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ABSTRACT

LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high
tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse
liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a ma-
jority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in
mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis.
Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population.
Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including
nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-produc-
ing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2
linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associ-
ated functionswere identified by their high network centralitymetrics. For a subset of these lncRNAs, promoter sequences
of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing indepen-
dent mechanistic support for the lncRNA–target gene linkages predicted by the gene regulatory networks. These findings
elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal pat-
terns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs
identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is rapidly becom-
ing the most common chronic liver disease, affecting 25%
of the world’s adult population, most notably individuals
with obesity, type II diabetes and metabolic syndrome
(Younossi et al. 2018).NAFLDcomprises a continuumof liv-
er pathologies, ranging from fat accumulation, known as

simple steatosis or nonalcoholic fatty liver, to nonalcoholic
steatohepatitis (NASH), a more severe disease subtype
characterized by excessive lipid accumulation, chronic in-
flammation, hepatocyte ballooning, and varying degrees
of fibrosis (Friedman et al. 2018; Sheka et al. 2020). Liver fi-
brosis is characterized by excessive accumulation of colla-
gens and other extracellular matrix proteins (Kisseleva
and Brenner 2021) and can be induced in NASH or by en-
vironmental chemical-induced injury and alcohol abuse
(Roehlen et al. 2020). The underlyingmechanisms of devel-
opment and progression of these liver diseases are still
poorly understood. Moreover, there are no approved ther-
apeutics for advanced NASH and liver fibrosis (Raza et al.
2021), which all too frequently advance to liver cirrhosis
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and hepatocellular carcinoma (Anstee et al. 2019; Gines
et al. 2021).

Long noncoding RNAs (lncRNAs) comprise a heteroge-
neous class of RNA-encoding genes, primarily defined by
their low protein coding potential/low translational activity
and by a minimum RNA length of 200 nt. LncRNAs often
have low expression, show strong nuclear enrichment (Guo
et al. 2020), have high tissue-specificity (Gloss and Dinger
2016), and may regulate gene expression through effects
on chromatin states and transcriptional regulation or at the
post-transcriptional level (Zhang et al. 2019; Statello et al.
2021). Thousands of liver-expressed lncRNAs have been
identified, a subset of which are responsive to endogenous
hormones (Melia et al. 2016; Melia and Waxman 2019;
Goldfarb et al. 2022) or exposure to xenobiotics (Lodato
et al. 2017; Dempsey and Cui 2019; Karri and Waxman
2020; Goldfarb andWaxman 2021), many of which can pro-
mote NASH, cirrhosis and other liver pathologies (Jin et al.
2020; Massart et al. 2022; Rajak et al. 2022). Prior studies
identified individual lncRNAs that impact liver disease (He
et al. 2020; Huang et al. 2021; Unfried et al. 2021); examples
include SRA, which promotes hepatic steatosis by repress-
ing adipose triglyceride lipase expression (Chen et al.
2016a), GAS5, which attenuates carbon tetrachloride
(CCl4)-induced liver fibrosis by acting as a sponge for
miRNA-23a (Dong et al. 2019), and HULC, which inhibits
liver fibrosis associatedwithNAFLD (Shenetal. 2019). Thou-
sands of other liver-expressed lncRNAs are uncharacterized
or even unidentified, many of which are likely to impact liver
pathophysiology.

Hepatocytes account for 60%–70%of all cells in the liver,
with the balance largely comprised of three major nonpar-
enchymal cell types: endothelial cells, hepatic stellate cells,
and Kupffer cells (liver resident macrophages). Liver cell
type-specific gene expression patterns and their zonated
regulation across the liver lobule have been elucidated in
both healthy liver (Halpern et al. 2017; Kietzmann 2017;
Cunningham and Porat-Shliom 2021) and in high fat diet-
induced liver disease (Xiong et al. 2019; Loft et al. 2021;
Su et al. 2021) by using single-cell (sc)RNA-sequencing
technologies. scRNA-seq has also elucidated the role of
hepatic mesenchymal cells, including hepatic stellate cells
(HSCs), in liver fibrosis induced by hepatotoxins such as
CCl4 (Fig. 1A; Dobie et al. 2019; Ramachandran et al.
2019; Yang et al. 2021; Zhang et al. 2021). While these
studies have determined the roles of liver cell subpopula-
tions and individual protein coding genes (PCGs) (Rama-
chandran et al. 2020), prior studies of lncRNAs have
largely been limited to lncRNAs with RefSeq gene or other
annotations, which comprise only a small fraction of the
tens of thousands of lncRNAs thought to be encoded by
the genome. Many lncRNAs are expressed in bulk tissue
at much lower levels than PCGs, but often exhibit high tis-
sue specificity, raising the possibility that detection sensi-
tivity may actually be increased by using scRNA-seq

technology to characterize lncRNAs whose expression is
restricted to a specific subpopulation of cells in the liver.

Here, we sought to elucidate on a global scale the roles
of liver-expressed lncRNAs in biological pathways related
to liver disease development. We used an integrative
approach to assemble the hepatic transcriptome from
>2000 bulk murine liver RNA-seq samples and discovered
more than 48,000 liver-expressed lncRNAs, a majority nov-
el andpreviously uncharacterized, includingmany lncRNAs
that share orthology with corresponding human sequenc-
es. We integrated multiple public scRNA-seq data sets
for healthymouse liver to create a single-cell transcriptomic
reference atlas, which enabled us to characterize the liver
cell-type specificities of thousands of novel lncRNAs and
identifymore than 100 liver cell type-specific lncRNAmark-
er genes. We elucidated liver lncRNA zonation profiles us-
ing trajectory inference algorithms for five liver cell
populations, complementing those reported earlier for
PCGs (Fig. 1A; Halpern et al. 2018; Ben-Moshe et al.
2019; Dobie et al. 2019; Kalucka et al. 2020). Further, to
elucidate lncRNA dysregulation in liver disease, we ana-
lyzed liver scRNA-seq data from mice fed a high fat, high
fructose diet (HFHFD, also known as AMLN diet) (Su et al.
2021), which induces disease progression from healthy liv-
er to NAFLD (simple steatosis) and then NASH, revealing
lncRNA transcriptomic dysregulation patterns during dis-
ease progression. We also analyzed the role of lncRNAs
in thehepaticmesenchyme fromhealthy andCCl4-induced
fibrotic liver (Fig. 1B; Dobie et al. 2019). Finally, we con-
structedgene regulatory networks for both healthy anddis-
eased liver to discover key regulatory lncRNAs based on
gene network centralitymetrics, and we identified a subset
of regulatory lncRNAs whose PCG target gene promoters
are significantly enriched for direct interactions via triplex-
based lncRNA binding (Fig. 1C). Overall, our findings re-
veal an unanticipated complexity of hepatic lncRNA biol-
ogy. The data sets obtained are expected to serve as a
rich resource for discovery of lncRNA biomarkers and in
studies targeting lncRNAs implicated in development of
NASH and foreign chemical-induced liver fibrosis.

RESULTS

Global discovery of liver-expressed lncRNAs

We reconstructed themouse liver transcriptome from2089
bulk RNA-seq samples representing a wide range of bio-
logical conditions (Supplemental Table S1A). We integrat-
ed results from two different transcriptome assembly
methods, TACO (Niknafs et al. 2017) and Cuffmerge (Trap-
nell et al. 2012), and used two approaches to analyze the
output and identify liver-expressed lncRNA genes and iso-
form structures (Chen et al. 2016b; Melia et al. 2016). The
transcriptomesgeneratedbyeachmethodwereprocessed
and analyzed separately using twodiscovery pipelines (Fig.
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FIGURE1. LncRNAdiscovery and role inNASHand liver fibrosis analyzed using single-cell technology. (A) Healthy liver is comprised of hepatocytes
and nonparenchymal cells, notably endothelial cells, mesenchymal cells, and immune cell populations. With the emergence of NASH, changes in
gene expression and zonation occur in hepatocytes and endothelial cells and newmacrophage subpopulations emerge. In CCl4-induced liver fibro-
sis, changes in hepatic mesenchymal cells include zonation differences in hepatic stellate cells (HSC) and the transition of pericentral stellate cells to
collagen-producing myofibroblasts. (B) Discovery of regulatory roles of lncRNAs in two liver disease models: Amylin diet-induced NASH and CCl4-
induced liver fibrosis. (C ) Computational workflow for characterization of functional roles of liver-expressed lncRNAs used in this study. (D,E)
Numbers of mouse (mm9) liver lncRNAs discovered using TACO assembly (D) and Cuffmerge assembly (E), with two different filtering approaches,
I and II. (F ) Final set of 48,261 mouse lncRNAs, classified based on their location with respect to PCGs after conversion to mouse mm10 genomic
coordinates. (G,H) Two liver-expressed lncRNAs, both found to be comprised of many novel isoforms, a subset of which is shown.

LncRNA dysregulation in liver disease
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1D,E), which after integrating with a prior set of 15,558
mouse liver lncRNAs based on a much smaller number of
bulk RNA-seq samples (Melia and Waxman 2019) yielded
a global set of 48,261 liver-expressed lncRNAs, including
5656 multiexonic genes (Supplemental Table S1C) and a
total of 150,280 isoforms (Supplemental Table S1D).
Eighty-nine percent of the 48,261 lncRNAs are intergenic
(Fig. 1F). Further, 9543 (19.8%) of the lncRNAs have orthol-
ogous sequences in the human genome (hg38), and
1722 were orthologous to an incomplete set comprised
of 5795 lncRNAs that we previously identified in rat liver
(Supplemental Table S1E; Karri andWaxman 2020). The fi-
nal lncRNA data set includes many novel isoforms of some
well-characterized liver lncRNAs. For example, we identi-
fied hundreds of isoformsof LncLSTR (lnc17117), a liver-en-
riched RNA that regulates lipid metabolism in mice (Fig.
1G; Li et al. 2015) and 96 isoforms of LincIRS2 (lnc6743),
which protects against diabetes and whose knockdown in-
creases blood glucose, insulin resistance and aberrant glu-
cose output (Fig. 1H; Pradas-Juni et al. 2020). However, the
vast majority of the 48,261 liver lncRNAs are novel and of
unknown function.

LncRNA expression in liver cell subpopulations

The low expression of many lncRNAs makes it difficult to re-
liably characterize their expression using bulk tissue RNA-
seq, where expression patterns are dominated by hepato-
cytes, which comprise 60%–70% of all cells in adult liver
(Si-Tayeb et al. 2010; Braet et al. 2018). Moreover, the
high frequency of scRNA-seq drop out of low abundance
transcripts limits the ability of scRNA-seq to detect and char-
acterize themany thousandsof lowlyexpressed lncRNAs. To
increase the sensitivity for lncRNA detection, we pooled, in-
tegrated, and harmonized data from four public mouse liver
scRNA-seq data sets comprising 39,878 liver cells (Supple-
mental Table S1G,H) to give a single, uniform single-cell
landscape for healthy mouse liver. The resulting UMAP,
which is enriched innonparenchymal cells (Fig. 2A), contains
13 major cell clusters identified by their marker gene
expression patterns (Supplemental Fig. S1A): hepatocytes,
endothelial cells, Kupffer cells (liver macrophages), mesen-
chymal subpopulations comprised of hepatic stellate cells
(HSCs), vascular smooth muscle cells (VSMCs) and fibro-
blasts, aswell as dendritic cells, cholangiocytes, natural killer
and T cells, B cells, B plasma cells, neutrophils, and dividing
cells. A total of 30,092 distinct lncRNAs were detectable in
this healthy liver data set, of which 24,961 (83%) are novel
genes (Supplemental Table S2B). A total of 1352 of these
lncRNAs were detectable in ≥5% of cells from at least one
cell cluster (Fig. 2B; Supplemental Table S2A,B). Fourteen
lncRNAs (11 with human orthologs, indicated by ∗) were de-
tected in all liver cell types at >5% cells/cluster (Supplemen-
tal Table S2C). Examples of such widely expressed liver
lncRNAs with established roles in liver biology and patho-

physiology include: Malat1 (lnc31752∗) and Norad/
LINC00657 (lnc1906∗), which promote hepatocellular carci-
noma (Toraih et al. 2018; Yang et al. 2019), as do Snhg8
(lnc2803∗) (Dong et al. 2018) and Dleu2 (lnc25736∗) (Guo
et al. 2019); Gas5 (lnc733∗), which alleviates collagen accu-
mulation in fibrotic liver (Yu et al. 2015); Neat1 (lnc14746∗),
whichpromotesNAFLDby facilitatinghepatic lipid accumu-
lation (Chen et al. 2019) and promotes liver fibrosis (He et al.
2020); Cyrano/Oip5os1 (lnc34166∗), an essential develop-
mental lncRNA (Smith et al. 2018); and Pint (lnc4993), which
interacts with the Polycomb repressive complex 2 and is re-
quired to target specific genes for histone-H3 K27 trimethy-
lation and gene repression (Marin-Bejar et al. 2013).

