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ABSTRACT 24 

Plasma levels of the metabolite alpha-aminoadipic acid (2-AAA) have been associated with risk 25 

of type 2 diabetes (T2D) and atherosclerosis. However, little is known about the relationship of 26 

2-AAA to other cardiometabolic risk markers in pre-disease states, or in the setting of comorbid 27 

disease. We measured circulating 2-AAA using two methods in 1) a sample of 261 healthy 28 

individuals (2-AAA Study), and 2) in a sample of 134 persons comprising 110 individuals with 29 

treated HIV, with or without T2D, a population at high risk of metabolic disease and 30 

cardiovascular events despite suppression of circulating virus, and 24 individuals with T2D 31 

without HIV (HATIM Study). We examined associations between plasma 2-AAA and markers 32 

of cardiometabolic health within each cohort. We observed differences in 2-AAA by sex and 33 

race in both cohorts, with higher levels observed in men compared with women, and in Asian 34 

compared with Black or white individuals (P<0.05). There was no significant difference in 2-35 

AAA by HIV status within individuals with T2D in the HATIM Study. We confirmed 36 

associations between 2-AAA and dyslipidemia in both cohorts where high 2-AAA associated 37 

with low HDL cholesterol (P<0.001) and high triglycerides (P<0.05). As expected, within the 38 

cohort of people with HIV, 2-AAA was higher in the setting of T2D compared to pre-diabetes or 39 

normoglycemia (P<0.001). 2-AAA was positively associated with body mass index (BMI) in the 40 

2-AAA Study, and with waist circumference and measures of visceral fat volume in HATIM (all 41 

P<0.05). Further, 2-AAA associated with increased liver fat in persons with HIV (P<0.001). Our 42 

study confirms 2-AAA as a marker of cardiometabolic risk in both healthy individuals and those 43 

at high cardiometabolic risk, reveals relationships with adiposity and hepatic steatosis, and 44 

highlights important differences by sex and race. Further studies are warranted to establish 45 

molecular mechanisms linking 2-AAA to disease in other high-risk populations. 46 
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INTRODUCTION 47 

Cardiometabolic diseases, including diabetes and cardiovascular disease (CVD) are 48 

increasing in prevalence globally and represent a major contributor to mortality (Tsao et al., 49 

2022). Known risk factors include obesity, dyslipidemia, dysregulated glucose metabolism and 50 

inflammation (Shah et al., 2018). However, after accounting for these risk factors there remains a 51 

high degree of variability in disease susceptibility, and a clear need for more refined biomarkers 52 

of cardiometabolic risk to improve our understanding of the underlying disease mechanisms and 53 

to improve prediction and treatment of at-risk individuals.  54 

Cardiometabolic diseases are characterized by changes in metabolism that may contribute 55 

to disease pathophysiology, or may act as biomarkers of disease progression (Upadhyay, 2015). 56 

Circulating metabolites that associate with disease states can shed light on underlying disease 57 

etiology, biological mechanisms, and may have clinical utility for prediction (Chu et al., 2021). 58 

Strategies to identify individuals at high cardiometabolic risk and to modulate disease processes 59 

in these individuals before onset of overt disease, would have significant impact in reducing 60 

mortality, morbidity, and healthcare costs. For this approach to be successful, early biomarkers 61 

of disease that predict at-risk individuals are required, as well as discovering novel pathways for 62 

therapeutic targeting. To this end, studying both healthy individuals, as well as individuals with 63 

conditions that place them at higher risk of cardiometabolic diseases, may provide an important 64 

model to identify novel physiologic relationships. 65 

The metabolite alpha-aminoadipic acid (2-AAA) is associated with the development of 66 

type 2 diabetes (T2D) (Wang et al., 2013) and atherosclerosis (Saremi et al., 2017), potentially 67 

identifying at-risk individuals before development of other known risk markers (Lee et al., 68 

2019). Relatively little is known about the function of 2-AAA, or potential mechanisms linking 69 
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2-AAA to disease. 2-AAA is derived from the breakdown of the essential amino acid lysine, and 70 

is primarily metabolized within mitochondria, with potential involvement in oxidative stress 71 

(Estaras et al., 2020; Luna et al., 2021). Elevated 2-AAA is associated with increased insulin 72 

secretion, obesity, and dysregulated mitochondrial metabolism (Wang et al., 2013, 2021; Wu et 73 

al., 2014; Ho et al., 2016; Plubell et al., 2018; Lee et al., 2019). This makes 2-AAA an 74 

interesting novel candidate in cardiometabolic disease biology. However, the relationships 75 

between 2-AAA and other cardiometabolic risk markers have not been well-described. 76 

