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Abstract

The physiology of biological cells evolved under physical and chemical constraints, such as

mass conservation across the network of biochemical reactions, nonlinear reaction kinetics,

and limits on cell density. For unicellular organisms, the fitness that governs this evolution is

mainly determined by the balanced cellular growth rate. We previously introduced growth

balance analysis (GBA) as a general framework to model and analyze such nonlinear sys-

tems, revealing important analytical properties of optimal balanced growth states. It has

been shown that at optimality, only a minimal subset of reactions can have nonzero flux.

However, no general principles have been established to determine if a specific reaction is

active at optimality. Here, we extend the GBA framework to study the optimality of each bio-

chemical reaction, and we identify the mathematical conditions determining whether a reac-

tion is active or not at optimal growth in a given environment. We reformulate the

mathematical problem in terms of a minimal number of dimensionless variables and use the

Karush-Kuhn-Tucker (KKT) conditions to identify fundamental principles of optimal resource

allocation in GBA models of any size and complexity. Our approach helps to identify from

first principles the economic values of biochemical reactions, expressed as marginal

changes in cellular growth rate; these economic values can be related to the costs and ben-

efits of proteome allocation into the reactions’ catalysts. Our formulation also generalizes

the concepts of Metabolic Control Analysis to models of growing cells. We show how the

extended GBA framework unifies and extends previous approaches of cellular modeling

and analysis, putting forward a program to analyze cellular growth through the stationarity

conditions of a Lagrangian function. GBA thereby provides a general theoretical toolbox for

the study of fundamental mathematical properties of balanced cellular growth.

Author summary

Mathematical models are an important tool to understand and predict the complex behav-

ior of biological cells. This behavior is driven by nonlinear physical constraints that cannot

be captured entirely in the prevalent modeling frameworks, which rely on simplified lin-

ear optimizations. The next generation of more realistic cell models will depend on an
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efficient mathematical formulation for the corresponding nonlinear optimization prob-

lem that facilitates the analytical study and numerical simulation of large models. Here,

we present a succinct formulation for this nonlinear problem, and we derive the analytical

properties of fluxes at optimal growth. We also show how these analytical properties can

be understood in terms of economics and control theory, where they expose trade-offs

related to the allocation of proteins.

Introduction

A core feature of microbial cells is self-replication—their ability to build a complete, identical

cell exclusively out of the chemical compounds found in the environment. If a population of

asynchronously replicating microbial cells grows exponentially in a constant environment, its

self-replication can often be assumed to result from balanced growth, a non-equilibrium

steady state in which every cellular component accumulates at the same rate in proportion to

its total amount [1]. For non-interacting microbes in a constant environment, the balanced

growth rate is equivalent to fitness [2].

The cellular composition is thus often interpreted as an approximate solution to a problem

of optimal allocation, driven by natural selection. Accordingly, theoretical methods estimating

the optimal allocation are used as a reference to understand cellular composition in vivo [3–8].

At the whole-cell level, a mechanistic understanding of the quantitative principles that

shape cellular balanced growth has been approached predominantly through methods collec-

tively classified as constraint-based modeling (CBM). CBM approaches define a solution space

of feasible cellular states (usually defined by reaction fluxes) based on simple, mechanistic con-

straints. The predominant constraint in CBMs is flux balance, encoded through a linear system

of equations that constrain the space of allowed reactions fluxes v [9, 10],

S v ¼ 0: ð1Þ

Here, v is a vector of reaction fluxes, i.e., reaction rates in units of [moles][time]−1[volume]−1.

Each row of the stoichiometric matrix S corresponds to one metabolite, while each column cor-

responds to a metabolic reaction, with entries listing the corresponding stoichiometric coeffi-

cients of substrates (negative integers) and products (positive integers).

Thermodynamics and physiological limits—such as a limited nutrient uptake capacity—are

typically approximated through fixed upper and/or lower bounds on the modeled fluxes v

[11]. The most widely used CBM approach, Flux Balance Analysis (FBA) [11, 12], obtains plau-

sible physiological states by optimizing some objective function over the feasible flux vectors.

Frequently, the objective function is the flux through a hypothetical biomass reaction vbio,

which mimics the accumulation of precursors for macromolecules and the consumption of

energy for their assembly during growth.

Resource Balance Analysis (RBA) and metabolism and expression models (ME-models)—

which are also based on optimization under constraints—go beyond FBA by aiming to model

metabolism in its most general sense, with the ultimate goal of representing all chemical reac-

tions that occur in a living organism [8, 13]. In contrast to FBA, these methods take into

account the burden of producing the macromolecules (proteins and RNA) required for cata-

lyzing each flux. They approximate the corresponding kinetic rate laws as linear relations

between fluxes and the concentration of their catalysts, ignoring the dependence on reactant

concentrations (except for dependencies on extracellular concentrations, which serve as model

parameters).
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All widely used CBMs [8, 11, 13, 14] are formulated as linear optimization problems, which

can be solved efficiently even for genome-scale models with thousands of reactions. Accord-

ingly, they are currently the most efficient tools to predict and understand realistic cellular

models. However, by construction, these linear methods cannot capture the potentially com-

plex nonlinear relationship between biochemical reaction fluxes—and hence cellular

growth — and the concentrations of reactants involved as substrates and products. Instead of

accounting for nonlinear kinetics, these methods rely on linear, phenomenological

assumptions.

Nonlinear CBMs [6, 15–19] account for constraints such as nonlinear kinetic rate laws,

linking the concentration of metabolites to reaction fluxes. This link means that the metabolite

concentrations are now an output of the model instead of an input. Molenaar et al. [6] intro-

duced “self-replicator” models that maximize the cellular growth rate, with reaction fluxes that

are limited by fundamental physiological constraints including mass conservation, nonlinear

rate laws, and limited protein density. Importantly, these models are completely self-con-

tained, in the sense that in order to grow and self-replicate, all of a model’s individual compo-

nents have to be produced explicitly by the model itself. Instead of using a phenomenological

“biomass reaction”, the constrained optimization of growth predicts the detailed cell composi-

tion, and all possible trade-offs in resource allocation can be accounted for from first

principles.