Cell type-specific lncRNA marker genes

A total of 110 lncRNAs showed high specificity for expres-
sion in a single liver cell type; only 44 of these lncRNAs
were previously known (i.e., have RefSeq or Ensembl anno-
tations) (Fig. 2E–P; Supplemental Table S2D; seeMaterials
and Methods). One example is Fendrr (lnc47443∗), a
strong marker for HSCs (Fig. 2G). Fendrr inhibits pulmo-
nary fibrosis (Huang et al. 2020) and its overexpression in-
hibits hepatocellular carcinoma growth (Wang et al. 2019).
Another example, Meg3 (lnc10922∗), has liver antifibrotic
activity (He et al. 2020) and is a marker for liver fibroblasts
(Fig. 2I). Atcayos (lnc18959) is a marker for liver vascular
smooth muscle cells (Fig. 2J) that regulates myogenic
differentiation of satellite cells during skeletal muscle
development (Qi et al. 2020), and Ephemeron (Eprn;
lnc24413) fine-tunes the dynamics of the cell state transi-
tion in mouse embryonic stem cells (Li et al. 2017a) and
in liver is a cholangiocyte marker (Fig. 2L). Finally, Mirt2
(lnc12697) is a neutrophil marker (Fig. 2O) that negatively
regulates inflammation (Du et al. 2017).

LncRNA zonation across the healthy liver lobule

The liver is divided into small functional units called lob-
ules fed by the hepatic artery and the portal vein, which
drain to the central vein via sinusoidal capillaries.
Gradients of oxygen, nutrients and hormones are estab-
lished across the lobule, leading to spatial zonation of liver
function and gene expression, as is seen in hepatocytes
(Ben-Moshe and Itzkovitz 2019), endothelial cells
(Halpern et al. 2018), and HSCs (Dobie et al. 2019). Here,
we elucidated the zonation patterns for both lncRNAs
and PCGs in healthy liver (chow diet-fed mice) in hepato-
cytes and several major nonparenchymal cell populations.

LncRNA zonation in hepatocytes

We used established spatial zonation markers (Halpern
et al. 2017) for periportal, midlobular and pericentral hepa-
tocytes in combination with trajectory inference analysis
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FIGURE 2. LncRNA detection in hepatic subpopulations and cell type-specific markers. (A) UMAPof liver cell clusters based on 39,878 single-cell
transcriptomes integrated across four scRNA-seq data sets. Cell counts for each cell type are indicated in parentheses and in Supplemental Table
S1H. (B) Bar plots indicating number of genes in the indicated gene classes (lncRNAs, PCGs, other noncoding RNAs [NR]) that are detectably
expressed in one or more liver cell types in up to 5% of cells in a cluster, in >5%–10% of cells in a cluster, in >10%–50% of cells in a cluster,
or in >50% of cells in a cluster, based on scRNA-seq data sets from healthy (control) adult male mouse liver. (C ) Number of lncRNAs detected
in each liver cell type, presented as a percentage of cells that express the lncRNA at ≥1 UMI/cell. Thus, 19,101 lncRNAs were detectably ex-
pressed in up to 5% of endothelial cells, and three lncRNAs were detected in >50% of endothelial cells. Cell type-specific marker genes for
each cell cluster (last column) are based on Supplemental Table S2D. (D) Plot depicting 110 liver cell type-specific marker lncRNAs, from C.
X-axis, log2 fold-change value for differential expression of the cluster marker gene lncRNA compared to its expression across all other clusters;
y-axis, percentage of cells that express the lncRNA marker (see Supplemental Table S2D). (E–P) Feature plots with examples of lncRNA marker
genes for each liver cell cluster. Shown are UMAPs as in A, with color intensity indicating expression level of the indicated marker lncRNA in in-
dividual cells.
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using Monocle2 (Qiu et al. 2017; Trapnell et al. 2017) to
identify 111 lncRNAs showing significant zonation (q-val
<0.001) across the liver lobule (Fig. 3A; Supplemental
Table S3A). For example, lnc-LFAR1, a liver-enriched

lncRNA that promotes liver fibrosis by activating TGFβ
and notch signaling (Zhang et al. 2017b; He et al. 2020),
was preferentially expressed in periportal hepatocytes,
while lnc13605 and lnc14942 showed midlobular

A

C D E

B

FIGURE 3. LncRNA zonation across healthy liver lobule. (A) Heatmap showing relative expression of PCGs and lncRNAs that are zonated in he-
patocytes, ordered from periportal (left) to pericentral (right), with each row corresponding to one gene, as marked at the right for lncRNAs. Right
of heatmap: Zonation profiles for select genes, alongwith top enriched terms for each of the threemain hepatocyte zones. Font color for enriched
terms matches the dendrogram color at the left of heatmap. (B) Heatmap showing zonated expression profiles for PCGs and lncRNAs that are
zonated in endothelial cells, with clustersmatching gene trajectories sequentially, from artery to capillary artery, capillary, capillary vein, and finally
vein, with cluster assignments based on known spatial marker genes (see text). Top functional enrichment terms of each cluster (colored) are at the
right. Further to the right are Scorpius pseudotime trajectories showing endothelial cell phenotypes along the artery-capillary-vein axis, with tra-
jectory plots for select marker genes and mouse liver lncRNAs displayed across the pseudotime trajectory. (C–E) Heatmaps showing expression
trajectories for PCGs and lncRNAs that are apparently zonated in the hepatic mesenchyme, which is comprised of HSCs (C ), VSMCs (D) and fi-
broblasts (E), with top enriched terms and select marker genes as shown.
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zonation, and Gas5 (lnc733∗) and lnc6236∗ exemplify peri-
centrally zonated lncRNAs (Fig. 3A). PCGs expressed in
periportal hepatocytes showed functional enrichment for
specialized liver functions, such as lipid and steroidmetab-
olism, acute inflammatory response and complement cas-
cades, whereas pericentral hepatocytes were enriched for
functions related to carboxylic acid metabolic process, ox-
idoreductase, peroxisome and response to xenobiotic
stimulus (Supplemental Table S3B), consistent with prior
work (Halpern et al. 2017).

LncRNA zonation in endothelial cells

Five zonated endothelial cell clusters were obtained and
identified using established spatial marker genes for arter-
ies (marker gene: Sdc1), capillary arteries (arterioles;
Efnb1), capillaries (Dnase1I3), capillary veins (venules; Kit)
and veins (Wnt9b) (Kalucka et al. 2020). Overall, we identi-
fied 1163 zonated endothelial cell transcripts, including 71
zonated lncRNAs (q-val <0.001) (Supplemental Table
S3C). Furthermore, we determined the enriched biological
functions for the genes expressed in each cell cluster (Fig.
3B; Supplemental Table S3D). For example, capillary en-
dothelial cells were enriched for vasculature development
and sprouting angiogenesis; while capillary vein endothe-
lial cells were enriched for cell migration and cell death
gene expression, and for Ras signaling genes, which regu-
late hepatocyte zonation (Braeuning et al. 2007). LncRNAs
preferentially expressed in capillary arteries of the endo-
thelium include Bvht (lnc14557), an epigenetic regulator
of cardiovascular lineage commitment (Xue et al. 2016),
and Snhg8 (lnc2803∗), which promotes tumorigenesis
and predicts tumor recurrence in hepatocellular carcinoma
(Dong et al. 2018), while the venous cell-enriched
Mir100hg (lnc7851∗) activatesWnt signaling via its embed-
ded miRNAs (Lu et al. 2017). Other top zonation markers
across the endothelium trajectory, derived using SCOR-
PIUS (Cannoodt et al. 2016), are shown in Figure 3B (right).

lncRNA zonation in mesenchymal cells

We investigated gene expression zonation patterns in
three mesenchymal cell populations (Fig. 3C–E): HSCs, fi-
broblasts,which are found in themesenchyme surrounding
the bile duct (Wells 2014), and VSMCs, which comprise a
cell layer beneath endothelial cells lining the blood vessel
(Bomzon and Ljubuncic 2001). Trajectory analysis parti-
tioned HSCs into two subclusters: portal vein-associated
HSCs and central vein-associated HSCs, whose identities
we verified using the established HSC marker genes
Rspo3 (pericentral) and Ngfr (periportal) (Fig. 3C; Dobie
et al. 2019). We identified 58 HSC zonated lncRNAs, in-
cluding Pvt1 (lnc12608), Airn (lnc13654) and Lnc-Dreh
(lnc14025) (Fig. 3C; Supplemental Table S3E). Pvt1 acti-
vates HSCs under hypoxia and promotes liver fibrosis
(Zheng et al. 2016; Yu et al. 2020) and cozonates with peri-

portal HSC genes, as does Airn. Pathways associated with
the PCGs in this HSC cluster include locomotion, extracel-
lular matrix, Notch signaling, and blood vessel develop-
ment. In contrast, lnc-Dreh, a tumor suppressor gene for
hepatocellular carcinoma (Lv et al. 2017), was preferentially
expressed in central vein-associated HSCs, which were
most highly enriched for cytosolic ribosome genes and
for regulation of cell proliferation (Fig. 3C; Supplemental
Table S3F).
The spatial zonation of smoothmuscle cells has been es-

tablished in brain but has not been investigated for liver.
Trajectory analysis identified two distinct clusters of liver
VSMCs, with 381 genes (355 PCGs, 26 lncRNAs) showing
significant differential expression between clusters (Sup-
plemental Table S3G). VSMC cluster 1 was characterized
by high expression of Rgs5, a marker for brain pericytes
(Shen et al. 2016; Vanlandewijck et al. 2018), and was en-
riched in functions related to contractile fiber and muscle
structure development. In contrast, VSMC cluster 2 was
characterized by high expression of Cnn1, a marker for ar-
terial smooth muscle cells in mouse brain (Vanlandewijck
et al. 2018), and was enriched for a distinct set of biological
processes, including vasculature development, cell differ-
entiation, cytosolic ribosome, cell death, and response to
cytokine (Fig. 3D; Supplemental Table S3H).
Fibroblast heterogeneity associated with discrete ana-

tomical positions is seen in multiple tissues (Muhl et al.
2020) but has not been characterized for liver. Trajectory in-
ference identified two distinct fibroblast clusters in mouse
liver, which may correspond to distinct, zonated cell popu-
lations, and which encompassed 1335 PCGs and 69
lncRNAs (Supplemental Table S3I). Cluster 1 liver fibro-
blasts were enriched for cytoskeleton organization, cell mi-
gration, cell differentiation, and cell death, while cluster 2
fibroblasts were enriched for cell proliferation, circulatory
systemdevelopment, andextracellularmatrix (Fig. 3E; Sup-
plemental Table S3J). Neat1 (lnc14746∗), which promotes
liver fibrosis (He et al. 2020), was enriched in cluster 1 fibro-
blasts. Cluster 2 fibroblasts were enriched for Dnm3os
(lnc17273∗), which promotes hepatocellular carcinoma via
an epigenetic mechanism (Wang et al. 2021), and for
Carmn/Mir143HG (lnc14558∗), whose loss in human
VSMCs is associated with enhanced proliferation and mi-
gration (Wang and Sallam 2021).