The purpose of this study was to characterize the association between 2-AAA and other 77 

demographic and circulating markers in a sample of healthy individuals, as well individuals at 78 

high risk of metabolic and cardiovascular disease. As chronic viral infections, including treated 79 

human immunodeficiency virus (HIV), predispose individuals to a higher incidence of 80 

cardiometabolic disease and earlier onset, these conditions can serve as an models of exaggerated 81 

or accelerated risk to further identify important physiologic relationships (Barale et al., 2022; 82 

Gooden et al., 2022; Rivera et al., 2022; Spieler et al., 2022). Here, we assess the relationship of 83 

2-AAA with range of cardiometabolic disease conditions and risk factors among healthy 84 

individuals and those with treated HIV infection.  85 

 86 

 87 

MATERIALS AND METHODS 88 

Study Populations: Samples and data from two independent studies are included here. 89 

Participants of both studies were recruited from the same geographic area (Nashville, TN, and 90 

surrounding areas), and study procedures completed at Vanderbilt University Medical Center.  91 

 92 
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Determinants of 2-AAA: Screening Study (2-AAA Study) 93 

Healthy adults (non-pregnant and non-lactating women and men, age 18-45 years) were recruited 94 

to complete a single study visit as part of a cross-sectional study at Vanderbilt University 95 

Medical Center between November 2018 and June 2021. Exclusion criteria included body mass 96 

index (BMI) >30 kg/m2, active use of tobacco products, active use of prescription medications 97 

(apart from hormonal birth control), and diagnosis of diabetes mellitus, cardiovascular disease, 98 

renal disease, liver disease, or bleeding disorders. Data for 261 individuals who completed study 99 

procedures (vital signs, anthropometric measurements), provided a fasting blood sample, and had 100 

sufficient plasma available for 2-AAA measurement are included in the current analysis. All 101 

participants provided written, informed consent, and the study was approved by the Vanderbilt 102 

University Institutional Review Board. 103 

 104 

The HIV, Adipose Tissue Immunology, and Metabolism Study (HATIM) Study 105 

Adults with human immunodeficiency virus (HIV, N=112) were recruited from the Vanderbilt 106 

Comprehensive Care Clinic between August 2017 and November 2019. Participants were on 107 

combination antiretroviral therapy (ART) for ≥18 months, with a minimum of 12 months of 108 

sustained suppression of plasma viremia at enrollment and had no known inflammatory or 109 

rheumatologic conditions. Exclusion criteria were self-reported heavy alcohol use (>11 110 

drinks/week), known cirrhosis, active hepatitis B or C, cocaine or amphetamine use, and use of 111 

corticosteroids or growth hormones. By design and to enrich for the presence of cardiometabolic 112 

disease, the cohort enrolled approximately equal numbers of individuals who were 113 

normoglycemic (HbA1c < 5.7 or fasting blood glucose (FBG) < 100 mg/dL); pre-diabetes 114 

(HbA1c 5.7%-6.4% and/or FBG 100-126 mg/dL); and diabetes (HbA1c ≥ 6.4%, and/or FBG ≥ 115 
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126 mg/dL or on diabetes medication). To allow for direct comparison of 2-AAA levels with 116 

HIV-negative individuals, the study also recruited individuals with diabetes but without HIV 117 

(N=24). Participants provided written, informed consent, and the study was approved by the 118 

Vanderbilt University Institutional Review Board (ClinicalTrials.gov Identifier: NCT04451980). 119 

 120 

Measurement of 2-AAA 121 

In the 2-AAA Study, plasma levels of 2-AAA were quantified by liquid chromatography mass 122 

spectrometry (LCMS) at the Vanderbilt Mass Spectrometry Core. Samples were spiked with 123 

internal standard (Arginine-15N4, Sigma Aldrich), extracted with methanol, and derivatized with 124 

dansyl chloride (Sigma Aldrich) prior to analysis. The dansyl derivative of 2-AAA ([M+H]+ 125 

395.1271) was measured by targeted selected ion monitoring (SIM) using a Vanquish ultrahigh 126 

performance liquid chromatography (UHPLC) system interfaced to a QExactive HF 127 

quadrupole/orbitrap mass spectrometer (Thermo Fisher Scientific). Data acquisition and 128 

quantitative spectral analysis were conducted using Thermo-Finnigan Xcaliber version 4.1 and 129 