Similar to RBA and ME models, self-replicator models include a “ribosome” reaction that

produces the necessary proteins. The proteins can be classified into three categories: transport

proteins in the cell surface, which exchange mass with the environment; enzymes, which cata-

lyze internal metabolic reactions; and the ribosome itself, which catalyzes the internal protein

production, and which for simplicity is assumed to be composed only of proteins. The study of

models of this type relies on the numerical solution of nonlinear optimizations: while it in

principle accommodates models with any number of reactions, actual presented models have

small, highly simplified reaction networks [6, 15–19].

We have previously formalized a general framework for modeling and analyzing nonlinear

CBMs, an approach we termed growth balance analysis (GBA) [4] (Fig 1). GBA models are

based on the self-replicator scheme, but instead of considering a fixed protein concentration,

they consider a fixed combined mass density of all intracellular components, including also

metabolites. Optimal cellular resource allocation, as predicted by GBA models, emerges exclu-

sively from quantitative biochemical and physical principles, including the intrinsic nonlinear

nature of the underlying reaction kinetics. In general, the optimization of nonlinear models is

a non-convex problem, frequently hampered by the existence of multiple local optima [20].

Several studies have explored ad-hoc analytical solutions to convex, minimal nonlinear cell

models consisting of up to three cellular reactions. Despite their simplicity, simulations with

these schematic models are qualitatively consistent with the experimentally observed behav-

iour of actual cells [6, 15–19].

The optimization of large nonlinear CBMs, such as GBA models, is still an open problem

for numerical methods [20]. Thus, in previous work, we proposed a different approach to the

analysis of GBA models—instead of looking for the optimal state of a GBA model with numer-

ical methods, we ask: what are the analytical properties of this optimal state? We named the

equations specifying these analytical properties the balance equations of the corresponding

GBA model [4]. If we further assume, as most CBM approaches do [6, 8, 11, 13–19], that cells

are at an optimal state (or at least close to one), then the balance equations become useful tools

to estimate and understand the resource allocation in actual biological cells. We derived the

balance equation for each reactant in a GBA mode and applied these equations to successfully

predict the protein allocation into the ribosome of both E. coli and yeast across various growth
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conditions [4]. The application of these balance equations to estimate complete cellular states

is however limited; in our original derivation [4], the stoichiometric matrix S of interest is

assumed to have full column rank, which is the case for all optimal states of GBA models when

one restricts S to the columns corresponding to active reactions (i.e., those with non-zero flux)

[4, 21, 22]. The active reactions at optimal growth form an Elementary Growth Mode (EGM)

[23], and they represent an Elementary Flux Mode (EFM) [21, 22] of a related FBA problem

[4]. Unfortunately, however, the optimal choice of this EGM/EFM and its constituting active

reactions is not known a priori for large-scale models, and cannot be explained by our previous

analytical study [4].

Below, we generalize our previous analytical study of GBA models by deriving the analytical

properties of each reaction at optimal balanced growth, now also accounting for models with

column-rank-deficient stoichiometric matrices—i.e., biochemical networks with alternative

pathways. These analytical properties can be seen as generalized balance equations, explaining

from first principles the optimal resource allocation strategy for each reaction in a cell. In par-

ticular, they explain from first principles the exact mathematical condition determining

whether a reaction is active or not in an optimal growth state. We then interpret these balance

Fig 1. Constraints in a GBA model. A) In a GBA model, a cell exchanges external reactants (red circles) via

transporters (blue squares at the cell surface); converts internal reactants (green circles) via enzymatic reactions (blue

squares inside the metabolic network); and produces all proteins catalyzing the reactions (blue rectangle “a”) via a

ribosome reaction “r”. The ribosome reaction consumes and returns metabolites to the metabolic network. In its strict

sense, the metabolic network comprises the conversion of small molecules into energy and precursors for

macromolecules. A model may also describe metabolism in its more general sense, including other enzymatic

reactions such as those for DNA replication and transcription. B) All reactions in the model must conserve mass, a

concept that comprises (i) mass balance within reactions: one unit of mass consumed (-1) results in one unit of mass

produced (+1); and (ii) flux balance of reactant production and consumption, including the dilution by growth of all

components (dashed arrow). C) Each reaction flux is catalyzed by a specific protein with turnover time τ (or

equivalently, turnover rate k = 1/τ). τ is determined by kinetic rate laws and depends on the concentrations of reactants

involved in the reaction; k = 1/τ has a maximal value kcat. D) Two basic density constraints govern the cellular interior:

(i) the density of proteins “a”, and (ii) the total density ρ, which is the sum of all protein and metabolite concentrations.

https://doi.org/10.1371/journal.pcbi.1011156.g001
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equations in terms of marginal costs and benefits of reactions with respect to their influence

on growth, and quantify how changes in the model parameters and external conditions control

the optimal growth rate.

Results

We first present the notation and mathematical definitions for growth optimization, including

an objective function and constraints. We then reformulate the problem in terms of flux frac-

tions as the only free variables, which greatly simplifies the subsequent analytical study. Finally,

we explore the consequences that emerge from the necessary optimality conditions in terms of

economics and control theory, and discuss their biological significance.

Growth modeling

We define a GBA model as the triple of model parameters (M, τ, ρ). The matrix M describes

the mass fractions of internal reactants consumed and produced by each reaction; τ is a vector

of catalytic turnover times for all reactions, where each is a function of internal reactant con-

centrations c and possibly also external concentrations x (assumed to be fixed and given); and

ρ is the combined mass concentration of all internal components. In the following paragraphs,

we provide more detailed descriptions of the model constituents M, τ, and ρ. Here and below,

we use the term “reaction” to also encompass transport processes across the cell surface, which

are “catalyzed” by transporter proteins or protein complexes.