LncRNAs dysregulation in diet-induced NASH

To elucidate the role of lncRNAs in NASH progression and
the development of pathogenic cell states, we analyzed
scRNA-seq data (Su et al. 2021) obtained from a combined
total of 74,718 liver cells isolated from healthy mice (chow
diet) and frommice fed HFHFD (high fat high fructose diet)
for either 15 wk, to induce simple steatosis (NAFLD), or for
30–34 wk, to induce NASH (Supplemental Table S1H). In
livers from 15 wk high-fat-diet fed mice (NAFLD livers),
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1477 genes, including 308 lncRNAs, were differentially ex-
pressed (>2 fold-change at FDR<0.05) in one or more of
12 major cell clusters (Fig. 4A; Supplemental Table S4A).
These genes showed strong functional enrichment for in-
flammatory response, lipid metabolic process, leukocyte
migration, cytokine production, and innate immune re-

sponse (Supplemental Table S4B). After 30 wk of high-fat
diet feeding (NASH livers), the number of differentially ex-
pressed genes increased to 2216, including 332 lncRNAs;
and after 34 wk, it increased to 3090 genes, including 459
lncRNAs (Supplemental Table S4C,D). Overall, a total of
677 lncRNAs were dysregulated across the time course

A

D

G

B C

H

E F

FIGURE 4. LncRNAs and PCGs perturbed across different cell types in NAFLD and NASH liver. (A) UMAP showing liver cell clusters for a total of
74,718 cells. Cells from healthy liver (19,364 cells) were aggregated with cells from livers of mice fed HFHFD for 15 wk (NAFLD liver; 23,961 cells),
30 wk (24,106 cells), or 34 wk (NASH livers; 7287 cells) (Supplemental Table S1H). Cell numbers in each cluster are shown in parentheses. Mo/
MoMF, monocytes/monocyte-derived macrophages. (B–F ) Heat maps showing differentially expressed lncRNAs and PCGs in the indicated cells
clusters from 15-, 30-, and 34-wk HFHFD-fed livers compared to chow diet livers, in hepatocytes (B), endothelial cells (C ), HSCs (D), Kupffer cells
(E), andNK&T cells (F ). Functional enrichment terms are shown at the right of each heatmap for each PCGheatmap subcluster (markedA–C ) from
each cell type. See Supplemental Table S4 for full data sets. (G) UMAP of Kupffer (macrophage) cell subpopulations, identified based on PCG
markers in each cell subtype. Kupffer cells and Mo/MoMf cell clusters shown in A were reclustered to generate the four clusters shown at higher
resolution, after filtering, to remove cells with high mitochondrial contamination. Functional enrichment terms of each cluster are shown at the
right. (H) Feature plots showing expression of select PCG and lncRNAs marker genes in Kupffer cell subpopulations.
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of NAFLD to NASH progression. The top enriched path-
ways for the NASH-induced and NASH-repressed genes
were very similar to those seen in the NAFLD (15 wk) livers
(Supplemental Table S4B).
Genes differentially expressed between HFHFD and

chow-fed mice at one or more of these three time
points were identified for each major liver cell type
(Supplemental Table S4E) and then clustered to give the
heatmaps and enriched pathways shown in Figure 4B–F.
Genes induced across the time course of NAFLD and
NASH development were enriched for functions such as
fatty acid metabolism and innate immune response in
both hepatocytes and endothelial cells (Fig. 4B,C). In
HSCs, genes responding to HFHFD were mostly up-regu-
lated at both time points and were enriched for cell migra-
tion, extracellular matrix, defense response and innate
immunity (Fig. 4D), consistent with the activation of
NASH-associated fibrosis. Finally, in both Kupffer cells
and in NK and T cells, more genes were down-regulated
than were up-regulated, with distinct enriched functions
(Fig. 4E,F).
Several of the lncRNAs identified here as dysregulated

with HFHFD feeding have known functions relevant to
NAFLD and NASH. These include Pvt1 (lnc12608), which
regulates HSC activation to promote liver fibrosis (Zheng
et al. 2016; Yu et al. 2020) and was induced twofold in en-
dothelial cells fromNAFLD liver; andDnmt3aos (lnc10251),
which regulates macrophage polarization (Li et al. 2020)
andwas induced 16-fold in Kupffer cells (Supplemental Ta-
ble S4A). Airn (lnc13654), which promotes hepatocellular
carcinoma progression (Oliva et al. 2009), was induced
five- to sixfold in both Kupffer cells and hepatocytes from
NASH liver (30 wk). Further, Hnf4aos (lnc1966∗), a lncRNA
that is antisense to the major hepatocyte transcription fac-
torHnf4a (GuoandLu2019), was repressed threefold in he-
patocytes,while lnc-Plet1os (lnc7931),which is antisense to
a marker gene for epithelial progenitor cells with liver re-
generation capacity (Zhang et al. 2017a), was repressed
threefold in both endothelial cells and hepatocytes (Sup-
plemental Table S4C). Finally, the oncogenic Snhg8
(lnc2803∗) (Donget al. 2018)wasdown-regulated threefold
in both hepatocytes and Kupffer cells from 34wkNASH liv-
er (Supplemental Table S4D).

LncRNA markers in NASH-associated macrophages

Macrophages play a critical role in NASH pathogenesis;
they are strongly linked to disease progression and highly
responsive to therapeutic interventions (Kazankov et al.
2019; Oates et al. 2019). We reclustered the Kupffer cells
and monocyte/macrophage cells aggregated from both
control and HFHFD livers to identify four macrophage sub-
populations (Fig. 4G; Supplemental Table S4G). A total of
96 lncRNAmarkers were discovered for the individualmac-
rophage subpopulations, of which 27 have human ortho-

logs (Supplemental Table S4H). The four subpopulations
were characterized as Trem2 (low)macrophages,NASH-as-
sociated macrophages (NAMs; Trem2-high, a hallmark of
mouse and human NASH) (Ramachandran et al. 2019),
monocyte/monocyte-derived macrophages, and prolifer-
ating cells, very similar to those described earlier using a
nonparenchymal liver cell-enriched population (Xiong
et al. 2019). In NASH liver, Trem2 (low) macrophages de-
creased from 81% to 30%–35% of the overall macrophage
population (Supplemental Table S1H); these cells prefer-
entially express Hotairm1 (lnc5147∗), a tumor-associated
lncRNA that participates in cell proliferation, migration,
and apoptosis (Luo et al. 2019), and the Kupffer cell activa-
tion marker and scavenger receptor CD163 (Fig. 4H; Niel-
sen et al. 2020). In contrast, the NAM cell cluster (Trem2-
high; Supplemental Fig. S2) expanded from 8% to 24% of
the overall macrophage population in NASH liver and
was marked by high expression of Gpnmb (Fig. 4H) and
of Dnmt3aos (lnc10251), which regulates macrophage po-
larization via its effects on the expression of Dnmt3 (Li et al.
2020). Monocyte-derived macrophages, which infiltrate
and can replace resident Kupffer cells under inflammatory
conditions (Daemen et al. 2021), increased from 5% to
34%–40% of the macrophage population (Supplemental
Table S1H), and were marked by Ccr2 and by Mirt1
(lnc15124), an inhibitor of NF-κB signaling that can
decrease expression of inflammatory factors (Li et al.
2017b). The proliferating macrophage population was
marked by Top2a, which is associated with poor prognosis
for hepatocellular carcinoma (Cai et al. 2020), and by Lockd
(lnc5675) (Fig. 4H), which acts as an enhancer of themitotic
cell cycle factor Cdkn1b (Paralkar et al. 2016) and is de-
creased in offspring liver in response to maternal high fat
diet-induced obesity (Chen et al. 2022). Other lncRNA
markers of macrophage subpopulations are shown in Sup-
plemental Figure S2. Analysis of the distinct sets of marker
genes for eachmacrophage subpopulation (Supplemental
Table S4G) revealed unique functions for each cell cluster:
Trem2 (low) macrophages were enriched for vasculature
development, inflammatory response, response towound-
ing and cell migration; NAMs were associated with regula-
tion of cell migration/leukocyte migration; monocyte-
derived macrophages were enriched for functions related
to immune response, inflammatory response, cell death,
T cell activation and cytokine production; and proliferating
cells were enriched for functions related toDNA replication
and cell cycle.

Zonation dysregulation during NAFLD and NASH
pathogenesis

The distinctive liver lobule zone-dependent gene expres-
sion seen in healthy liver (Fig. 3) is important for liver func-
tion and can be perturbed in disease states (Kietzmann
2019). We found significant zonal perturbations in
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NAFLD and NASH liver compared to chow diet liver for 74
PCGs and six lncRNAs in hepatocytes, and for 107 PCGs
and five lncRNAs in endothelial cells (Fig. 5A,B;
Supplemental Table S4I). The zonally perturbed hepato-
cyte genes were enriched for pyridoxal phosphate binding
and PPAR signaling, while the endothelial cell zonation
perturbed genes showed strong enrichment for ribosomal
proteins and for NAFLD/respiratory chain (Supplemental
Table S4J). Specific examples include Aldh1a7, which
can protect hepatocytes by catabolism of reactive alde-
hydes formed during oxidative stress and was shifted
from pericentral to periportal hepatocytes during NAFLD
and NASH development, while the heme biosynthetic en-
zyme Alas1 shifted from periportal to pericentral hepato-
cytes (Fig. 5A). In liver endothelial cells, Ssh1 shifted
from midlobular expression in chow diet livers to pericen-
tral expression in NAFLD and NASH livers (Fig. 5B). This
actin remodeling gene is involved in endothelial cell in-
flammatory signaling and has vascular antifibrotic activity
(Williams et al. 2019).

Global discovery of network-essential regulatory
lncRNAs in healthy, NAFLD and NASH liver

We implemented gene coexpression network analysis us-
ing bigSCale2 (Iacono et al. 2019) to develop gene regula-
tory networks and associate individual lncRNAs with
specific biological functions in healthy liver, in NAFLD liver
(15 wk HFHFD) and in NASH liver (30 wk HFHFD) (Fig. 6;
Supplemental Table S5A,B). We inferred the identities of
key network-essential regulatory genes based on four net-
work centralitymetrics extracted fromeachnetwork, name-
ly, Betweenness, PageRank centrality, Closeness, and
Degree (Iacono et al. 2019), which serve as proxies for a
gene’s influence on the network (see Fig. 6, where labeled
nodes are the inferred regulatory genes; Supplemental Ta-
ble S5C). A total of 65 suchnetwork-essential lncRNAswere
identified across the three liver networks. Functional anno-
tation clusters associated with the gene targets of each of
thesenetwork-essential regulatory lncRNAs (Supplemental
Table S5D) revealed many common enriched functional
annotations across the set of lncRNAs. This is consistent
with the high gene densities of all three bigSCale2 net-
works (Supplemental Table S5E) and the sharing of gene
targets between regulatory lncRNAs within a network.
Thus, organic acidmetabolic processdescribed the topen-
riched annotation cluster (Benjamini-corrected P-value:
10−28 to 10−87) for 27of the65 regulatory lncRNAs, in either
the healthy liver (chow diet) network or the NAFLD net-
work, but none in the NASH network. In contrast, vascular
development or cardiovascular system development de-
scribed the top enriched annotation cluster of 17 other reg-
ulatory lncRNAs in the NAFLD and NASH networks
(Benjamini P-value: 10−16 to 10−34) but for none in the
healthy liver network (at P<10−10), consistent with the

role of angiogenesis in progression from liver fibrosis to
more advanced liver disease (Elpek 2015; Li 2021).

Forty-five genes were identified as network-essential for
all three liver networks (Supplemental Fig. S3;
Supplemental Table S5C, column AH), including three
lncRNAs, two with human orthologs (lnc937∗, lnc11040,
lnc45045∗). Other network-essential regulatory lncRNAs
of interest include: Hnf4aos (lnc1966∗), which is antisense
to the major liver transcription factor HNF4A and showed
high connectivity to genes involved in various metabolic
processes in the healthy liver network (Supplemental
Table S5D); Gm45792 (lnc6546), which is antisense to
acyl-CoA synthetase medium chain family member 1
(Acsm1) and is an essential node in the NAFLD liver net-
work; and Ctcflos (lnc2065), which regulates transcription
of hepatic Pck1 by modulating glucocorticoid receptor
function (Yoon et al. 2023) and was an essential node in
the NASH network, where it makes a second-degree con-
nection with Pck1 via lnc10621 (Supplemental Fig. S4).