Thermo-Finnigan LCQuan version 2.7, respectively. Calibration curves were constructed by 130 

plotting peak area ratios (2-AAA / Arg-15N4) against analyte concentrations for a series of 2-131 

AAA standards. Electrospray ionization source parameters were tuned and optimized using an 132 

authentic 2-AAA reference standard (Sigma Aldrich) derivatized with dansyl chloride and 133 

desalted by solid phase extraction prior to direct liquid infusion. 134 

In the HATIM Study, plasma 2-AAA was measured as part of a metabolomics panel, at 135 

the Southeast Center for Integrated Metabolomics (SECIM) at the University of Florida, using 136 

previously described methods (O’Kell et al., 2017, 2019). Briefly, plasma samples were spiked 137 

with internal standards solution. Proteins were precipitated using 8:1:1 Acetonitrile: Methanol: 138 
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Acetone (Fisher Scientific, San Jose, CA), and the supernatant dried under a gentle stream of 139 

nitrogen at 30°C (Organomation Associates, Inc., Berlin, MA). Samples were reconstituted with 140 

injection standards solution. LC-MS untargeted metabolomics was performed on a Thermo Q-141 

Exactive Orbitrap mass spectrometer equipped with a Dionex UPLC system (Thermo, San Jose, 142 

CA). Percent relative standard deviation of internal standard peak areas were calculated to 143 

evaluate extraction and injection reproducibility. Mzmine 2 was used to identify features, 144 

deisotope, align features and perform gap filling. The data was searched against SECIM internal 145 

retention time metabolite library. All adducts and complexes were identified and removed from 146 

the data set. Ion counts from features mapping to alpha-aminoadipic acid in positive ion mode 147 

were summed for analysis. Because measurement of 2-AAA was conducted at different sites, 148 

studies were analyzed separately.  149 

 150 

Lipid and Biomarker Measurement 151 

In the 2-AAA Study, serum lipids were profiled at the Vanderbilt Lipid Laboratory. Briefly, total 152 

cholesterol and triglycerides (TG) were measured by standard enzymatic assays. High-density 153 

lipoprotein (HDL) was measured with the enzymatic method after precipitation of VLDL and 154 

LDL using polyethylene glycol reagent (PEG). LDL cholesterol was calculated using the 155 

Friedewald equation (Friedewald et al., 1972). In the HATIM Study, fasting plasma HDL, LDL, 156 

and TG were measured using the selective enzyme hydrolysis method (Abbott, Chicago, IL). In 157 

the 2-AAA Study, fasting glucose was measured at the study visit by finger prick (AimStrip Plus 158 

Blood Glucose Meter, Germaine Laboratories Inc., San Antonio TX). In the HATIM Study, 159 

insulin was measured by radioimmunoassay (Millipore Cat. # PI-13K). The assay utilizes 125I -160 

labeled insulin and a double antibody/PEG technique to determine serum insulin levels.  The 161 
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assay was modified by the Vanderbilt Hormone and Analytical Services Core to improve the 162 

sensitivity to 1uU/ml(0.04ng/ml). Glucose and hemoglobin A1c (HbA1c) were measured in 163 

fasting blood samples at the Vanderbilt Clinical Chemistry Laboratory.  164 

 165 

Body Composition Analysis 166 

In the HATIM Study, individuals underwent computed tomography (CT) imaging using a 167 

Siemens Somatom Force multidetector scanner (Erlangen, Germany) to acquire chest, abdominal 168 

and liver images, as described (Gabriel et al., 2021; Bailin et al., 2022). Briefly, separate non-169 

contrast electrocardiogram-gated thorax (top of the aortic arch through the lung base) and 170 

abdominal (diaphragm to lumbosacral junction) scans were performed using a scanning protocol 171 

and image interpretation approach previously described (Carr et al., 2005; VanWagner et al., 172 

2014; Terry et al., 2017). Abdominal subcutaneous adipose tissue (SAT) and visceral adipose 173 

tissue (VAT) volumes were measured within a 10-mm block of images consisting of eight 174 

images, 1.25-mm thick, at the L4-5 vertebrae using Osirix software. Pericardial adipose tissue 175 

(PAT) volume was measured within a 45-mm block of images spanning 15 mm above and 30 176 

mm below the superior extent of the left main coronary artery, which includes the adipose tissue 177 

located around the epicardial coronary arteries (left main coronary, left anterior descending, right 178 

coronary, and circumflex arteries) as well as the epicardial and PAT around the coronary arteries 179 