The matrix M was first introduced in [4]. It is constructed from the stoichiometric matrix S

for the total, closed system, i.e., including rows for external reactants. We add a column “r” for

the ribosome reaction that produces all cellular protein, as well as a row “a” corresponding to

the total concentration of all proteins in mass units. We now first convert all entries to masses,

by multiplying each row with the corresponding molecular mass. Because of mass balance,

each column must then sum to 0. We next normalize each column such that the sum of its neg-

ative entries equals −1 and the sum of its positive entries equals +1. Now the entries corre-

spond to the mass fractions of each reactant (rows) going into and out of each reaction

(columns), as illustrated for the example in Fig 1B. Finally, we reduce the normalized matrix to

a matrix for an open system, by dropping all rows for reactants external to the modeled cell.

For the remaining internal reactants, we will assume a quasi-steady state and thus enforce

mass conservation.

As illustrated in Fig 2, to simplify the notation for the following theoretical development,

we partition the columns of M (indexed together by j) into index sets for reaction types: s for

transport processes across the cell surface; e for internal enzymatic reactions; and r for the

ribosome reaction, which is the only one that produces protein. We partition the rows of inter-

nal reactants (indexed together by i) into indices m for metabolites and a for total protein. We

use the term “metabolites” in its more general sense, referring to any molecule in the cell that

is not a protein. We distinguish vectors by using boldface, and vector components by using

italics with the appropriate upper or lower index, e.g., c is the column vector of all internal

reactant concentrations, ci are its components, and we use a lower index to indicate the com-

ponents ci of the row vector c>.

The ribosome reaction represents the last step in protein synthesis, and is assumed to be

catalyzed by a “ribosome” consisting entirely of protein. We here ignore the RNA components

of the ribosome for simplicity, but it is possible to extend the modeled ribosome to a more real-

istic RNA-protein complex. In addition, the enzymatic reactions (e) could be extended so that

they include details of protein translation that occur before the last, “ribosome” step (r) [5].

Note that nonlinear genome-scale GBA models can be created from existing linear genome-
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scale models, by extending their stoichiometric matrix S with the addition of a ribosome reac-

tion, normalizing it to M with the molecular masses, and adding the kinetic rate laws τ and

density ρ (see below).

We assume that every reaction represented by a column j in M is catalyzed by a protein or

protein complex with concentration pj—specifically, a transporter (s), an enzyme (e), or the

ribosome (r). The corresponding flux vj is assumed to be proportional to pj, expressed as vj =

pj/τj(c, x). Thus, τj is a function defined as the inverse of the usual metabolite-dependent factor

in kinetic rate laws. τj must have a negative value when the flux is negative. Fig 1C shows the

relationship between turnover time τ and turnover number kcat. S1 Text provides a basic dis-

cussion of rate laws and the necessary kinetic parameters. c = (cm, ca)> is the vector of internal

reactant concentrations, comprising all metabolite concentrations cm as well as ca, the com-

bined mass concentration of all proteins. Hence, each τj may depend not only on the concen-

trations of the substrates and products of the corresponding reaction, but also on inhibitors

and regulatory metabolites not involved in the turnover itself. The transport processes s are the

only reactions whose rate laws may depend on the external concentrations x.

Note that in accordance with the normalization of M, all concentrations of proteins pj

and reactants ci throughout this work are in units of [mass][volume]−1. Fluxes ([mass]

[volume]−1[time]−1) and the kinetic parameters must then also be expressed in mass units,

e.g., Michaelis constants Km in [mass][volume]−1 and turnover numbers kcat in product

mass per protein mass per time, resulting in [time]−1.

ρ, the final constituent of GBA models, is the sum of all internal concentrations. We assume

ρ to be constant, which is consistent with experimental data on E. coli across growth conditions

and even across the cell cycle [24–26]. The mass balances exploited for the normalization of M

Fig 2. Schematic overview of the mass conservation constraint. M v = μc, determined by the mass fraction matrix M,

the column vector of mass fluxes v, the growth rate μ, and the column vector of internal reactants mass concentrations

c. The indices indicate partitions according to the type of reaction (columns of M, v) or reactant (rows of M, c). The

index i = (m, a) correspond to rows for internal reactants, comprising rows m for metabolites, and a row “a” for the

total mass concentration of all proteins. The index j = (s, e, r) correspond, respectively, to transport proteins, enzymes,

and the ribosome. We also use the index l for all reactions when necessary. Note the row “a” of M has only one

nonzero entry Ma
r , corresponding to the mass fraction of protein produced by the ribosome reaction r. Different colors

indicate three different types of reactions: red (transporters), blue (enzymes), green (ribosome); and two types of

reactants: light gray (metabolites), dark gray (total protein), resulting in six partitions of M.

https://doi.org/10.1371/journal.pcbi.1011156.g002
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mean that all reactants involved in reactions must be accounted for in the model and hence be

included in the value of ρ; e.g., in a realistic model water is a reactant in many reactions, so ρ
corresponds in this case to the total cellular density (or buoyant density). Simplified models

may instead include only dry mass components, so that both M and ρ consider only these.

Mass conservation implies that in the mass fraction matrix M, each column sum gj≔
P

iM
i
j

is zero if it involves only the consumption and production of internal reactants (indices e, r).

In contrast, transport reactions (with indices s), which bring mass into and out of the modeled

system, do not conserve mass, resulting in the equations

gr ¼ 0

ge ¼ 0

gs 6¼ 0 :

ð2Þ

The property (2) guarantees mass conservation within reactions, an information that is not

always fully encoded in the stoichiometric matrix S, as many models ignore common reactants

such as water (see discussion in S1 Text). While external reactants have no corresponding

rows in M, their concentrations x may influence the turnover times τs of transporters. We

present examples of GBA models in S1 Text and R code for their numerical optimization in S1

File.