Master regulators in healthy and NAFLD/NASH liver

The sets of network-essential regulatory genes identified in
eachnetwork (both lncRNAs andPCGs)were extracted and
used to construct subnetworks comprised exclusively of
the putative regulatory genes themselves. We ranked the
subnetwork genes using a modified scoring approach
(see Materials and Methods) to identify n=16–23 master
regulators for each liver network (Fig. 6, nodes marked
with green triangles; Supplemental Table S5C, columns
AP-BU). Seven of the master regulators were lncRNAs
(healthy liver network: Gm16157 [lnc6236∗], lnc26316,
and Gm20319 [lnc28143]; NAFLD network: lnc7463,
lnc11040; NASH network: lnc6925, lnc14189∗). Validating
this approach to discovery of bonafide liver network regu-
latory genes, several of the master regulators are liver tran-
scription factors with well-established regulatory functions,
and many of the master regulators have regulatory func-
tions specifically related to liver disease (Supplemental Ta-
ble S5F, columns F and L). Specific examples include:
Hnf4a, a master regulator of hepatocyte gene expression
that protects against NASH development (Xu et al. 2021),
in the healthy liver network; Nr2f2 (COUP-TFII), whose
loss inhibits HSC/myofibroblast activation in liver injury
(Ceni et al. 2017), in the NAFLD liver network; and Meis2,
which promotes hepatocellular carcinoma (Guan et al.
2019), and Ets1, whose loss decreases diet-induced hepa-
tocyte apoptosis, fibrosis and NASH (Liu et al. 2019), in the
NASH liver network. We further validated the functionality
of the regulatory gene networks by directly comparing the
known biological activities of each master regulator to the
sets of highly enriched functional annotations of its network
target genes (Supplemental Table S5G), and inmany cases
found good agreement (Supplemental Table S5F). For ex-
ample: Notch1, a master regulator in the NAFLD network,
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A

B

FIGURE 5. Perturbation of zonation in NAFLD and NASH liver. Matched heatmaps of genes (PCGs and lncRNAs) that are differentially zonated
between control, NAFLD, and NASH livers at FDR<0.001, in hepatocytes (A), and in endothelial cells (B). Pathways perturbed were identified by
DAVID functional enrichment analysis of the differential PCGs (Supplemental Table S4I,J). Shown at the right are zonation profiles for select genes
for each cell type across three conditions (chow diet, NAFLD, NASH).
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A

B

C

FIGURE 6. Gene regulatory networks for healthy, NAFLD, and NASH liver. BigSCale2 networks based on scRNA-seq data for chow-fed (A),
NAFLD (B), and NASH (C ) mouse livers, where PCGs and lncRNAs are nodes, and the edges between genes are correlation values based on
an adaptive threshold. Nodes displayed here represent network-essential/regulatory genes (circular and diamond-shaped nodes, with
lncRNAs nodes colored yellow), as predicted based on top network metrics. Triangular nodes represent master regulators (predicted to regulate
the network-essential regulators) and are defined as nodes (genes) with high network centrality metrics calculated for subnetworks extracted from
all top 100 ranked PCG nodes plus all top 50 ranked lncRNA nodes. The networks are subdivided into gene modules that are enriched for the
biological functions listed. Also see Supplemental Table S5.
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promotes the migration and invasion of hepatocellular
carcinoma cells (Lu et al. 2022), and its target genes
were enriched for regulation of cell migration (Benjamini
P=6.46×10−17); while the master regulator Cavin2 regu-
lates endothelial nitric-oxide synthase in angiogenesis,
and its NAFLD network target genes were strongly en-
riched for regulation of angiogenesis (P=2.96×10−15). Fi-
nally, two master regulators from the chow diet liver
network that are DNA-binding proteins were identified as
upstream regulators of their liver network-predicted
target genes by IPA Upstream Regulator analysis: Hnf4a,
at P=5.80×10−19; and Rorc, at P=9.71×10−08 (Supple-
mental Table S5F, column I).

Cell type-specific responses and lncRNAs
dysregulated in CCl4-induced liver fibrosis

We examined the utility of the computational framework
described above to identify disease-relevant liver lncRNAs
in a second disease model. Thus, we analyzed an scRNA-
seqdata set (Dobie et al. 2019) comprised ofmesenchymal
cells from healthy mouse liver and from livers of mice fol-
lowing chronic (6 wk) exposure to CCl4, which induces ad-
vanced liver fibrosis. Three distinct cell populations were
identified by clustering mesenchymal cells aggregated
from the healthy and CCl4-treated livers, namely, HSCs, fi-
broblasts and VSMCs (Fig. 7A,B), consistent with prior find-
ings (Dobie et al. 2019). Differential expression analysis
across these three subpopulations identified 1550 genes,
including 631 lncRNAs, that were dysregulated by CCl4
treatment (Fig. 7C; Supplemental Table S6A), a subset of
which was dysregulated in multiple subpopulations (Sup-
plemental Fig. S6). Genes preferentially or specifically dys-
regulated byCCl4 in the fibroblast subpopulation include a
174-fold induction of Sectm1a, which stabilizes tissue resi-
dent macrophages in response to acute inflammation (Mu
et al. 2021), and a 160-fold suppression ofNkx6-1, an unfa-
vorable prognostic marker for human hepatocellular carci-
noma (Huang et al. 2015). Genes specifically dysregulated
in VSMCs include Stc1, a classic inflammation marker in fi-
brotic disease (Chan et al. 2022), as well as lnc24481∗,
which was up-regulated 16-fold, and lnc43318, which was
fivefold down-regulated by CCl4 exposure. HSCs showed
the most extensive dysregulation, impacting 1296 genes
(743 PCGs, 553 lncRNAs), >90% of which were specifically
dysregulated inHSCs (Supplemental Table S6A). Examples
include: Ltbp2 (172-fold increase), a marker of cardiac fi-
brosis (Park et al. 2018); Gpx3 (16-fold increase), an antiox-
idant enzyme induced by oxidative stress (Kim et al. 2018);
and Fcna (fourfold decrease), a marker for resting HSCs
(Krenkel et al. 2019).Wt1,whichmoderates fibrogenesis af-
ter injury (Kendall et al. 2019), and the divergently tran-
scribed Wt1os (lnc1601), were both strongly induced
(>20-fold) inHSCs. Finally, we identified 172genes, includ-
ing three lncRNAs, whose expression along the trajectory

was significantly different between healthy and chronic
CCl4-exposed HSCs (Fig. 7D; Supplemental Table S6B).
This finding is consistentwith the dynamic changes in zona-
tion seen in HSCs during CCl4-induced fibrotic liver injury
(Dobie et al. 2019). The top enriched term was cell death
(Supplemental Table S6C). In many cases, CCl4 exposure
substantially reversed the HSC zonation pattern seen in
control liver.

LncRNAs expressed in collagen-producing
myofibroblasts

The pericentral HSC population of CCl4-treated liver in-
cludes activated HSCs (also known as myofibroblasts),
which produce collagen and promote fibrosis progression
(Dobie et al. 2019; Krenkel et al. 2019). We investigated
this activated HSC subpopulation to discover lncRNAs as-
sociated with pathogenic collagen production. The activa-
tion of pericentral HSCs was validated by the expression
patterns of profibrogenic marker genes (Col1a1, Col1a2)
and by the reduced expression of established marker
genes for quiescent pericentral HSCs (Ecm1, Rgs5) (Fig.
7E; Supplemental Fig. S5A; Dobie et al. 2019). Overall,
73 lncRNAs showed differential expression between qui-
escent and activated pericentral HSCs (i.e., myofibroblasts)
fromCCl4-induced fibrotic liver (Supplemental Table S6D).
For example, the lncRNA Morrbid (lnc1716), a critical reg-
ulator of immune cell prosurvival cytokine responses
(Kotzin et al. 2016), was more highly expressed in quies-
cent than in activated HSCs.
Meg3 (lnc10922∗), a marker for pulmonary fibroblasts

(Xie et al. 2018) and an inhibitor of liver fibrosis (He et al.
2020), and Gas5 (lnc733∗), which suppresses HSC activa-
tion and counters liver fibrosis (Yu et al. 2015), were more
highly expressed in activated HSCs. Overall, a total of
1420 PCGs were differentially expressed between these
two pericentral HSC subpopulations (Supplemental Fig.
S5B; Supplemental Table S6D). PCGs expressed in the qui-
escentHSCswere strongly enriched for cellular response to
chemical stimulus and cell migration (Supplemental Table
S6E), consistentwith quiescentHSCmigrationbeing linked
to cell proliferation (Ikeda et al. 1999), while PCGs in the ac-
tivated, myofibroblast subpopulation showed strong en-
richment for terms such as extracellular matrix, circulatory
system development and connective tissue development
(Supplemental Table S6E).

Network-essential lncRNA regulators in CCl4-
exposed liver

Analysis of the mesenchymal single-cell populations using
bigSCale2 yielded functional gene coexpression networks
for both healthy (control) and CCl4-exposed liver (Fig. 8).
Using network centrality metrics, we identified a total of
34 network-essential regulatory lncRNAs: 19 for the
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FIGURE 7. Mesenchymal cell lncRNAs and PCGs perturbed in CCl4-induced fibrotic mouse liver. (A) UMAP showing 21,190 cells comprised of
three hepatic mesenchyme subpopulations aggregated from healthy liver (11,710 cells) and fibrotic mouse liver (6 wk CCl4 exposure; 9480 cells),
with total cell numbers indicated for each cluster (Supplemental Table S1H). (B) Dot plot showing average expression of mesenchymal cell sub-
population marker genes (Dobie et al. 2019). Dot size is proportional to the percentage of cells expressing each marker gene. (C ) Volcano plots
showing differentially expressed genes in each cell cluster at log2 |fold-change| > 1 and FDR<0.05, displayed as −log10 value on y-axis. (D)
Matched heatmaps of genes expressed in HSCs that are differentially zonated between control and fibrotic mouse liver (at FDR<0.001), with
perturbed pathways based on DAVID functional enrichment analysis. (Right) Zonation profiles for select genes whose zonation pattern is per-
turbed by CCl4 exposure. (E) Heatmap showing relative expression of lncRNAs that are differentially expressed between quiescent pericentral
HSCs andmyofibroblasts fromCCl4-exposedmouse liver mesenchymal cells. See Supplemental Figure S5B. (Right) Expression patterns for select
genes. Cell identities were verified using the uninjured HSC marker gene Ecm1 and the profibrogenic marker gene Col1a1 (right).
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healthy mesenchymal cell network and 26 for the CCl4-ex-
posed liver fibrosis network; of these, eight network-es-
sential regulatory lncRNAs were specific to the control
liver network, 15 to the CCl4 network, and 11 were com-
mon to both networks (Supplemental Table S5C;
Supplemental Fig. S7). One of the network-common

lncRNAs, Meg3 (lnc10922∗), inhibits HSC activation and
accelerates the reversal of CCl4-induced fibrosis (Wu
et al. 2021). Network-essential PCG regulators common
to both networks include: Ifnar2, which mediates many an-
tiviral immune responses and has a genetic polymorphism
linked to hepatocellular carcinoma (Ma et al. 2018); Ets1,

A

B

FIGURE 8. Gene regulatory networks for healthy liver (A) and CCl4-induced fibrotic liver (B). Shown are BigSCale2 networks, as in Figure 6, with
nodes representing network-essential regulatory genes (circular nodes, with lncRNAs shown as yellow nodes) predicted based on top network
metrics. Triangular nodes indicate master regulators. The networks are subdivided into gene modules, which were enriched for the biological
functions listed. See Supplemental Table S5.
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which regulates HSC activation in NASH liver and is a pro-
fibrogenic marker in CCl4-induced fibrosis (Marcher et al.
2019), where it is a critical mediator of extracellular matrix
remodeling (Trojanowska 2000); Tesc, which had the high-
est PageRank centrality score in the CCl4 network and neg-
atively regulates cell proliferation and survival in
hepatocellular carcinoma (Zhou et al. 2020); and Nr1h4
(FXR), which regulates lipid and glucose homeostasis and
is involved in innate immune responses (Fiorucci et al. 2018).

