. Following model fitting, the fiber orientation distribution functions (fODFs) for L,.=6 and L..,=8 were
subsequently used to guide anatomically-constrained probabilistic tractography (ACT; Smith et al, 2012) using functions
provided by MRTrix3 implemented as brainlife.io App A297 or A319. For the HCP;; HCP,,,, and Oxford University
Choroideremia & Stargardt’s Disease datasets, L,.=8 was used. For ABCD and Cam-CAN datasets, L,,.,=6 was used. For the
HCP, ABCD, Cam-CAN, datasets, a total of 3 million streamlines were generated. For all datasets, a step-size of 0.2 mm was
implemented. For the HCP;z, HCPq;54, ABCD, and Cam-CAN datasets, minimum and maximum lengths of streamlines were
set at 25 and 250mm respectively, and a maximum angle of curvature of 35° was used. For the PING dataset, minimum and
maximum lengths of streamlines were set at 20 and 220mm respectively, and a maximum angle of curvature of 35° was used.

White Matter Segmentation and cleaning. Following tractography, 61 major white matter tracts were segmented for each run
using a customized version of the white matter query language (Bullock et al, 2019) implemented as brainlife.io App A188.
Outlier streamlines were subsequently removed using functionality provided by Vistasoft and implemented as brainlife.io App
A195. Following cleaning, tract profiles with 200 nodes were generated for all DTl and NODDI measures across the 61 tracts
for each participant and test-retest condition using functionality provided by Vistasoft and implemented as A361.
Macrostructural statistics, including average tract length, tract volume, and streamline count was computed using functionality
provided by Vistasoft implemented as A189. Microstructural and macrostructural statistics were then compiled into a single
data frame using A397.

Segmentation of the optic radiation (OR). To generate optic radiations segmented by estimates of visual field eccentricity in the
Oxford University Choroideremia & Stargardt’s Disease Dataset, ConTrack ' tracking was implemented as A252. 500,000
sample streamlines were generated using a step size of 1mm. Samples were then pruned using inclusion and exclusion
waypoint ROIs following methodologies outlined in "%81%°,

Segmentation of uncinate fasciculus (UF). To assess the relationship between Uncinate tract-average quantitative anisotropy
(QA) and fractional anisotropy (FA) and Early Life Stressors within two independent datasets (Healthy Brain Network, ABCD),
the tract-average QA for the Left and Right Uncinates were computed from 42 participants from the HBN and the
tract-average FA were computed from 1107 participants from the ABCD dataset. For the HBN dataset, a full tractography
segmentation pipeline was used to preprocess the dMRI data and segment the uncinate fasciculus using A423. Automatic
fiber tracking was then performed to segment the uncinate fasciculus using default parameters and templates from a
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population tractography atlas from the Human Connectome Project '*. A threshold of 16 mm as the maximum allowed
threshold for the shortest streamline distance was then applied to remove spurious streamlines. The whole tract average QA
was then estimated. To probe stress exposure within the HBN dataset, we used the Negative Life Events Schedule (NLES), a
22-item questionnaire where participants were asked about the occurrence of different stressful life events. For the questions
pertaining to early life stressors, the ABCD dataset was used. The tract-average FA for the Left and Right Uncinates were
estimated using procedures described previously, then compared to the participant’s life stressors behavioral measures by
fitting a linear regression to the data.

Structural networks: Following tract segmentation, structural networks were generated using the multi-modal 180 cortical node
atlas and the tractograms for each participant using MRTrix3’s tck2connectome’” functionality implemented as A395.
Connectomes were generated by computing the number of streamlines intersecting each ROI pairing in the 180 cortical node
parcellation. Multiple adjacency matrices were generated, including count, density (i.e. count divided by the node volume of
the ROI pairs), length, length density (i.e. length divided by the volume of the ROI pairs), and average and average density AD,
FA, MD, RD, NDI, ODI, and ISOVF. Density matrices were generated using the -invnodevol option'’®. For non-count measures
(length, AD, FA, MD, RD, NDI, ODI, ISOVF), the average measure across all streamlines connecting and ROI pair was
computed using MRTrix3’s tck2scale functionality using the -precise option'”” and the -scale_file option in tck2connectome.
These matrices can be thought of as the “average measure” adjacency matrices. These files were outputted as the ‘raw’
Datatype, and were converted to conmat Datatype using A393. Connectivity matrices were then converted into the ‘network’
Datatype using functionality from python functionality implemented as A335.