We are interested in the cellular physiology, defined through the concentration vectors c, p

and the vector of reaction fluxes v, at balanced growth. For a given model specified by (M, τ, ρ)

and a given environment specified by x, balanced growth at the instantaneous rate μ is speci-

fied by the following constraints:

Mv ¼ m c ðmass conservation in balanced growthÞ ð3Þ

p ¼ v � τðc; xÞ ðreaction kineticsÞ ð4Þ

ca ¼
X

j

pj ðdefinition of total protein density caÞ ð5Þ

r ¼
X

i

ci ðconstant cellular densityÞ ð6Þ

c � 0 ðnon–negative reactant concentrationsÞ ð7Þ

p � 0 ; ðnon–negative protein concentrationsÞ ð8Þ

where� indicates element-wise multiplication. We say that any state (c,p,v) satisfying Eqs 3–8

with growth rate μ> 0 is a Balanced Growth State (BGS) for the model specified by (M, τ, ρ)

and the environment specified by x. The Optimal Growth State (OGS) is the BGS resulting in

the maximal growth rate μ. It can be shown that any OGS must always use a minimal subset of

active reactions, i.e., growth becomes impossible if one of the active reactions is deactivated

without simultaneously activating other reactions [4, 21, 22]. We term BGSs that use such min-

imal subsets of reactions Elementary Growth States (EGSs) [4]. Each EGS corresponds to an

Elementary Flux Mode (EFM) [27] of the “linearized” version of the balanced growth problem

with fixed concentrations c [4]; in that case, τ(c, x) also have fixed values and all Eqs 3–8

become linear. EGSs are specific instances of Elementary Growth Modes (EGMs) [23], sets of

states using the same minimal set of active reactions.
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The model’s balanced growth property is captured by the right hand side of Eq 3. We

assume that the growth rate is always positive, μ> 0. Thus, for internal nodes with non-zero

concentration (ci 6¼ 0), there is a necessary mass flow to offset the dilution through the associ-

ated volume growth at rate μ [28]. Note that the total protein concentration ca defined by Eq 5

has no fixed value, but is constrained by the concentration of enzymes and transporters

required to sustain the reaction fluxes, by a row “a” in Eq 3 that specifies mass conservation in

balanced growth, and by the total density constraint in Eq 6. We summarize our assumptions

about proteins as the following: i) all proteins have the same amino acid composition (deter-

mined by the entries in the column Mr) and are produced by the ribosome following identical

kinetics; ii) the total protein concentration ca is defined as the sum of all protein mass concen-

trations p by Eq 5; iii) ca relates to the ribosome flux vr and growth rate μ via the row “a” in the

mass conservation constraint given by Eq 3 (Ma
r v

r ¼ m ca); and iv) ca also relates to the density

constraint via the sum in Eq 6. From our modeling perspective, we might think of “protein” as

being produced by the ribosome and instantly distributed across all reactions such that each

individual protein catalyst (transporter, enzyme, or ribosome) maintains its concentration in

balanced growth.

Below, we will be interested in the analytical properties of the OGS for a given model (M, τ,

ρ) and environment x. From Eqs 3–5, we see that the variables (c, p, v) are highly interdepen-

dent. The above formulation does not lend itself to expressing μ as an explicit function of these

variables, which makes it not ideal for numerical or analytical studies. If one can find a mathe-

matically equivalent formulation based on fewer, independent variables, then this would facili-

tate the use of the KKT conditions, analogous to how generalized coordinates facilitate the

solution of problems in Lagrangian mechanics [29]. Thus, we next focus on a corresponding

reformulation of the optimization problem. This formulation will apply to all BGSs, and only

later we will use it to examine OGSs.

A reformulation in terms of flux fractions f

Our guiding thought below is that there can be a correspondence between cell states at differ-

ent growth rates, which can be expressed in the form of scaling relations. These scaling rela-

tions extend the mass fraction scaling of M to fluxes and concentrations. Specifically, we

define biomass fractions

b :¼
c
r
ðadimensionalÞ ð9Þ

(equivalent to c = ρ b, since ρ> 0), which express concentrations as fractions of the total cellu-

lar density; and we define flux fractions

f :¼
v
mr

ðadimensionalÞ ð10Þ

(equivalent to v = μρ f, since we assume μρ> 0), which express fluxes as fractions of the net

mass uptake — i.e., the net growth — of the cell, μρ. Thus, each flux fraction f j describes the

activity of reaction j relative to the total cellular mass production. We note that the flux frac-

tions f may in principle assume any real value, in the same way the fluxes v j do, including neg-

ative values when the corresponding reactions are running backwards (in which case τ j< 0).

The reversibility of reactions is not an input, but an emergent output pattern here, due to the

sign of each turnover time τ j, as we discuss below.

PLOS COMPUTATIONAL BIOLOGY Optimal fluxes in cellular reaction networks at balanced growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011156 June 6, 2023 8 / 26

https://doi.org/10.1371/journal.pcbi.1011156


Importantly, Eq 3 describing mass conservation in balanced growth does not depend

explicitly on μ anymore when written in terms of f and b:

Mf ¼ b : ð11Þ

This equation also implies that the mass fractions b are uniquely determined by the flux

fractions f, independently of μ. Conveniently, this unique dependence also means that we can

express the turnover times as functions of only f and the fixed parameters ρ, M, and x:

τ ¼ τðc; xÞ ¼ τðrMf; xÞ : ð12Þ

In the following discussion, we mostly focus on the dependence of τ on f, and for simplicity

of notation we do not state the dependence of τ on the fixed parameters (ρ, M, x) explicitly.