Manyof thegene targets of the34mesenchymal cell net-
work-essential regulatory lncRNAs were enriched for com-
mon functional annotations, with notable differences
between control and CCl4-exposed liver (Supplemental
Table S5D). For example, response to cytokine/response
to interferon-βwas the top enriched term for six regulatory
lncRNAs in CCl4-exposedmesenchymal cells (Benjamini P-
value: 10−13 to 10−22) versus no lncRNAs in control liver.
Similarly, extracellular matrix was among the top three
terms for nine regulatory lncRNAs from CCl4 liver versus
one regulatory lncRNAs in mesenchymal cells from healthy
liver (Benjamini P-value: 10−09 to 10−15). These findings are
consistent with the central roles of each of these biological
processes in liver fibrosis. In contrast, top two enriched
termsmore frequently found for gene targets ofmesenchy-
mal cell regulatory lncRNAs from control liver included re-
sponse to organic substance (seven in regulatory lncRNAs
in control liver vs. 0 lncRNAs in CCl4 liver; Benjamini P-val-
ue: 10−10 to 10−17) and blood vessel/cardiovascular system
development and closely related terms (12 regulatory
lncRNAs in control liver vs. six lncRNAs in CCl4 liver; Benja-
mini P-value: 10−09 to 10−17) (Supplemental Table S5D).

Master regulators in the mesenchymal cell networks

Analysis of the sets ofmesenchymal cell network regulatory
genes as described above for healthy and NAFLD/NASH
identified n=18–23 master regulators for each mesenchy-
mal cell network along with enriched functional annota-
tions of their target genes (Fig. 8, nodes shown as green
triangles; Supplemental Table S5C,F). Four lncRNAs were
identified as master regulators of the CCl4 mesenchymal
cell network: Gm13861 (target genes enriched in cytoskel-
etal protein binding, at Benjamini P=7.12×10−10);
Gm48715 (muscle system process, P=9.39×10−09),
lnc1059∗ (extracellular matrix, P=7.64×10−11); and
lnc8970 (blood vessel morphogenesis, P=1.66×10−11).
Onemaster regulatory lncRNAwas identified in the control
mesenchymal cell network (lnc48955, targets enriched in
locomotion, at P=4.62×10−22) (Fig. 8; Supplemental Ta-
ble S5C,F,G). Validating our approach to discovery of liver
network-essential regulatory genes, many of the master
regulators from the CCl4-exposed mesenchymal cell net-
work have regulatory roles in liver fibrosis, a hallmark of
CCl4-exposed liver, and the network target genes of the
master regulators often showed highly enriched functional

annotations that match the known biological properties of
their master regulators (Supplemental Table S5F).

Functional clustering of regulatory lncRNAs

PCGs that were targets of the network-essential regulatory
lncRNAs from each of the above five liver networks (Figs. 6,
8) were input to Metascape (Zhou et al. 2019) to facilitate
comparisons across the target gene lists of each lncRNA,
and thereby cluster the regulatory lncRNAs based on com-
monality of function. Regulatory lncRNAs from chow fed
liver comprised three major functional clusters
(Supplemental Fig. S8), two of which were variously en-
riched for diverse metabolic processes, while a third
lncRNA cluster was functionally enriched for angiogenesis
and vasculature development, extracellular matrix, and
cell–cell adhesion. Similarly, we identified three clusters
of regulatory lncRNAs from the NAFLD network
(Supplemental Fig. S9), and four clusters with distinct en-
richment patterns for the regulatory lncRNAs from NASH
liver (Supplemental Fig. S10). Overall, the NAFLD and
NASH network-derived regulatory lncRNAs showed more
extensive enrichment for vasculature development and an-
giogenic processes than those from control liver
(Supplemental Fig. S11), whereas the NAFLD and control
network regulatory lncRNAs both showed enrichment for
diverse metabolic processes.

Similarly, we identified two distinct regulatory lncRNA
clusters from the healthy liver mesenchymal cell network
(Supplemental Fig. S12), with one cluster of five lncRNAs
enriched for terms related to muscle contraction, notch
signaling, and ion homeostasis, and a separate cluster
comprised of 14 lncRNAs enriched for diverse biological
processes, including cell morphogenesis, regulation of de-
fense response, vascular development, and interferon re-
sponses. Finally, regulatory lncRNAs from the CCl4-
exposed mesenchymal cell network yielded three clusters
with strongest enrichments and highest specificities for
muscle contraction and notch signaling, extracellular ma-
trix organization, and response to interferon-β, respective-
ly (Supplemental Fig. S13). Pathways that were either
common or specific to healthy versus CCl4-exposed mes-
enchymal cell lncRNA gene targets are shown in
Supplemental Figure S14.

Triplex potential of liver disease-associated
regulatory lncRNAs

We evaluated the potential of each of the above network-
essential regulatory lncRNAs to form a triple helix with the
promoter sequence of its putative protein coding target
genes in the gene coexpression network, as determined
by Triplex Domain Finder (Kuo et al. 2019). For each
lncRNA, we computed the enrichment of sequence-specif-
ic lncRNA–protein coding gene promoter triplex
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interactions in the lncRNA’s network-predicted target
gene set, compared to a background set comprised of
protein coding gene promoters. First, we used Triplex
Domain Finder to define a set of DNA-binding domains
within each lncRNA of interest, that is, lncRNA sequences
with high triplex formation oligonucleotide activity. We
then determined, for each such DNA-binding domain,
whether the set of target gene promoters was significantly
enriched for containing at least one Triplex Target Site
(TTS) as compared to that for the set of nontarget gene
promoters. For the chow-fed liver network, we determined
that seven of 39 lncRNAs identified as key regulatory
genes based on network metrics (Supplemental Table
S5C) showed significant enrichment for lncRNA–promoter
DNA triplexes at FDR<0.05 (Fisher’s exact test)
(Supplemental Table S7A). Four of these seven lncRNAs
formed triplexes with genes enriched for metabolic pro-
cesses such as oxidoreductase, peroxisomes and lipid me-
tabolism (Supplemental Fig. S15A; 5033403H07Rik
[lnc4220], lnc7423, 0610031O16Rik [lnc2936], Prox1os
[lnc979∗]) and three lncRNAs formed triplexes with genes
enriched for extracellular matrix (Supplemental Table
S7A; lnc259, Fendrr [lnc47443∗], lnc8224). Furthermore,
nine out of 28 regulatory lncRNAs in the NAFLD network
were significantly enriched for triplex formation with their
gene targets, as were five out of 29 regulatory lncRNAs
in the NASH network. Enriched gene functions associated
with these regulatory lncRNA gene targets include vascu-
lature development and angiogenesis (Supplemental Fig.
S15B,C).
In healthy liver mesenchymal cells, eight out of 19 net-

work-essential regulatory lncRNAs were significantly en-
riched for triplex formation with their target gene
promotors; the associated enriched functions included re-
sponse to chemical stimulus, vasculature development,
cell migration, immune response, and extracellular matrix
(Supplemental Fig. S16A). In the CCl4-induced liver mes-
enchymal network, 11 out of 26 regulatory lncRNAs were
enriched for triplex formation with their target gene pro-
moters for pathways linked to extracellular matrix, re-
sponse to cytokine and interferons (β and γ), blood
morphogenesis, and defense response (Supplemental
Fig. S16B). Six network-essential regulatory lncRNAs
were common to both the control and the CCl4-exposed
liver mesenchymal cell network, but new regulatory inter-
actions emerged in the CCl4 network. For instance,
Meg3 (lnc10922∗) formed an isolated subnetwork in con-
trol mesenchymal cells (Supplemental Fig. S16A) but had
extensive shared binding targets with lnc35550∗,
lnc35556∗, and 5031426D15Rik (lnc1059∗) in the CCl4-in-
duced liver fibrosis network (Supplemental Fig. S16B).
We identified specific PCG targets for each lncRNA, as
well as many shared targets between regulatory
lncRNAs, which is indicative of their complex regulatory
crosstalk (Supplemental Table S7C–G).

DISCUSSION

The overall goal of this study was to elucidate on a global
scale the roles of liver-expressed lncRNAs in biological
pathways related to liver disease development. Single-
cell RNA-seq was used to characterize the long noncoding
transcriptional landscape of mouse liver using a reference
catalog of 48,261 liver-expressed lncRNAs, a majority of
them novel, which we discovered by transcriptome recon-
struction from >2000 bulk public mouse liver RNA-seq
data sets, a major update to our earlier reference set of
15,558 mouse liver lncRNAs (Melia and Waxman 2019).
Prior studies identified several hundred mouse liver-ex-
pressed lncRNAs that show hormone-regulated, sex-bi-
ased expression (Melia and Waxman 2019; Lau-Corona
et al. 2022) or respond to xenobiotic exposures (Lodato
et al. 2017; Dempsey and Cui 2019; Goldfarb and
Waxman 2021). However, a global analysis of lncRNAs dys-
regulated in liver diseased states, most notably, lncRNAs
expressed in specific cell types and zonal subpopulations
across the liver lobule, was lacking. Here, we characterized
liver cell type-specific expression patterns for healthy
mouse liver and for two disease models for a total of
76,011 genes, including 48,261 liver-expressed lncRNAs
plus 4700 other lncRNAs from RefSeq and Ensemble data-
bases. Importantly, we showed that single-cell RNA-seq
technology is sufficiently sensitive to detect and character-
izemore than 30,000 liver lncRNAs, including 25,000 novel
liver-expressed lncRNA genes, 110 of which we identified
as cell type-specific marker genes for the 13 major cell
types identified in healthy adult mouse liver (see overall
summary in Supplemental Table S8A). Using public
scRNA-seq data sets (Dobie et al. 2019; Su et al. 2021)
we uncovered striking liver cell type-dependent perturba-
tions in the expression of 677 lncRNAs in NAFLD com-
pared to healthy mouse liver, and in the transition from
NAFLD to NASH liver. Furthermore, we identified a largely
nonoverlapping set of 631 lncRNAs dysregulated in liver
mesenchymal cells from livers that develop extensive fi-
brosis following chronic exposure to CCl4. Given that thou-
sands of liver-expressed lncRNAs are nuclear, tightly
bound to chromatin and polyadenylated (Goldfarb and
Waxman 2021), we can anticipate an even greater sensitiv-
ity for lncRNA detection when using single nucleus RNA-
seq in place of scRNA-seq (Zeng et al. 2016; Goldfarb
et al. 2022). Single nucleus RNA-seq may also provide a
more representative picture of the relative abundance of
each cell type in mouse liver, something that is lacking in
the single-cell populations from healthy (normal chow
diet) mouse liver used in our analysis (Fig. 2), which were
aggregated and harmonized across four data sets variously
enriched for mouse nonparenchymal cells.
Single-cell analysis has enabled the functional character-

ization of the periportal to pericentral zonation gradients
of PCG expression across the liver lobule, as was shown
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for hepatocytes (Halpern et al. 2017), endothelial cells
(Halpern et al. 2018), and HSCs (Dobie et al. 2019). Here,
we used spatial inference methods to elucidate zonation
patterns for large numbers of lncRNAs, and PCGs, in
each of these major liver cell types. We also identified nov-
el subclusters for both VSMC and fibroblasts. Prior reports
of VSMC and fibroblast zonation were limited to extrahe-
patic tissues, such as brain (Vanlandewijck et al. 2018;
Muhl et al. 2020), whose zonated markers we used to ten-
tatively annotate the zonation of the liver VSMC clusters we
identified. Liver fibroblasts were subclustered to give two
novel subtypes of unknown function, one of which was
uniquely marked by Colec11, which plays an important
role in innate immunity (Gajek et al. 2020), and the other
by Ly6c1, an antigen expressed by monocytes/macro-
phages that ingest stressed erythrocytes and deliver iron
to hepatocytes (Theurl et al. 2016). Further study, includ-
ing experimental validation by single-molecule fluores-
cence in situ hybridization, will be needed to verify these
lncRNA expression patterns and tentative zonation
assignments.