(Alman et al., 2016; Miljkovic et al., 2020). Images at T12-L1 were used to identify the liver 180 

below the right diaphragm corresponding to superior aspects of the right and medial lobes or 181 

hepatic segments 4a, 7, and 8 using the Couinaud classification system. Three regions of interest 182 

within homogenous portions of the liver at three levels were identified and liver density was 183 
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averaged from the nine total regions. Tissue radiodensity was quantified using the Hounsfield 184 

Units scale where water has a value of 0 HU and air has a value of -1000 HU. 185 

 186 

Statistical Analysis 187 

Plasma 2-AAA was assessed for normality of distribution through visualization, and testing for 188 

skewness and kurtosis, and was found to follow a normal distribution in both the 2-AAA and 189 

HATIM studies. Two individuals were considered outliers for 2-AAA in HATIM (>3 SD from 190 

the mean) and were removed prior to analysis. Associations between 2-AAA and continuous 191 

variables were analyzed using linear regression models. Analyses between 2-AAA and discrete 192 

variables were analyzed by T-test or ANOVA. Models were adjusted for sex and race in both 193 

studies and for additional covariates in HATIM (smoking, diabetes group). Models were further 194 

adjusted for other risk factors as indicated in the corresponding results sections, including BMI, 195 

cholesterol, HDL, LDL, TG, fasting glucose. P<0.05 was considered statistically significant, and 196 

Bonferroni P<0.05 considered statistically significant for post hoc multiple testing correction. 197 

Analyses were completed and results visualized using IBM SPSS Statistics version 28 (IBM, 198 

Armonk NY) and GraphPad Prism version 9.4.1 (GraphPad Software, San Diego, CA). 199 

 200 

 201 

RESULTS 202 

The characteristics of the participants of the 2-AAA Study are shown in Table 1. Characteristics 203 

of the participants of the HATIM Study are shown in Table 2. Participants of the 2-AAA study 204 

were 72% female, and 74% white, with an average age of 28 years. Participants of the HATIM 205 

study were 67% male, and 54% white, with an average age of 48 years. Plasma 2-AAA in 206 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2023. ; https://doi.org/10.1101/2023.06.05.23290990doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.05.23290990
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

persons with HIV (PWH) with diabetes (ion count 312x104±75x104) was slightly higher than 207 

that in HIV-negative with diabetes (ion count 271x104±74x104), but the difference was not 208 

statistically significant (P=0.08). 209 

 210 

Plasma 2-AAA levels are higher in men than in women, and higher in Asian individuals 211 

There was a significant difference in plasma 2-AAA by sex in the 2-AAA Study, with higher 212 

levels in men than in women (plasma 2-AAA 95.99±33.7 vs. 68.43±27.7 ng/ml, P<0.0001; 213 

Figure 1A). A similar difference by sex was observed in the HATIM Study samples, with higher 214 

levels in men than women (plasma 2-AAA ion count 281x104 ± 73 x104 vs. 242 x104 ± 65 x104 215 

ion count, P=0.004; Figure 1C). Because other risk factors also differ by sex, we performed 216 

stepwise linear regression models including risk factors (BMI, fasting glucose, cholesterol, HDL, 217 

LDL, TG), and found that the associations with sex remained significant (P<0.001 2-AAA Study, 218 

P<0.02 HATIM Study). We observed a significant difference by self-reported race in the 2-AAA 219 

Study (Overall P=0.002; Figure 1B), with individuals self-identifying as Asian having 220 

borderline significantly higher plasma 2-AAA (95.68 ± 35.5 ng/ml) compared with individuals 221 

self-identifying as Black or African American (72.26 ± 30.0 ng/ml, P=0.05), or white (72.73 ± 222 

30.7 ng/ml, P=0.007). This was not attributable to differences in sex distribution or risk factors 223 

between groups. In fact, Asian individuals in the 2-AAA Study had significantly lower BMI 224 

(P=0.018) and systolic blood pressure (P=0.005) than other individuals. Interestingly, there was 225 

also an overall difference by self-reported race in the HATIM sample (P=0.014; Figure 1D), 226 

with a trend towards higher levels of 2-AAA in Asian (2-AAA ion count 359 x104±45 x104) 227 

compared to Black (2-AAA ion count 249 x104 ± 65 x104) and white (2-AAA ion count 279x104 228 

± 75x104) individuals, although there were only three individuals self-identifying as Asian in this 229 
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sample, so the differences did not reach statistical significance in post hoc tests. There was no 230 

association between 2-AAA and age in either dataset. 231 

 232 

Plasma 2-AAA levels associate with dyslipidemia in healthy individuals and PWH 233 