Importantly, τ does not depend explicitly on μ, which otherwise would cause a recursion prob-

lem when further expressing the growth rate μ in terms of only f and τ(f), as we will see below.

The resulting dimensionality reduction of the solution space not only simplifies the analytical

considerations below, but also potentially accelerates numerical optimizations [30].

From Eqs 4 and 10, we obtain the expression for protein concentrations in terms of f, μ,

and ρ,

p ¼ mr f � τðfÞ : ð13Þ

The combined mass fraction of all proteins in the cell, ba, is the sum of all p in the last equa-

tion, divided by ρ:

ba ¼ m f>τðfÞ : ð14Þ

Thus, we can calculate the total protein mass fraction during balanced growth from μ and f,

based only on reaction kinetics. However, through Eq 11, the same total protein mass fraction

is also related to f through the corresponding row “a” in M:

ba ¼ Ma f ¼ Ma
r f

r ; ð15Þ

where Ma is the row of M corresponding to the total protein concentration, and the second

equality reflects our assumption that the “ribosome” reaction r is the only one producing pro-

teins (with no reaction consuming them), so that Ma
j ¼ 0 for j 6¼ r. Equating the right hand

sides of the previous two Eqs 14 and 15 and solving for μ (with ba 6¼ 0) f>τ(f) 6¼ 0), we get

the growth function

mðfÞ ¼
Ma

r f
r

f>τðfÞ
: ð16Þ

Thus, the growth rate becomes an explicit function of only the flux fractions f. μ still

depends on the fixed parameters ρ, M, and x through the functions τ = τ(ρ M f, x). Note that if

fluxes v were used instead of the flux fractions f, then τ(c, x) = τ(M v/μ, x), which would cause

a recursion issue when defining the growth rate as a function of v and τ following the same

procedure [7, 23]. In that case, one is forced to account for c as separate variables, thereby

increasing the dimensionality of the problem. The same recursion issue occurs when formulat-

ing the problem in terms of protein concentrations p.

From now on, we will consider b (Eq 11) and τ (Eq 12) as functions of f, and treat f as the

only free variables. After writing the growth rate μ as a function of f, we now do the same thing

for our remaining constraints, so now we have much fewer variables and constraints.
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In the scaled variables, the density constraint (Eq 6) is reduced to

X

i

bi ¼ 1 : ð17Þ

Using Eq 11, we can rewrite this constraint in terms of flux fractions f. We see that in bal-

anced growth, the density constraint (Eq 17) is equivalent to a flux balance on the cell surface,

1 ¼ g> f ¼
X

s

gs f
s ; ð18Þ

where the second equality comes from Eq 2: only the columns s sum up to non-zero values γs,
so only transport fluxes fs are limited by this constraint. The nature of this constraint as a global

mass balance becomes more evident if we multiply the whole expression by μρ: the net mass

uptake
X

s

gsvs going through the cell surface must equal the rate of biomass production μρ.

Any solution to the growth function (Eq 16) automatically respects internal mass conserva-

tion, protein density and the kinetic constraints: for any given vector f, μ(f) returns the unique

growth rate satisfying these constraints (which also depend on ρ through τ = τ(ρ M f, x). The

flux balance at the cell surface is enforced separately by Eq 18 on transporters, making these

fundamentally different from enzymatic and ribosome reactions. In particular, for a model

with only one transporter s, Eq 18 already determines the scaled uptake rate fs = (γs)
−1. With

two transport fluxes, one flux is uniquely determined by the other; a simple example would be

a model that only has transporters for glucose uptake and CO2 excretion (see example model

“C” in S1 Text). More generally, Eq 18 can be used to uniquely determine one transport flux

fraction in terms of the others, reducing the number of variables by one. For clarity of presen-

tation, however, we will keep Eq 18 as a separate constraint and not eliminate any variable,

until the introduction of growth control coefficients in the corresponding section.

Finally, writing the non-negativity constraints on proteins and reactant concentrations in

terms of f results in the following element-wise inequalities on the corresponding vectors

f � τðfÞ ¼
p
mr
� 0 ; ð19Þ

Mf ¼ b ¼
c
r
� 0 : ð20Þ

We are now in the position to provide a concise formulation of growth rate optimization in

terms of flux fractions f. Combining Eqs 16, 18, 19, 20, the optimal growth problem for a given

environment x becomes

maximize
f 2 RN

mðfÞ ¼
Ma

r f
r

f>τðfÞ

subject to :

γ> f ¼ 1

f � τðfÞ � 0

Mf � 0 ;

ð21Þ

where f is a vector containing a real-valued flux fraction for each reaction (f 2 RN
, with N≔

number of columns in M), and the turnover times τ = τ(ρ M f, x) are functions that depend on
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f and on the parameters ρ, M, x. In the following discussion, we assume that all τ j are different

from zero, which simply means there is no reaction with infinite turnover rate (this relation-

ship can be visualized in Fig 1C). We note that the direction of reactions (i.e. the sign of each

f j) is not enforced here such as in some other methods, but instead emerges as a result of the

optimization (21); because of the constraint 19, a non-zero f j should always have the same sign

as τ j, which is in turn a thermodynamic property of reaction j determined by its kinetic

parameters and the relevant reactant concentrations [31]. If the rate laws have a general func-

tional form, these functions will be parameterised by the set of kinetic parametersK. After

solving this optimization problem, all original cellular variables (unscaled fluxes as well as

unscaled metabolite and protein concentrations) can be easily reconstructed from f. In the fol-

lowing, we will refer to π as the vector of parameters that define the optimization problem,

which includes M, ρ, and x, as well as the elements ofK. The parameters in π are considered

fixed until the section “Growth Control and Adaptation”, where we study the sensitivity of

optimal growth to marginal changes in the components of π.

Table 1 lists all symbols used below.