Single-cell analysis can dissect the milieu of hepatic im-
mune cells (Xiong et al. 2019), which are critical for hepatic
immune surveillance and immune tolerance (Jenne and
Kubes 2013) andprotect against pathogens anddietary an-
tigens (Bogdanos et al. 2013). Kupffer cells (liver resident
macrophages) are essential for tissue repair and clearance
of toxins (Wen et al. 2021) and can differentiate into the
more highly pathogenic NASH-associated macrophages
(NAMs) (Xiong et al. 2019). We identified a total of 96
lncRNA markers for four macrophage subpopulations
fromNAFLD and NASH liver, some of which may be useful
as clinical indicators for disease diagnosis or progression
and perhaps serve as functional therapeutic targets
(Huanget al. 2021). These four cell subpopulations are con-
sistent with prior findings (Xiong et al. 2019) and include
Trem2-low macrophages, which are involved in innate im-
munity, NAMs (Trem2-high cells), which are an indicator
of disease progression and provide opportunities for ther-
apeutic intervention (van der Heide et al. 2019), andmono-
cyte-derived macrophages, which are responsible for
chemokine-mediated signaling and leukocyte migration
and may replace the depleted Kupffer cells (Wen et al.
2021). Finally, proliferatingKupffer cells were characterized
by high expression of cell division and cell proliferation
genes (e.g.,Top2a,Stmn1; Supplemental Fig. S17), reflect-
ing the increase inmacrophage proliferation in response to
damage induced by NAFLD and NASH.

Weexplored lncRNA responses in chronicCCl4-exposed
liver, a widely used model for chemical-induced liver fibro-
sis with properties that resemble human fibrosis, including
widespread inflammation and collagen formation
(Scholten et al. 2015; Bao et al. 2021). Using this model,
we identified 631 lncRNAs dysregulated in one ormore he-
paticmesenchymal cell populations. Validating thismodel,

we observed strong up-regulation ofmany HSC-expressed
lncRNAs in association with the up-regulation of PCGs in-
volved in extracellular matrix and collagen processes, a
key feature of HSC activation and liver fibrosis (Pellicano
et al. 2021). Further, spatial inference analysis revealed ap-
parent zonation differences between control and fibrotic
HSCs. Importantly, we identified 73 lncRNAmarker genes,
many of them novel, for the transition from the quiescent
HSC state to the activated state of collagen-producing
HSCs (myofibroblasts) following CCl4-induced centrilobu-
lar injury. Future studies may investigate these lncRNAs
as potential fibrosis biomarkers and therapeutic targets
and may expand the analysis reported here to include ef-
fects of CCl4-induced hepatotoxicity on the full repertoire
of liver cell types, which were absent from the mesenchy-
mal cell population we analyzed (Dobie et al. 2019). It will
also be important to validate key findings using mouse
models that may better mimic the pathological causes of
liver fibrosis in humans (Bao et al. 2021), such as NASH-in-
duced liver fibrosis (Ipsen et al. 2020).

Gene regulatory network inference is a promising ap-
proach to discover regulatory mechanisms based on tran-
scription factor-target gene interactions in both healthy
tissue and in disease phenotypes. We utilized the rich sin-
gle-cell data sets analyzed here to construct gene regulato-
ry networks, with three specific goals: (1) to deduce lncRNA
gene functions based on membership in a functional gene
module; (2) to identify network-essential regulatory
lncRNAs, that is, lncRNAs that are expected to be critical
for specific linked biological pathways; and (3) to discover
new regulators that emerge in the rewiring of networks in
diseased states. We analyzed bigSCale2-derived networks
obtained for both healthy and diseased liver (NAFLD,
NASH, and fibrotic liver) and used four distinct network
centrality metrics to discover network-essential regulatory
genes, including many lncRNAs. The four network metrics
we used capture different types of network regulators.
Thus, Betweenness is crucial for information flow between
network modules, Closeness identifies genes that can rap-
idly spread information across the network, PageRank cen-
trality marks genes that are highly influential on the
network, and Degree, a measure of a node’s centrality,
identifies key network hubs (Iaconoet al. 2019).Master reg-
ulators, both lncRNAs and PCGs, were also identified for
each network based on their central roles in subnetworks
comprised exclusively of the network-essential regulatory
lncRNAsandPCGgenes themselves.Manyof the regulato-
ry lncRNA gene targets from the diseased liver networks
were enriched for common sets of functional annotations
that are characteristic of the diseased states. For instance,
clusters of lncRNAs in the NAFLD network were associated
with cell migration and regulation of angiogenesis, while
the sets of NAFLD and the NASH network regulatory
lncRNA target genes were both associated with vascular
development, and in CCl4-exposed mesenchymal cells,
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with cytokine and innate immune response and extracellu-
lar matrix. Validating this approach to the discovery of net-
work regulatory genes, many of the PCGmaster regulators
that we identified have well-established regulatory func-
tions specifically related to liver disease, and many of their
downstreamnetwork target geneswere highly enriched for
functional annotations that match the biological functions
of their master regulators.
LncRNAs can act as scaffolds that promote interactions

between proteins, RNA, and DNA (Luo et al. 2021).
Furthermore, there is increasing evidence that some
lncRNAs interact with genomic DNA in a sequence-specif-
ic manner via triple helix (triplex) formation, which may en-
able lncRNAs to assemble protein complexes at specific
genomic regions and regulate gene expression (Kuo
et al. 2019; Soibam and Zhamangaraeva 2021). We used
the sequence-based algorithm Triplex Domain Finder to
predict RNA–DNA triple helix binding between regulatory
lncRNAs identified in our bigSCale2 networks and the
DNA promoter sequences of the genes that make direct
connections with those lncRNAs in the gene regulatory
network. We found significant enrichments of triplex inter-
actions in the set of target genes for 20%–32% of the net-
work-essential regulatory lncRNAs identified in theNAFLD
andNASH networks and for 42% of those from the CCl4-in-
duced liver fibrosis network (Supplemental Table S7A).
Little overlap was found between the NAFLD and NASH
network-essential regulatory lncRNAs that formed signifi-
cant triplexes with PCG promoters and those from the
CCl4-induced fibrosis network. This is not unexpected as
the fibrosis network input was limited to single-cell expres-
sion data from hepatic mesenchymal cell populations.
Within each network, we observed many shared gene tar-
gets between regulatory lncRNAs, which indicates sub-
stantial regulatory crosstalk (Supplemental Figs. S15, S16).
Finally, supporting the human relevance of our findings,

we identified 259 mouse liver lncRNAs with orthologous
human sequences that were differentially expressed in liv-
er disease (either NAFLD, NASH or CCl4-induced fibrosis)
compared to healthy liver (Supplemental Table S8B). One
example, Neat1 (lnc14746∗), was up-regulated in NAFLD
in our mouse liver data set and has a human ortholog
that promotes NAFLD, liver fibrosis and hepatocellular car-
cinoma (Bu et al. 2020). Other human lncRNA orthologs
associated with human liver disease include: SNHG18
(lnc12453∗), a tumor suppressor and prognostic biomarker
that is down-regulated in human hepatocellular carcinoma
(Liu et al. 2018); LINC00657 (lnc1906∗_2900097C17Rik),
whose knockdown suppresses hepatocellular carcinoma
progression (Cao et al. 2020); and LINC00862
(lnc590∗_Gm19705), whose expression is elevated in he-
patocellular carcinoma (Yu et al. 2021). In addition, 32 of
the mouse lncRNAs with human orthologs were essential
nodes in at least one of the five liver regulatory networks
that we presented (Supplemental Table S8C). One of

these lncRNAs, Meg3 (lnc10922∗), is a marker for activated
myofibroblasts and an essential node in both healthy and
CCl4-induced mouse liver mesenchymal networks. In hu-
man liver, Meg3 has an antifibrotic effect in patients with
liver fibrosis (Yu et al. 2018; Qin et al. 2022). Fendrr
(lnc47443∗) is an HSC-specific marker that serves as an es-
sential node in both the chow-fed and fibrotic mouse liver
mesenchymal networks; and in human liver, Fendrr inhibits
proliferation and invasion of human hepatocellular carci-
noma (Wang et al. 2019).
In conclusion, we present a comprehensive characteriza-

tion of thousands of novel mouse liver lncRNAs including
gene and isoform structures, cell-type expression patterns,
inferred spatial location across the liver lobule, and dysreg-
ulation in liver disease. Many novel lncRNAs were identi-
fied as markers for pathogenic cell types in NASH and in
liver fibrosis. A computational framework implemented
to discover network-essential regulatory lncRNAs and their
predicted gene targets was validated by multiple exam-
ples drawn from network-essential regulatory PCGs of
known function. Finally, for a subset of the putative regula-
tory lncRNAs that we identified, promoter sequences up-
stream of the network-defined lncRNA target genes were
shown to be significantly enriched for lncRNA triplex for-
mation, a finding that gives independent mechanistic sup-
port for the lncRNA–target genes linkages predicted by
our gene regulatory networks.

Limitations of this study

As this study is based on scRNA-seq data, there are techni-
cal limitations related to the sparse nature of suchdata sets,
in particular when it comes to characterization of lncRNAs
whose overall expression in the cell is often much lower
than that of PCGs; greater sensitivity for lncRNA detection
would likely have been achieved by using single nucleus
RNA-seq. Moreover, lncRNA transcripts that are not polya-
denylated would not be captured by the poly(A) capture-
based scRNA-seq technology used to generate the data
sets analyzed here; however, this is not a major concern,
as a largemajority of liver-expressed lncRNAs are polyade-
nylated, as shown in our prior studies (Goldfarb and Wax-
man 2021). Further, our analyses were limited to the
specific set of 48,261 liver-expressed lncRNAs that we
identified from our analysis of more than 2000 bulk mouse
liver RNA samples, plus 4700 other lncRNA genes that we
collected from established databases. Our inability to in-
clude other, presently unknown lncRNAs that may be im-
portant for liver function and pathophysiology is another
limitation. Several of our conclusions arebasedon inferenc-
es drawn from analyses that are, at their core, correlative in
nature. These include our analysis of pseudotime trajecto-
ries to infer zonation patterns for PCGs and lncRNAs across
the liver lobule, as well as changes in zonation in liver dis-
ease. While such changes in zonation were, in some cases,
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experimentally verified by others for certain PCGs, the lack
of experimental verification of the lncRNA zonation pat-
terns reported here is a limitation, as is the lack of experi-
mental verification of proposed marker genes and
disease state-specific lncRNAs. Furthermore, while we
were able to validate our use of single-cell-basedgene reg-
ulatory networks to identify network-essential genes, as ev-
idenced by multiple examples of network-essential
regulatory PCGs whose known biological functions align
with the enriched functions of their gene targets in the reg-
ulatory networks, the inferred nature of the gene regulatory
networks is nevertheless a limitation. Experimental valida-
tion of the network-essential lncRNAsdescribed here using
lncRNA knockout or knockdown mouse models will ulti-
mately be required to address this limitation.