Higher plasma 2-AAA was associated with lower HDL cholesterol (2-AAA Study r2=0.267, 234 

P<0.001; HATIM r2=0.579, P<0.001; Figure 2 A, B), and higher triglycerides (2-AAA Study 235 

r2=0.246, P=0.027; HATIM r2=0.526, P=0.007; Figure 2 C, D). There was no significant 236 

association with LDL cholesterol. 237 

 238 

Higher plasma 2-AAA levels associate with diabetes status in PWH 239 

There were significant differences in plasma 2-AAA by diabetes status within PWH in the 240 

HATIM sample (P<0.001, Figure 3). Individuals with diabetes had significantly higher levels of 241 

2-AAA (ion count 312x104 ± 75x104) than both the insulin sensitive (ion count 233x104 ± 242 

60x104, P<0.001) and the pre-diabetic (ion count 262x104 ± 58x104, P=0.005) groups in models 243 

adjusted for sex, race, BMI and smoking status.  244 

 245 

Plasma 2-AAA associates with elevated fasting glucose, insulin, and HbA1c in PWH 246 

Across all PWH individuals in HATIM, plasma 2-AAA was associated with increased fasting 247 

glucose (r2=0.576, P<0.001), fasting insulin (r2=0.623, P<0.001), HOMA-IR (r2=0.538, 248 

P<0.001) and hemoglobin A1c (r2=0.580, P<0.001). In secondary analyses split by diabetes 249 

status, 2-AAA associated with glucose and HbA1c only in the individuals with diabetes 250 

(P<0.0001 for diabetes, vs P>0.5 for insulin sensitive and pre-diabetes), but 2-AAA was 251 

associated with insulin in both people with and without diabetes (P<0.02 insulin sensitive, 252 
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P<0.002 diabetes). In the 2-AAA Study, a small number of people (n=25) had evidence of 253 

potential impaired fasting glucose (IFG, defined as glucose >100mg/dL but <125 mg/dL). While 254 

plasma 2-AAA levels were slightly higher within the individuals with IFG (82.5 vs. 75.4 ng/ml), 255 

this difference did not reach statistical significance. 256 

 257 

Elevated plasma 2-AAA levels associate with differences in anthropometrics, adipose tissue, 258 

and liver density 259 

We found a significant association between plasma 2-AAA and higher BMI in the 2-AAA Study 260 

(r2=0.275, P<0.001, model adjusted for sex and race), but this was not significant in HATIM. 261 

However, in HATIM, higher plasma 2-AAA was significantly associated with increased waist 262 

circumference (r2=0.219, P<0.001), as well as greater visceral adipose tissue volume (r2=0.225, 263 

P<0.001), but not with measures of subcutaneous or pericardial adipose tissue. In HATIM, 2-264 

AAA was negatively associated with liver density (r2=0.192, P=0.003; Figure 4). Lower liver 265 

density is a marker of higher proportion of ectopic fat in the liver.  266 

 267 

 268 

DISCUSSION 269 

We measured plasma 2-AAA in two independent samples of individuals across the spectrum of 270 

healthy (no diagnosed diseases) to high cardiometabolic risk (diabetes and treated HIV 271 

infection). 2-AAA was elevated in diabetes but did not appear to be significantly elevated based 272 

on HIV status. We found that plasma 2-AAA is elevated in men compared with women, and in 273 

Asian compared with other self-identified ancestries. These associations are constant in both 274 

healthy individuals and PWH. We confirmed associations between 2-AAA and both low HDL 275 
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and high TG, and between 2-AAA and diabetes. We report novel relationships between 2-AAA 276 

and visceral adipose tissue measured by CT, and between 2-AAA and higher liver fat. Our data 277 

further confirm 2-AAA as an important candidate for further prognostic and therapeutic 278 

consideration. 279 

Plasma 2-AAA levels differed by sex, an association that has been reported previously in 280 

Mexican young adults (Guevara-Cruz et al., 2018). Men have relatively higher risk of CVD than 281 

pre-menopausal women, yet the mechanisms underlying this difference are not fully understood 282 

(Tsao et al., 2022). We further report differences by self-reported race, with Asian individuals 283 

having higher 2-AAA than other groups. Individuals of Asian ancestry have relatively higher risk 284 

of T2D and some CVD given the same risk factor profile as individuals of European ancestry 285 

(Ma and Chan, 2013; Buljubasic et al., 2020). The mechanisms underlying this are incompletely 286 

understood, and the risk factor profile for CVD in Asians may differ when compared with 287 