Growth analysis

Next, we utilize the problem reformulation in terms of flux fractions f to derive general neces-

sary conditions of OGSs, valid for any GBA model—including those with redundant pathways.

First, for each reaction, we will derive explicit expressions for shadow prices in the optimal

state; in constrained optimization in economics, the shadow price is the change, per infinitesi-

mal unit of the constraint, in the optimal value of the objective function of an optimization

problem obtained by relaxing the constraint. This term has been applied also to biological sys-

tems in the context of constraint-based optimization. [32]. We then derive equations for the

state variables f themselves, which must hold in any optimal state. This development consti-

tutes a generalization of our previous analytical approach to GBA [4], which was restricted to

models with matrices M of full column rank. The latter condition is not generally satisfied by

realistic cellular models, as many cellular biochemical reactions are structurally redundant, i.e.,

their columns in M are linearly dependent on other columns. OGSs always have non-redun-

dant active reactions (i.e., the active M has full column rank) [4, 21, 22], but this optimal set of

active reactions is generally not known a priori. In contrast, the following analysis in terms of

flux fractions is valid for any M of arbitrary size and rank.

For the following, we emphasize that the state of our system is completely determined by

scaled fluxes f j, which serve as independent variables. All other variables are fully dependent

on them: the unscaled fluxes v, the scaled and unscaled concentrations b, c, and p, the reaction

times τ, and the growth rate μ.

All following analyses benefit from knowing the system’s sensitivity to small changes of

each of the independent variables f j. The partial derivatives of the system’s properties c(f), v(f),

b(f), τ(f), p(f), and μ(f) with respect to each f j provide explicit expressions for sensitivity coeffi-

cients similar to the ones introduced in Metabolic Value Theory [32], based on the original

concepts of Metabolic Control Analysis (MCA) [9, 10]. A unique feature of the present treat-

ment arises from the system of equations in Eq 11, which determines the linear dependence of

biomass fractions b on f, so that the partial derivative of bi with respect to f j is given simply as

@bi

@f j
¼ Mi

j : ð22Þ

Via the chain rule of differentiation, this expression also determines the partial derivatives

with respect to f j for any functions of bi. A case of particular interest in the following
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discussions is the vector of turnover times τ = τ(c, x) = τ(ρ b, x) = τ(ρ M f, x). We first define

the (direct) time elasticities (elasticities in short), the sensitivity of each turnover time τl(c, x) =

τl(ρ b, x) with respect to each biomass fraction bi, as

εl
i≔

@tl

@bi
¼
@tl

@ci
@ci

@bi
¼
@tl

@ci
r ; ð23Þ

where we used the chain rule of differentiation in the first equality and Eq 9 in the second. We

then use the direct elasticities εl
i to express the sensitivity of τl to a change in a flux fraction f j,

defined as the indirect time elasticity matrix E (or indirect elasticity in short), with entries

El
j≔

@tl

@f j
¼
X

i

@tl

@ci
@ci

@bi
@bi

@f j
¼
X

i

εl
i M

i
j ; ð24Þ

Table 1. Symbols used.

Symbol Description (units)

A growth adaptation coefficient

b biomass fraction vector

c reactant concentration vector ([mass][volume]−1)

C control coefficient matrix

f flux fraction vector

E indirect sensitivity matrix ([time])

K set of kinetic parameters (various units)

L Lagrangian ([time]−1)

M mass fraction matrix

N number of reactions (= number of columns in M)

p protein concentration vector ([mass][volume]−1)

S stoichiometric matrix ([mol])

v flux vector ([mass][volume]−1[time]−1)

x external reactant concentration vector ([mass][volume]−1)

γ vector with column sums of M

Γ growth control coefficient ([time]−1)

ε direct sensitivity matrix ([time])

ϕ proteome mass fraction vector

θ KKT multiplier for the protein non-negativity constraint ([time]−2)

λ KKT multiplier for the density constraint ([time]−1)

μ growth rate ([time]−1)

π parameter vector (various units)

ρ mass density ([mass][volume]−1)

τ turnover time vector ([time])

Index Description

a all proteins

e enzymatic reactions

m metabolites

i internal reactants (including m and a)

r ribosome reaction

s surface reactions (i.e., transport reactions)

j reactions (including s, e, r)

l reactions (including s, e, r)

https://doi.org/10.1371/journal.pcbi.1011156.t001
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where we used Eq 22 in the last equality. In the following discussion, we assume that the

kinetic rate laws do not depend on the total protein concentration ca, meaning εl
a ¼ @t

l=@ca ¼
0 for all reactions l. That would be different if, for example, one accounts for the macromolecu-

lar crowding effects via kinetic rate laws [33]. The indirect elasticities E and direct elasticities ε
share some resemblance with the Jacobian and elasticity matrices defined in Metabolic Value

Theory and MCA, although we do not intend to explore the exact relationships in this work.

For an example of direct and indirect elasticities, where τ follows a simple Michaelis-Menten

rate law, see S1 Text.

In the remainder of this paper, we will explore three complementary types of analyses of

GBA systems. First, in the growth optimality section we will state the analytical conditions nec-

essary for an optimal state f*. Second, in the growth economy section we will calculate the sen-

sitivity of a (not necessarily optimal) growth rate μ to small changes in each f, which we

interpret in economic terms as marginal values of reactions. Third, in the growth control and

adaptation section we will estimate the sensitivity of the optimal growth rate μ* to small

changes in the previously fixed parameters π. In each of these analyses, the sensitivity measures

captured by E will appear naturally in the results.