MATERIALS AND METHODS

Transcriptome reconstruction

We downloaded from GEO, ENA, and Array express a total of
2089 bulk mouse liver RNA-seq samples extracted from 68 differ-
ent studies (Supplemental Table S1A), all sequenced by paired-
end, stranded Illumina RNA sequencing. Sequence reads were
mapped to the mouse mm9 reference genome using TopHat2,
and Cufflinks was used to assemblemapped reads into transcripts
for each individual RNA-seq sample. We then used two algo-
rithms for transcriptome assembly: TACO (Niknafs et al. 2017)
and Cuffmerge (Trapnell et al. 2012), each of which produced a
different assembly comprised of both coding and noncoding
transcripts. The TACO-derived transcriptome was evaluated for
read-through transcripts (He et al. 2018; Morgan et al. 2022), a
product of transcriptional read-through of two adjacent genes
on the same strand, which in many cases represent spurious tran-
scriptional noise. A total of 23,346 out of 1,491,436 TACO-assem-
bled transcripts were identified as potentially read-through based
on their overlap with multiple PCGs or lncRNAs. For each of these
putative read-through transcripts, we calculated isoform_su-
m_abs_frac, that is, the absolute fraction of all transcript isoforms
of a given gene that is represented by the sum of all the read-
through isoforms for that gene. Transcripts whose isoform_su-
m_abs_frac was >0.1 were retained, and the associated genes
concatenated to give a new, longer gene structure. For transcripts
whose isoform_sum_abs_frac was ≤0.1, we discarded the entire
set of read-through transcripts for that gene, as they likely repre-
sent transcript assembly artifacts. Overall, 19,219 (82%) of the
23,346 read-through transcripts initially identified were discard-
ed. In parallel, we assembled the transcriptome of each of the
2089 RNA-seq samples with Cufflinks (v2.1.1) (Trapnell et al.
2012) and discovered 547,300 transcripts that were used for
downstream filtering and lncRNA discovery.

lncRNA discovery

The filtered transcriptome obtained from each assembly method
(TACO and Cufflinks) was further processed using two different
lncRNAdiscoverypipelines, aswedescribedpreviously for rat liver

lncRNAs (Karri andWaxman 2020). Method 1: LncRNA transcripts
were identified based on transcript length >200 nt, low or no cod-
ing potential, and absence of overlap with known PCGs (Melia
et al. 2016). Method 2: the lncRNA discovery tool Slncky (Chen
et al. 2016b) was used to remove transcripts that overlap PCGs,
and to assess the coding potential for small peptides and novel
proteins. A filter based on synteny was used to remove transcripts
that align to syntenic coding transcripts in other, related species. A
nonsynonymous to synonymous (dN/dS) ratio was then calculated
and used to evaluate the coding potential of each transcript. The
TACOassembly yielded109,937 sequences that passedour filters
to qualify as lncRNAs but were found to be mono-exonic frag-
ments that overlap a PCG intronic region. These were filtered
out as likely derived from spurious transcription, and consequent-
ly, no mono-exonic intragenic lncRNAs were included in the final
TACO assembled lncRNA gene list. Bedtools (v2.17.0) was used
to perform overlap analysis between the set of 44,579 lncRNA
gene structures obtained by TACO assembly, the 25,869
lncRNAgene structures generated byCuffmerge, and the original
set of 15,558 liver-expressed lncRNAs that we discovered previ-
ously using a much smaller set of input RNA-seq samples (Melia
and Waxman 2019). These lncRNA genes and their isoforms
were merged using the Bedtools overlap command. The gene
structures and isoforms in the original set of 15,558 liver-ex-
pressed lncRNAs were updated based on the TACO and
Cuffmerge assemblies while retaining the original lncRNA gene
numbers (Melia and Waxman 2019). In many cases, the new
lncRNA gene structure represents a merging of two or more adja-
cent lncRNAs from the original 15,558 lncRNA gene list; those
lncRNAs were renamed by concatenating the old lncRNA gene
numbers while using the lowest number to represent the new
lncRNA structure. For example, the new lnc_inter_chr8_7423
(chr8:116,533,047-116,655,614) was obtained by merging the
prior set of tandem minus-strand lncRNAs, numbered lnc7423
and lncs 7425–7430, and consequently, there are no lncRNAs
numbered 7425 through 7430 in the final set of 48,261 liver-ex-
pressed lncRNAs. Lnc_inter_chr8_7424 (chr8:116,533,910–
116,537,738) is a plus-strand lncRNA that is intragenic and anti-
sense to the new lnc_inter_chr8_7423 and was therefore not in-
cluded in the merger that formed the new lnc_inter_chr8_7423
(Supplemental Table S1B). Newly discovered lncRNAs that did
not overlap the prior set of 15,558 lncRNAs were assigned new
lncRNAs (Fig. 1F). gene numbers, beginning with lncRNA number
15,559 on Chr1.

Final set of 48,261 liver-expressed lncRNAs (mm10)

The final set of 48,361 lncRNAs and their total of 150,280 isoforms,
defined for mouse genome mm9 (Supplemental Table S1B,D),
was reduced to 48,261 lncRNAs after lift-over to mouse genome
mm10 (Supplemental Table S1C), and was comprised of the fol-
lowing (based on mm10 mapping): 1176 intragenic lncRNAs,
which overlap one or more PCG intronic regions on the same
strand, and whose exons do not overlap any PCG exonic regions
on the same strand; 4127 antisense lncRNAs, which overlap a
PCG on the opposite strand; 42,892 intergenic lncRNAs, which
do not overlap any PCG on either strand; and 66 intra-antisense
lncRNAs, which have attributes of both antisense and intragenic
lncRNAs (Fig. 1F). A total of 42,605 of the 48,261 lncRNAs are
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mono-exonic genes and 5656 are spliced,multiexonic genes. The
designation “mono-exonic” is used here to describe a lncRNA
whose union of all exons across all isoforms (“exon collapsed” se-
quence) covers the entire gene body without leaving any intronic
gaps. However, 7754 of the 42,605 mono-exonic lncRNAs have
multiple isoforms, which inmany cases include intronic sequences
(Supplemental Table S1D), and thus could be considered
multiexonic.

The number of lncRNAs referred to in this study, for example,
the number of lncRNAs expressed in a given liver single-cell clus-
ter, or the number of lncRNAs that are differentially expressed un-
der a given biological condition, is based on a total lncRNA count
of 52,961, corresponding to the subset of the 48,261 liver-ex-
pressed lncRNAs that meet the specified condition, plus the sub-
set of 4700 other long-noncoding genes that met the same
condition: 4697 Ensembl noncoding lncRNAs assigned the
gene biotype “lincRNA” (N=3176) or “antisense” (N=1521),
plus three other lncRNAs not included in the above lists (lnc-
LFAR1, LeXis, Lnclgr) (genes listed in Supplemental Table S2A).

Ortholog conservation

We used Slncky (Chen et al. 2016b) to assess primary sequence
conservation and syntenic conservation to discover lncRNAortho-
logs in the human and rat genomes for the full set of 52,961mouse
liver lncRNAs described above. Twometrics were used to identify
orthologs, as implemented by Slncky: transcript-genome identity
(TGI; percent of identical, aligning sequences between a mouse
lncRNA and a nontranscribed locus in a syntenic region in the rat
or human genome); and transcript-transcript identity (TTI; per-
centage of identical, aligning sequences present in the exonic re-
gions of lncRNAs in both species) (Chen et al. 2016b). A threshold
of 30%conservationbasedoneither theTTImetric or theTGImet-
ric was used to define an orthologous human or rat sequence. To
identify human orthologs, we input to Slncky a set of 18,151 hu-
man lncRNAs from GENCODE (version 23) (Frankish et al. 2019),
96,308 human lncRNAs from NONCODE (v5) (Zhao et al. 2016),
and 662 human lncRNAs involved in cancer (onco-lncs) that we cu-
rated from PubMed. To identify rat orthologs, we input our pub-
lished set of 5795 rat liver lncRNAs (Karri and Waxman 2020). As
this set of rat lncRNAs is far from complete, there are likely to be
many more than the 1805 rat lncRNA orthologs identified here
(Supplemental Table S1E,F). We found human orthologs for
9543 of the 48,261 mouse liver-expressed lncRNAs (Supplemen-
tal Table S1E) and for 1166 of the 4700 other noncoding lncRNAs
described above (Supplemental Table S1F).

GTF file for single-cell and single nucleus RNA-seq
analysis

We created a custom reference GTF file for the mouse mm10 ge-
nome build for use with the CellRanger (v3.1.0) mkref command
(Zheng et al. 2017). This GTF file is comprised of gene coordinates
for 76,011 genes (Supplemental Table S2A) plus 91 ERCC spike-in
controls: RefSeq PCGs (N=20,973; 19,801 genes with NM acces-
sion numbers, 1159 genes with both NM and NR accession num-
bers, and 13 mitochondrial genes), the above-described set of
mouse liver lncRNAs with mm10 genome coordinates (N=
48,261), RefSeq noncoding genes defined by NR accession num-

bers that do not overlap the set of 48,261 lncRNAs (N=2077),
Ensembl noncoding lncRNAs that do not overlap RefSeq NR
genes or the set of 48,261 lncRNAs (N=4697; 3176 genes desig-
nated “lincRNA” and 1521 genes designated “antisense” in Sup-
plemental Table S2A), and three other lncRNAs (lnc-LFAR1, LeXis,
Lnclgr) absent from the above lists. The full set of mouse liver
lncRNAs identified in our analysis, originally discovered by map-
ping bulk RNA-seq fastq files to the mm9 reference genome,
was converted tomm10genomic coordinates using theUCSCge-
nome browser LiftOver tool (Hinrichs et al. 2006). The GTF file
used for scRNA-seq analysis (gtf76k_mm10_Liver_scRNAseq.gtf,
available in SupplementalMaterial) contains exon regiongene co-
ordinates for all 76,011 genes and was used by 10× Genomics
CellRanger software (v3.1.0) (Zhenget al. 2017) to count sequence
reads mapping to exons for each scRNA-seq sample.

Data sets and data processing for single-cell analysis

Single-cell RNA-seq data for mouse liver was downloaded from
GEO (https://www.ncbi.nlm.nih.gov/geo/). Raw sequencing data
for hepatocytes (GSE109774) (Tabula Muris Consortium et al.
2018) and for the liver nonparenchymal cell clusters shown in Fig-
ure 2A (GSE137720, E-MTAB-8077, andGSE129516) (Dobie et al.
2019; Xiong et al. 2019; Kalucka et al. 2020) was obtained from
healthy (untreated, normal chow diet) mouse livers (Supplemental
Table S1G).Wealso analyzed 10×Genomics scRNA-seq data sets
downloaded fromGSE166504 (Su et al. 2021) to study the effects
of high fat diet-induced NAFLD and NASH, and fromGSE137720
(Dobie et al. 2019) to study CCl4-induced liver fibrosis (Supple-
mental Table S1G). Raw fastq files were processed and aligned
to the mm10 mouse reference genome and processed using the
single-cell analysis 76,011 gene customGTF file described above.
Feature-barcode matrices were generated using CellRanger
(v3.1.0). Multiple scRNA-seq data sets were combined using the
CellRanger aggr command and count data were then processed
using Seurat v3 (Stuart et al. 2019).

Batch correction

As detailed further below, we used CellRanger aggr tomerge and
normalize the merged data sets for differences in sequencing
depth. Next, we used Harmony to correct for differences in con-
ditions, batches, chemistries, and studies. Cells with high mito-
chondrial contamination (cells with >5% gene reads mapping to
the 13 mitochondrial genome genes) were excluded from all
downstream analyses. Furthermore, we used the doublet finder
method implemented in scDblFinder to remove doublets from
the data. All of the published scRNA-seq data sets analyzed in
this report were high quality scRNA-seq data sets with no indica-
tion of impactful levels of ambient RNA; accordingly, we did not
use any algorithmic approaches to correct for ambient RNA.

Integration and clustering

Using Seurat v3, we normalized the integrated CellRanger count
matrix data by dividing the UMI count per gene by the total UMI
count in the corresponding cell followed by log-transformation.
Cells with fewer than 200 genes detected, fewer than 400 UMI
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per cell, or cells with >5% gene reads mapping to the 13 mito-
chondrial genome genes were excluded from all downstream
analyses. Highly variable genes were identified using the
FindVariableGenes function of Seurat with default parameters.
Variable genes were projected onto a low-dimensional space us-
ing principal component (PC) analysis, with the number of PCs set
to 10 based on an inspection of elbow plots of the variance ex-
plained for each data set. We used Harmony (v1.0) (Korsunsky
et al. 2019) to remove from the embedding the influence of
data set-of-origin factors (e.g., the effects of varying batches or
technologies) and to integrate shared cell types across different
data sets. We input to Harmony normalized gene matrix files
saved as a Seurat object along with a precalculated PC analysis
embedding based on 10 PCs using default parameters. Graph-
based clustering was performed to cluster the cells based on their
gene expression profiles using the FindClusters function in
Seurat. The clusters obtained were visualized using the UMAP
function of Seurat v3 (resolution: 0.15 and PC=10), and cell iden-
tities were assigned to each cluster based on the expression of es-
tablished marker genes (Supplemental Fig. S1). scDblFinder
(Germain et al. 2021), a doublet detection algorithm, was applied
(with default parameters) to identify and remove doublets based
on artificial doublet generation, parameter optimization and
thresholding.