European ancestry (Paul et al., 2017). While the original discovery of 2-AAA as a diabetes 288 

metabolite was in European ancestry (Wang et al., 2013), 2-AAA has also been reported to 289 

associate with T2D in Chinese individuals (Wang et al., 2022). Whether differences in 2-AAA 290 

may play a role in mediating the relative increased risk in men compared with women, and Asian 291 

compared with other ancestries, remains to be determined. 292 

We previously reported that plasma 2-AAA associates with both lower HDL cholesterol 293 

and higher triglycerides (Shi et al., 2022). We replicated those associations in the current study, 294 

establishing that this relationship is consistent across multiple different samples, including in a 295 

cohort of persons with HIV. Based on genetic evidence, 2-AAA drives the decrease in HDL (Shi 296 

et al., 2022). While low HDL cholesterol is consistently associated with increased 297 

cardiometabolic risk (Castelli et al., 1986; Emerging Risk Factors Collaboration et al., 2009), 298 
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interventions to alter HDL have shown no benefit (Kingwell et al., 2014). This could be due to 299 

differences in HDL composition or function, or due to a causal biomarker that is upstream of 300 

HDL. This raises the intriguing hypothesis that elevated 2-AAA, rather than low HDL per se, 301 

may be driving increased cardiometabolic risk. However, careful mechanistic studies are 302 

required to interrogate this further.   303 

2-AAA was originally discovered as a predictor of diabetes, and is associated with 304 

increased insulin secretion in animal models and cells (Wang et al., 2013). In the setting of 305 

experimental hyperglycemia in overweight and obese, but otherwise healthy individuals, 2-AAA 306 

was significantly decreased following 24 hours of hyperglycemia (Perkins et al., 2019). 2-AAA 307 

has been shown to be reduced in the acute setting in response to insulin infusion (Irving et al., 308 

2015). We found that 2-AAA was significantly higher in PWH who have diabetes, than in PWH 309 

who were insulin sensitive or pre-diabetic. This is similar to what has been reported in HIV-310 

negative individuals (Wang et al., 2013; Razquin et al., 2019), and suggests that the relationship 311 

between 2-AAA and diabetes is consistent across different settings, including against the 312 

background of well-controlled HIV infection, a population at increased risk of cardiometabolic 313 

disease (Spieler et al., 2022). We found no significant difference in plasma 2-AAA levels based 314 

on HIV status in the HATIM cohort within the subset of individuals with diabetes, further 315 

suggesting that 2-AAA is a useful biomarker of cardiometabolic risk in multiple at-risk 316 

populations. 2-AAA was associated with increased fasting glucose, fasting insulin, and 317 

hemoglobin A1c in the HATIM study. However, the association between 2-AAA and glucose 318 

was only significant in individuals with diabetes; 2-AAA was not associated with fasting glucose 319 

in insulin sensitive individuals in the 2-AAA Study or HATIM, or in individuals with pre-320 

diabetes in HATIM. In contrast, 2-AAA was associated with higher insulin in individuals with 321 
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and without diabetes. This distinction between the glycemic and insulin axis is consistent with 322 

the hypothesis that 2-AAA is an early marker or driver of hyperinsulinemia and is associated 323 

with elevated insulin before the development of overt hyperglycemia or diabetes. These data 324 

further support a mechanism where elevated 2-AAA precedes the onset of hyperglycemia, and 325 

associates with hyperinsulinemia even in individuals who appear insulin sensitive. Associations 326 

between 2-AAA and hyperglycemia are likely secondary to insulin resistance. However, further 327 

in-depth studies are required to assess potential reciprocal regulation of 2-AAA and insulin. 328 

2-AAA was positively associated with BMI in the 2-AAA study, but not in the HATIM 329 

study. However, there was a significant association between 2-AAA and waist circumference in 330 

HATIM. This may suggest that the relationship between 2-AAA and adiposity is modulated by 331 

HIV-associated effects on adipose distribution (Koethe et al., 2020). Previous studies have also 332 

highlighted an association between 2-AAA and obesity, including both BMI and waist 333 

circumference (Dugas et al., 2016; Ho et al., 2016; Libert et al., 2018; Lee et al., 2019). While 334 

one study has found that 2-AAA is protective against obesity and diabetes in mice (Xu et al., 335 