Growth optimality. We next calculate the necessary analytical conditions for the optimal

growth state (OGS). This calculation extends our previous analytical approach, which was

restricted to GBA models with matrices M of full column rank [4], to general GBA models

with arbitrary matrices M, facilitated by the reformulation of the GBA problem in terms of

flux fractions f. We approach this problem by studying the Karush-Kuhn-Tucker (KKT) con-

ditions [34, 35], which generalize the method of Lagrange multipliers by also accounting for

inequality constraints, here present due to the non-negativity of concentrations. To simplify

the presentation in this section, we here account explicitly only for the non-negativity of pro-

tein concentrations, but not for the non-negativity of metabolite concentrations. Under the

reasonable assumption that metabolites with zero concentration do not participate in any

active reactions, the resulting necessary conditions are also necessary when accounting for this

latter constraint; the full calculations can be found in S1 Text.

We define the Lagrangian Lðf; l; θÞ for a given GBA model (M, τ, ρ) and external concen-

trations x as

Lðf; l; θÞ≔mðfÞ þ lðg>f � 1Þ þ θ> f � τðfÞ ; ð25Þ

The KKT multipliers λ, θ are auxiliary variables used to find the optimal state, but also

encode important economic and control information about the system at optimality, as we

will see later. λ relates to the equality constraint enforcing the fixed cell density, connected to f

via the flux balance at the surface (Eq 18); θ relate to the inequality constraint enforcing the

non-negativity of proteins (Eq 19). Solving the KKT conditions (see Methods for details), we

get the balance equations determining the necessary condition for each reaction j at optimal

growth:

ð@ jmþ l gjÞ fj ¼ 0 ; ð26Þ

where @j μ≔ @μ/@f j indicates the partial derivative of μ with respect to f j, calculated from Eq

16 as

@ jm ¼
m

ba
Ma

j � m tj � m f
> Ej

� �
; ð27Þ

with Ej representing the column j of E, and λ is the optimal value of the density constraint
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multiplier

l ¼
m2

ba
f> E f ð28Þ

(see Methods for the detailed calculations). When we further consider that only transporters

have a nonzero column sum γj (Eq 2), we get an equivalent expression for the optimal λ that

highlights its particular dependence on the reactions directly connected to the transport reac-

tions (see S1 Text).

Eq 26 is a necessary property of the global optimum of (21), but it could be in principle also

satisfied by other local stationary points of the constrained growth rate defined by Eq. 21,

which exist whenever the optimization (21) is non-convex. The possible non-uniqueness of

solutions for Eq 26 is however not of our concern here, since in this study we are focusing only

on the analytical properties of the global optimum, not on methods to calculate it.

Eq 26 generalizes the necessary analytical conditions we found before [4] for the optimal

states of GBA models with full column rank matrix M; in that case, the conditions could only

be applied to arbitrary models if one had prior knowledge of what reactions are active at opti-

mality, effectively reducing M to an “active” matrix of interest (which is guaranteed to be of

full column rank [4]). Here, no prior knowledge of active reactions is required. Instead, Eq 26

provides the very condition determining whether each reaction is active at optimality: a reac-

tion with nonzero flux fj requires that the corresponding term in parentheses (i.e., the corre-

sponding θj, see Methods) is equal to zero. Conversely, if the term in parentheses is different

from zero (θj 6¼ 0), then the reaction cannot carry flux at optimality (fj = 0). In particular, the

ribosome evidently needs to be active for balanced cellular growth, as proteins are required as

catalysts; thus, θr = 0 must always hold in optimal states. The KKT multipliers θ are the shadow
prices [32] of each τ jf j = p j/(μρ), which has unit of time, and can be understood as the fraction

pj/ρ of the total growth time 1/μ which is allocated to produce the protein j in the biomass.

We may also express Eq 26 for each reaction j in the usual, unscaled variables v (fluxes),

and c (reactant concentrations, including metabolites and total protein), by using Eqs 4, 9, 10

and 11 (see S1 Text)

Ma
j � m tj � v>εMj þ v>ε

c
r
gj

� �

vj ¼ 0 ; ð29Þ

where Mj indicates the column j of M. We now continue our analysis in terms of the flux frac-

tions f, since these are the variables of the optimization problem (Eq. 21). However, we keep in

mind that the same change of variables to p, v, c is possible in all the following equations, as

done for Eq 29.

Growth economy. As growth rate is closely related to fitness [2], it makes sense to view

growth rate as the primary value of the cellular economy. In this subsection, we will thus

explore the economy of balanced cellular growth, by asking how a small change in the state

variables f j affects the growth rate μ of any optimal or non-optimal state. Below, we will see

that the necessary conditions of optimal growth specify that the marginal costs and benefits of

each flux must be perfectly balanced.

We define the marginal value of flux j as the partial derivative @jμ, which quantifies the mar-

ginal gain in growth rate resulting from a small increase in f j. From Eq 27, we see that the mar-

ginal value can be expressed naturally as a multiple of the growth rate per mass fraction of

protein in biomass, μ/ba. As we will see next, the corresponding adimensional factor — the

term in parentheses in Eq 27—quantifies different types of costs (when negative) and benefits
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(when positive) of reaction j in terms of its influence on protein allocation,

ba

m
@ jm ¼ Ma

j � m tj � m f
>Ej : ð30Þ

The first summand quantifies how a marginal increase in f j increases the total protein frac-

tion in the cell density ba = ca/ρ (see Eq 5),

Ma
j ¼

@ba

@f j
: ð31Þ

We name this contribution to the normalized marginal value the marginal protein produc-
tion. As we assume that the ribosome reaction is the only reaction that consumes or produces

protein, this reaction (j = r) is the only one with a nonzero (and positive) marginal production

benefit.