Detection of marker genes

Cell type-specific marker genes that drive the separation between
single-cell clusters were identified by pairwise differential gene
expression analysis (Yu et al. 2013), comparing each cell cluster
against all other cell clusters using the Global Distinguishing func-
tion of Loupe Browser (10× Genomics, Loupe Browser 5.0 [https
://www.10xgenomics.com/]). Genes expressed in >5% of the cells
in a cluster were identified as putative marker genes for that clus-
ter if they showed differential expression at log2|fold-change| >2
and FDR (Benjamini–Hochberg) <0.05 when compared to the set
of all cells comprising all other clusters. We then removed from
the list of putative marker genes all genes that were identified
as putative marker genes for two or more clusters, resulting in
the final set of cluster-specific marker genes (Supplemental
Table S2D). Marker genes distinguishing the four macrophage
clusters shown in Figure 4G were identified using a relaxed
fold-change filter of log2|fold-change| >1 because of the close re-
lationship between the four cell populations. Three Loupe
Browser files (.cloupe format) containing the single-cell data
sets analyzed in this study are available in Supplemental Material.

Inference of liver zonation

Pseudotemporal trajectories were inferred from the hepatocyte
population obtained from chow-fed mouse liver (Su et al. 2021)
and for each of four major nonparenchymal cell clusters (endothe-
lial cells, HSCs, fibroblasts, VMSC; Fig. 2A) using the R package
Monocle2 (v2.6.419) (Trapnell et al. 2014)withdefault parameters.
Cells were ordered based on the inference pseudotime trajectory
in Monocle2. PCGs and lncRNAs showing significant changes in
expression along the pseudotime trajectory were identified using
generalized linear models (differentialGeneTest function in Mon-
ocle2) with a threshold of Q-value <10−3 for significance. Hierar-

chical clustering of the genes that were cozonated across
pseudotime was implemented using the pheatmap function of
Monocle2. The zonation clusters were annotatedas periportal ver-
sus pericentral for hepatocytes (Ben-Moshe et al. 2019), endothe-
lial cells (Kalucka et al. 2020), and HSCs (Dobie et al. 2019) using
established marker genes, and the resulting pseudotime values
were scaled between 0 and 1. Cell trajectories were also deter-
mined for HSCs from healthy and from CCl4-treated livers. Hierar-
chical clustering in Monocle2 divided zonation heatmaps into
clusters, which were assigned labels based on established zona-
tion marker genes in each major cluster. SCORPIUS (Cannoodt
et al. 2016) was used to further validate the endothelial cell zona-
tion patterns (Fig. 3B). We included traditional endothelial cell
phenotypes from the liver (Kalucka et al. 2020) (artery, capillary ar-
tery, capillary, capillary vein, vein), and performed the analysis us-
ing the parameters k=3 and number of PC=8.

Perturbations of zonation in disease states

Monocle2 was used to derive a common zonation trajectory
across biological conditions within each cell type. This enabled
us to compare the conditions along the trajectory and detect
large scale gene expression changes indicative of differential pro-
gression. Differentially expressed genes along the trajectory be-
tween control (chow diet) and either NAFLD or NASH liver
groups, and between the control and CCl4-exposed mesenchy-
mal cell groups, were identified using the conditionTest function
of the tradeSeq package (Van den Berge et al. 2020). Significantly
perturbed PCGs and lncRNAs (FDR<0.001) were extracted and
used to prepare matched heatmaps for control liver and from dis-
eased liver cells using the pheatmap function of Monocle2. In the
case of NAFLD andNASH livers, we identified PCGs and lncRNAs
where a change in zonation was significant for either NAFLD ver-
sus chow diet or for NASH versus chow diet. We then clustered
heatmaps individually from each condition to assign the zonation
labels shown in Supplemental Table S4I.

Functional enrichment analysis

Sets of PCGs obtained in various analyses were used as input for
functional enrichment analysis using DAVID (Sherman et al.
2022) with default parameters, except that GO FAT terms were
used in place of GO DIRECT terms to include a broader range of
enrichment terms that were excluded by the default GO DIRECT
option. We used a custom script prepared by Dr. Alan Downey–
Wall of this laboratory (https://github.com/adowneywall/
Davidaggregator) to combine and reformat DAVID output files
from multiple gene lists, with each row presenting top enriched
annotation clusters and individual columnspresenting enrichment
score, P-value, FDR and other such data. Top terms from each
DAVID annotation cluster with a cluster enrichment score >3 and
top FDR<0.05 were used in downstream analysis.

Differential expression analysis between biological
conditions

Differential gene expression comparisons between single-cell
clusters and between biological conditions were performed using
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the Locally Distinguishing function of the 10× Genomics Loupe
Browser (v.6.0). This method implements the negative binomial
test based on the sSeq method (Yu et al. 2013) with Benjamini–
Hochberg correction for multiple tests. Further, the method uses
log-normalized average expression values and the distribution
of UMIs across the two specific cell populations being compared
to calculate fold-change and FDR values for each pair-wise com-
parison between cell clusters. Genes were identified as showing
significant differential expression between control liver and dis-
eased liver (NAFLD, NASH, or CCl4-induced liver fibrosis) if they
met the thresholds of log2|fold-change| >1 and FDR<0.05.

Transition from quiescent HSCs to activated HSCs
(myofibroblasts)

Central vein-associated HSCs were extracted from livers of mice
treated with CCl4 (6 wk treatment) to investigate the transition
of gene expression from resting HSCs to collagen-producing
myofibroblasts. The central vein-associated HSCs were spatially
resolved into resting HSCs and myofibroblasts using Monocle2
(v2.6.419), and the two cell subtypes then characterized using es-
tablished signature genes (Dobie et al. 2019). PCGs and lncRNAs
showing zonation along the trajectory were identified using gen-
eralized linear models and a heatmap was prepared using
Monocle2, as described above.

Construction of gene regulatory networks

Regulatory networks were generated using the R package
bigSCale2 (Iacono et al. 2019) for scRNA-seq data sets comprised
of all cells that passed the gene expression filters described
above. Three separate bigSCale2 networks were generated
from scRNA-seq data (GSE166504) from livers of mice fed chow
diet (healthy liver) or mice fed HFHFD for either 15 wk (NAFLD liv-
er) or 30wk (NASH liver). Twoother bigSCale2 networksweregen-
erated from all qualified mesenchymal cells from the scRNA-seq
data sets for control and for CCl4-exposed mouse liver
(GSE137720) (Supplemental Table S1G). Cells from each of the
five data sets were split into individual Seurat objects and then in-
put to bigSCale2. Each of the five networks was constructed using
default clustering parameters, with granularity set to the highest
setting and applying an edge cutoff of the top 99.9 quantile
used for correlation coefficient. BigSCale2 retains edges that are
expected to represent actual regulatory links by removing genes
that did not have a direct edge with a known GO regulator (GO
subsetting step). This was implemented using a list of GO regula-
tors comprised of the union of genes in GO:0006355 “regulation
of transcription, DNA-templated” (N=2776) and genes in
GO:000370 “DNA-binding transcription factor activity” (N=
1001). We also included the above list of 52,961 lncRNAs as po-
tential regulators in the GO subsetting step. Network specifica-
tions are shown in Supplemental Table S5E. The BigSCale2
gene regulatory networks obtained were converted into json files
for visualization by Cytoscape (Shannon et al. 2003) using the
toCytoscape function of the package iGraph (v1.3.5) (https
://igraph.org/r) in R. Specifically, the network json file was import-
ed into Cytoscape using “Import Network from File.” Next, we
used “forced-directed” layout in Cytoscape, where each net-
work’s layout was derived from 10,000 iterations of the Fruchter-

man–Reingold algorithm (Gajdoš et al. 2016) and using the
Nogrid parameter (seed=7). The resultant networks and derived
subnetworks shown in the various figures are available atNdexbio.
org at https://tinyurl.com/scLiverNetworksKarriWaxman.

Analysis of gene regulatory networks

Gene modules in each network were discovered using the Glay
community cluster algorithm (Su et al. 2010) in Cytoscape, where-
by the overall network topology was used to subdivide the net-
works generated by bigSCale2 into functional modules. Genes
in each module were input to DAVID (Sherman et al. 2022) for
gene ontology enrichment analysis. Node rank was calculated
for each of four key bigSCale2 network metrics (Betweenness,
Closeness, Degree, PAGERANK). PCGs that ranked within the
top 100 nodes for any one of the above four network metrics
were deemed to be network-essential nodes that correspond to
regulatory PCGs; and lncRNAs that ranked within the top 50
nodes for any one of the above four network metrics were
deemed to be network-essential nodes identifying regulatory
lncRNAs (Supplemental Table S5C).

Master regulators

We extracted subnetworks comprised of the network-essential
regulatory PCGs and regulatory lncRNAs defined above, that is,
all top-100 ranked PCG nodes and all top-50 ranked lncRNA
nodes. We then recalculated the network metrics to identify criti-
cal nodes that are deemed network-essential regulators with re-
gards to expression of the original set of regulators; these were
designated master regulators. For this analysis, we ranked the
nodes of the extracted networks using five different network met-
rics: Stress, Degree, Betweenness, Closeness, andNeighborhood
Connectivity, as calculated using the “AnalyzeNetwork” option in
Cytoscape. We then designated as master regulators the top 5
ranked nodes for each of the five metrics, which were considered
independently in the ranking (Supplemental Table S5C, columns
AP-BU). We excluded from the master regulator analysis the
PageRank centrality metric (used in the original ranking, above), as
it tended to select nodes with low Degree ranking due to the high
degree of disconnectedness in these master regulator networks.

IPA analysis

We used Qiagen’s Ingenuity Pathway Analysis (IPA) software
(https://digitalinsights.qiagen.com) to validate the regulatory
role of a total of the 20 master regulators derived from all five
bigSCale2 networks that were identified as DNA-binding pro-
teins. Putative gene targets of these 20 DNA-binding master reg-
ulators were provided as input to IPA. IPA’s core analysis of these
input gene lists was used to identify Upstream Regulators, along
with the top enriched canonical pathways, diseases, and toxico-
logical functions. The resulting IPA output for all 20 master regu-
lators is included in Supplemental Table S5F.
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Enrichment heatmaps

PCGs that made direct connections to a network-essential regula-
tory lncRNA in any of the bigSCale2 networks were used as input
to Metascape with default parameters (Zhou et al. 2019). To iden-
tify pathways that are shared between, or are specific to, a
lncRNA’s gene targets, we performed multilist comparative anal-
ysis within and across the networks. The resulting clustered heat-
maps depict −log10 P-values of the top enriched pathways across
multiple lncRNAs target lists.

Triplex Domain Finder analysis

Regulatory lncRNAs identified for each gene network using
bigSCale2 metrics (see above) were analyzed using the algorithm
Triplex Domain Finder (TDF) (Kuo et al. 2019) to determine their
capacity to form lncRNA-genomic DNA triplexes with the promot-
er sequences of their target genes. Target genes were defined as
all PCGs that make a direct connection to the lncRNA in the corre-
spondingbigSCale2network. Abackgroundgene setwasdefined
as the set of PCGs expressed in at least 0.5% of the cells used to
develop the network, excluding all genes that were part of a mod-
ified bigSCale2 network derived from the same cell population
used to identify the regulatory lncRNA being evaluated for triplex
formation, but constructed using an edge cutoff at the 95% quan-
tile (instead of the 99.9% quantile) correlation coefficient thresh-
old. This relaxed threshold was implemented to obtain a
modified bigSCale2 network specifically for the purpose of back-
ground gene identification, and with the goal of excluding from
the background gene set any gene that might be a target of the
network-essential regulatory lncRNA when using a less stringent
correlation threshold of >95% quantile. Fisher exact test was
used to assess the significance (at FDR<0.05) of the observed
number of target gene promoters predicted by Triplex Domain
Finder to form lncRNA–DNA triplexes, compared to the number
of background gene set promoters predicted to form triplexes
with the same lncRNA. The Triplex Domain Finder-
predicted gene binding targets of each regulatory lncRNA were
used to derive lncRNA–gene directed subnetworks for each
condition (Supplemental Figs. S15, S16) using Cytoscape
(Shannon et al. 2003), and are available at https://tinyurl.com/
scLiverNetworksKarriWaxman.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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