Cortical & subcortical diffusion & morphometry mapping. For the PING, HCP;z, HCP,5,, Cam-CAN, and Indiana University
Acute Concussion datasets, DTI and NODDI (if available) measures were mapped to each participant’s cortical white matter
parcels following methods found in Fukutomi and colleagues using functions provided by Connectome Workbench®
implemented as brainlife.io App A379. A Gaussian smoothing kernel (FWHM = ~4mm, ¢ = 5/3mm) was applied along the axis
normal to the midthickness surface, and DTl and NODDI measures were mapped using the wb_command
-volume-to-surface-mapping function. Freesurfer was used to map the average DTl and NODDI measures within each parcel
using functionality from Connectome Workbench using A389 and A483. Measures of volume, surface area, and cortical
thickness for each cortical parcel were computed using Freesurfer and A464. Freesurfer was also used to generate parcel
average DTl and NODDI measures for the subcortical segmentation (aseg) from Freesurfer using A383. Measures of volume for
each subcortical parcel were computed using Freesurfer and A272.

Resting-state Functional (rs-fMRI) preprocessing and functional connectivity matrix generation. For the HCP,; and
Cam-CAN datasets, unprocessed rs-fMRI datasets were preprocessed using fMRIPrep implemented as A160. Briefly,
fMRIPrep does the following preprocessing steps. First, individual images are aligned to a reference image for motion
estimation and correction using mcflirt from FSL. Next, slice timing correction is performed in which all slices are realigned in
time to the middle of each TR using 3dTShift from AFNI. Spatial distortions are then corrected using field map estimations.
Finally, the fMRI data is aligned to the structural T1w image for each participant. Default parameters provided by fMRIPrep
were used. For a subset of analyses involving the HCP Test and Retest datasets, the preprocessed rs-fMRI datasets provided
by the HCP consortium were used. Following preprocessing via fMRIPrep for the volume data, connectivity matrices were
generated using the Yeo17 parcellation and A369 and A532. Within-network functional connectivity for the 17 canonical
resting state networks was computed by computing the average functional connectivity values within all of the nodes
belonging to a single network. These estimates were used for subsequent analyses.

Resting-state Functional (rs-fMRI) gradient processing. For the HCP;z and Cam-CAN datasets, unprocessed rs-fMRI data
from HCP Test and the Cam-CAN datasets were preprocessed using fMRIPrep implemented as A267. Within this app, the
same preprocessing steps are undertaken as in A160, except for an additional volume-to-surface mapping using mri_vol2surf
from Freesurfer. The surface-based outputs were then used to compute gradients following methodologies outlined in ° for
each participant in the HCPg;,0, HCPrs, and Cam-CAN datasets using A574 using diffusion embedding '"® and functions
provided by BrainSpace '"°. More specifically, connectivity matrices were computed from surface vertex values within each
node of the Schaffer 1,000 parcellation '®°. Cosine similarity was then computed to create an affinity matrix to capture
inter-area similarity. Dimensionality reduction is then used to identify the primary gradients. A normalized-angle kernel was
used to create the affinity matrix, from which two primary components were identified. Gradients were then aligned across all
participants using a Procrustes alignment and joined embedding procedure . Values from the primary gradient and the cosine
distance used to generate the affinity matrices were used for subsequent analyses.

Magnetoencephalography (MEG) processing. For some analyses, raw resting-state magnetoencephalography (rs-MEG)
time series data from the Cam-CAN dataset was filtered using a Maxwell filter implemented as A476 and median split using
A529. For the remainder of the analyses, filtered data provided by the Cam-CAN dataset was used. For all MEG data,
power-spectrum density profiles (PSD) were estimated using functionality provided by MNE-Python '®' implemented as A530.
Following PSD estimation, peak alpha frequency was estimated using A531. Finally, PSD profiles were averaged across all
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nodes within each of the canonical lobes (frontal, parietal, occipital, temporal) using A599. Measures of power-spectrum
density and peak alpha frequency were used for all subsequent analyses.

DATA AVAILABILITY.

All data derived and described in this paper are made available via the brainlife.io platform as “Publications”. User
data agreements are required for some projects, like data from the HCP, Cam-CAN, PING, ABCD, and HBN
datasets. The Indiana University Acute Concussion Dataset and the Oxford University Choroideremia & Stargardt’s
Disease Dataset are parts of ongoing research projects and are not being released at this current time. All other
datasets are made freely available via the brainlife.io platform. See supplementary Table 6 for the brainlife.io/pubs

[we have added one example data record (hitps://doi.org/10.25663/brainlife.pub.40) for the review process <the

DOls for the remaining data records will be added at publication>].

CODE AVAILABILITY.

As part of the article we are describing a total of 9 platform components. All components are made publicly
available open source under MIT License. All the software for the platform components is listed in Supplementary
Table 1. In addition, we share the code used for the statistical analyses as Jupyter Notebooks (Supplementary
Table 2). Finally, the Apps used and tested in this article are listed in Supplementary Table 3.
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