2019), these findings are in contrast to all other studies, and may be related to specific metabolic 336 

anomalies in the mouse model used (Xu et al., 2018; Wang et al., 2021, 1). In our study, 2-AAA 337 

associated with increased visceral fat in HATIM, but not subcutaneous or pericardial fat. These 338 

data are consistent with a previous study, where 2-AAA was associated with metabolically 339 

unhealthy central obesity, compared with metabolically healthy peripheral obesity (Gao et al., 340 

2016). Thus, 2-AAA may relate specifically to pathogenic adipose tissue dysfunction, rather than 341 

to obesity itself.  342 

Plasma 2-AAA associated with lower liver density, which corresponds to higher liver fat, 343 

and is considered a measure of hepatic steatosis. Previous data in mice found an association 344 
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between 2-AAA and liver mass (Wu et al., 2014), however, to our knowledge our study 345 

describes this for the first time in humans. Elevated 2-AAA may thus be a risk factor for hepatic 346 

steatosis and development of fatty liver disease, however, whether this is independent of 347 

associations with BMI, visceral fat and circulating lipids remains to be determined.  348 

Our study had several strengths. We analyzed plasma 2-AAA in two separate samples of 349 

well-phenotyped individuals, including both healthy individuals and PWH across the diabetes 350 

spectrum, allowing us to assess whether the relationship between 2-AAA and cardiometabolic 351 

risk markers  is consistent in the settings of chronic viral-induced inflammation and in 352 

individuals without diagnosed disease.. 2-AAA was not measured in many previous 353 

metabolomic studies, and is not consistently detected or reported on popular metabolomics 354 

panels (e.g. Metabolon). Thus, the importance of this metabolite in cardiometabolic health may 355 

be under-appreciated. We used a targeted assay in the 2-AAA study to quantify 2-AAA, 356 

providing important data on circulating levels in healthy individuals. To our knowledge, this is 357 

the first study to measure associations between 2-AAA and metabolic disease in PWH. PWH 358 

suffer a disproportionate burden of diabetes, hypertension, fatty liver, and dyslipidemia 359 

compared to HIV negative persons (Currier et al., 2008; Vodkin et al., 2015; Maurice et al., 360 

2017; Nansseu et al., 2018), and allows for validation of the relevance of 2-AAA to disease 361 

within the setting of a highly-inflammatory exaggerated phenotype. Our study also had some 362 

limitations. Plasma 2-AAA was measured using a different method in HATIM compared with 363 

the 2-AAA study, limiting our ability to directly compare levels of 2-AAA in PWH compared 364 

with healthy individuals. However, we were able to compare levels between PWH and HIV-365 

negative within a subset of individuals with diabetes. We also had limited sample size to fully 366 
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characterize the differences by race across both samples, with small numbers of Black 367 

individuals in the 2-AAA study and small numbers of Asian individuals in the HATIM study.  368 

In conclusion, our study establishes differences in plasma 2-AAA by sex and race, 369 

confirms associations between 2-AAA and dyslipidemia in both healthy individuals and PWH 370 

with or without diabetes, and highlights novel relationships between 2-AAA and liver fat and 371 

visceral adipose tissue. Further mechanistic and longitudinal studies are required to establish 372 

whether 2-AAA is causally linked to cardiometabolic disease.  373 
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TABLES & FIGURES 569 

 570 

Figure 1. Plasma 2-AAA is significantly higher in men than women in the 2-AAA (A) and 571 

HATIM Study (C).  2-AAA is higher in Asian compared to Black or white individuals in 572 

the 2-AAA Study (B) with a similar trend in the HATIM Study (D).  Data are expressed as 573 

ng/ml for data from the 2-AAA Study and ion counts for the HATIM study. 574 
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Figure 2. Plasma 2-AAA associates with lower HDL cholesterol and higher Triglycerides in 592 

the 2-AAA (A, C) and HATIM (B, D) studies. Data are expressed as ng/ml for data from the 2-593 

AAA Study and ion counts for the HATIM study. 594 
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Figure 3. Plasma 2-AAA was significantly higher in PWH and diabetes, compared with 601 

PWH who were insulin sensitive or with pre-diabetes. 602 
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Figure 4. Plasma 2-AAA was negatively associated with liver attenuation in the HATIM 623 

Study of PWH.  624 

 625 
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Table 1. Characteristics of the participants of the 2-AAA Screening Study  630 

 631 

 Male (N=72) Female (N=189) 

 Mean (SD) Mean (SD) 

Age (years) 28.96 (6.92) 27.76 (7.2) 

Race (N Black, white, Asian, other) 3, 55, 8, 6 14, 139, 25, 11 

BMI (kg/m2) 24.77 (2.9) 22.94 (2.9) 

Systolic Blood Pressure (mmHg) 120.57 (13.5) 111.26 (10.7) 

Diastolic Blood Pressure (mmHg) 73.80 (9.5) 69.67 (8.1) 

Glucose (mg/dL) 90.0 (7.6) 91.18 (8.2) 

Total cholesterol (mg/dL) 166.56 (30.7) 167.94 (32.4) 

HDL (mg/dL) 53.47 (10.7) 64.67 (13.1) 

LDL (mg/dL) 95.56 (24.9) 87.41 (24.5) 

TG (mg/dL) 87.44 (37.5) 79.29 (37.1) 

2-AAA (ng/ml) 95.99 (33.8) 68.44 (27.7) 

 632 

 633 

 634 
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Table 2. Characteristics of participants of the HATIM Study 

 PWH HIV-negative 

 Insulin sensitive Pre-Diabetes Diabetes Diabetes 

 Male (N=33) Female (N=8) Male (N=27) Female (N=7) Male (N=24) Female (N=11) Male (N=6) Female (N=18) 

 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Age (years) 42.15 (11.7) 46.37 (7.7) 44.40 (12.2) 49.14 (10.2) 52.62 (9.4) 48 (12.0) 51.33 (12.1) 57.61 (9.6) 

Race (N Black, 

white, Asian, 

other) 

10, 22, 1, 0 5, 2, 0, 1 11, 14, 1, 1 4, 3, 0, 0 10, 14, 0, 0 7, 1, 0, 3 1, 5, 0, 0 6, 11, 1, 0 

BMI (kg/m2) 30.78 (3.8) 34.21 (5.8) 33.28 (6.3) 34.03 (6.1) 34.76 (7.25) 40.01 (9.8) 38.16 (8.8) 37.31 (5.1) 

Waist 

circumference 

(cm) 

100.39 (12.6) 104 (12.5) 105.40 (13.9) 102.86 (14.8) 115.21 (12.6) 114.7 (17.5) 126.31 (20.4) 114.7 (13.85) 

Total 

cholesterol 

(mg/dL) 

174.63 (38.3) 186.6 (23.0) 175.7 (35.1) 223.71 (38.5) 173.75 (33.1) 179.45 (41.3) 183.66 (85.8) 171.44 (27.9) 

LDL (mg/dL) 102.12 (34.1) 110.3 (18.8) 110.77 (44.9) 129 (35) 91.39 (28.9) 95.2 (33.9) 86.83 (27.0) 102.0 (27.1) 

HDL (mg/dL) 47.06 (18.2) 54.1 (15.9) 41.22 (13.3) 65.43 (23.6) 37.96 (10.5) 49.72 (12.9) 36.33 (10.1) 47.55 (8.8) 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted June 6, 2023. 

; 
https://doi.org/10.1101/2023.06.05.23290990

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.06.05.23290990
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

TG 127.27 (82.9) 111.8 (64.2) 154.89 (83.4) 146.86 (56.8) 250.29 

(224.9) 

189.27 (145.4) 327.16 

(470.9) 

109.33 (45.4) 

Glucose 

(mg/dL) 

87.0 (9.5) 89.38 (6.0) 111.55 (14.0) 112.42 (8.1) 203.6 (88.4) 156 (59.7) 164.33 (78.5) 128.61 (34.9) 

Insulin 

(uU/mL) 

19.19 (23.0) 18.39 (19.4) 55.06 (59.2) 30.9 (24.9) 38.58 (21.2) 36.62 (19.3) 46.99 (29.4) 28.92 (16.3) 

HOMA-IR 4.23 (4.9) 4.24 (4.8) 14.91 (15.6) 9.10 (7.7) 22.63 (19.1) 16.49 (14.8) 17.78 (13.0) 8.73 (6.5) 

Hemoglobin 

A1c (%) 

5.1 (0.46) 5.16 (0.23) 5.52 (0.5) 5.52 (0.3) 8.18 (2.3) 7.10 (1.8) 7.81 (2.0) 6.85 (0.93) 

Liver 

attenuation 

(HU) 

61.44 (7.5) 63.87 (3.4) 62.17 (9.1) 61.3 (12.9) 53.03 (14.6) 57.54 (11.5) 48.25 (11.6) 45.62 (19.0) 

Plasma 2-AAA 

(ion count) 

2441358 

(623282) 

1898487 

(225878) 

2769029 

(548804) 

2059280 

(355932) 

3270163 

(715556) 

2794366 

(739755) 

3141535 

(969840) 

2576285 

(622577) 
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