To interpret the remaining summands, we remember that an individual protein’s mass

fraction in the cellular density can be expressed as pl/ρ = τlvl/ρ = μτlf l. The last two terms in Eq

30 quantify the combined decrease of individual protein fractions in cellular density (pl/ρ)

caused by a marginal increase in f j at fixed μ,

� m tj � m f
>Ej ¼ �

@ðm f>τÞ
@f j

� �

m

¼ �
X

l

@ðpl=rÞ
@f j

� �

m

: ð32Þ

Here, the first summand quantifies the change in pl/ρ at fixed turnover times, which is evi-

dently non-zero only for the enzyme catalyzing the perturbed flux j itself. We name this

term, −μτj, the marginal (protein) investment into j. The final summand quantifies the local

change of the individual protein concentrations that must occur to compensate the changes in

the turnover times (quantified by the indirect elasticity E), themselves caused by changes in

metabolite concentrations forced due to flux balance. We name it the marginal (protein) oppor-
tunity of j, as it is related to opportunity costs and benefits in economics. For the typical case of

reactions running in the forward direction (f j> 0), τ j is positive, and thus the marginal invest-

ment into j is negative, representing a cost. If all fluxes are non-negative, beneficial decreases

in turnover times correspond to negative E, resulting in positive marginal opportunity (i.e.,

marginal opportunity benefit).

We can now summarize our insights about cellular economy, in particular about changes

in the growth rate μ in response to changes in a flux f j. The first and second terms in Eq 30 are

simple, direct consequences of the flux change: the marginal production benefit, an increase in

protein production if f j is the ribosome flux; and the marginal investment, an increase in the

protein concentration required to sustain an increased f j. The third term in Eq 30, the mar-

ginal opportunity, is more interesting, though equally easy to understand. As a simple conse-

quence of mass conservation (Eq 11), a change in f j while keeping all other fluxes fixed must

result in changes in the concentrations of all reactants consumed or produced in the corre-

sponding reaction. These concentration changes modify the turnover times τl(c) of all reac-

tions l whose kinetics depend on them, either because they are directly connected to those

reactants or because they act as inhibitors or activators; see Fig 3 for an example. Keeping the

corresponding fluxes f l constant requires matching changes in the concentrations pl of the cat-

alyzing proteins (Eq 4). This total amount of “protein saved” due to a change in fj is quantified

by � m
P

l fl E
l
j.

The above results confirm the often postulated central role of proteins in the cellular econ-

omy [31, 36, 37]. While the measure of cellular economic value may be the growth rate itself,

protein concentrations constitute the general currency in which we can express the
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contributions of cellular subsystems. We can highlight this central economic role of proteins

further by relating the marginal values @jμ—changes in growth rate in response to flux

changes—to changes in the allocation of proteome fractions ϕl≔ pl/ca:

@ jm ¼
m

ba
Ma

j � m tj � m f
> Ej

� �
¼ � m

X

l

@�
l

@f j

� �

m

: ð33Þ

The second equality follows directly from taking the derivative of
P

l�
l
¼ mr f>τ=rMa f

with respect to f j, at constant μ.

We can now look at the balance equations at optimal growth from an economic perspec-

tive.For the ribosome and active enzymatic reactions, a zero marginal value @j μ = 0 also

means a zero shadow price, θj = 0 (Eqs 54 and 55)—so the reaction is optimal, and growth can-

not be accelerated by increasing or decreasing f j by a small amount. This insight provides an

intuitive interpretation for the balance equations for the ribosome (Eq 57) and for all active,

internal enzymatic reactions (Eq 58). An exception are only the transporters. In contrast to all

other flux fractions, their shadow price (Eq 56) depends both on their marginal value and on

their marginal biomass production, μ f>E f γs (a cost when negative and a benefit when

positive).

For active enzymes with zero marginal value—and thus for all active enzymes at optimality

(Eq 58)—Eq 27 simplifies to

te þ f> Ee ¼ 0 : ð34Þ

This simple relationship shows that at optimality, the marginal investment into e should

perfectly balance its marginal opportunity. As the last equation involves only the

Fig 3. The dependence of marginal opportunity on the reaction neighborhood. The figure shows a simple example

of a reaction (j = 2, red) that is directly connected to two metabolites (m = 1, 2) and thereby to two other reactions

j = 1, 3. Reaction j = 2 is also connected indirectly to reaction j = 4 by inhibiting it through metabolite m = 2 (indicated

by the blunt arrow>). The marginal opportunity of reaction j = 2 is

� m f> E2 ¼ � m f1 @τ1

@b1 M1
2
þ f2 @τ2

@b1 M1
2
þ f2 @τ2

@b2 M2
2
þ f3 @τ3

@b2 M2
2
þ f4 @τ4

@b2 M2
2

� �
. It quantifies how a marginal change in f2 while

keeping all other f l fixed, causes (i) an inevitable change in b1, b2 due to the flux balance (Eq 11); which by

consequence causes (ii) an inevitable change in τ1, τ2, τ3, τ4, as these are functions of b1, b2; which finally causes (iii) an

inevitable change in p1, p2, p3, p4 due to the kinetic constraints (Eq 4) at fixed v1, v2, v3, v4 (determined by the fixed flux

fractions and growth rate (Eq 10)). The example also shows how the information about mass conservation and

reaction kinetics is completely built into the definition of the growth function (Eq 16).

https://doi.org/10.1371/journal.pcbi.1011156.g003
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neighborhood of e (defined as all reactions l such that El
e 6¼ 0), we can study such relationships

at optimality locally, without full knowledge about the entire reaction network. We thus do

not need the entire matrix M or complete knowledge of parameterized turnover time functions

in the vector τ.

In the preceding subsection, we studied how any optimal or non-optimal growth rate μ is

sensitive to marginal changes in one of the flux fractions, resulting in an economic under-

standing of marginal flux values in terms of their relationship with protein allocation. We next

reinterpret some of these results from the perspective of control theory, and turn to a comple-

mentary problem that focuses on the sensitivity of the optimal growth rate to changes in the

model parameters and external concentrations.

Growth control and adaptation. We are first interested in the total control that each f j

has on the (optimal or non-optimal) growth rate μ, accounting also for the density constraint

limitation. In order to do that, we choose one active transport reaction s0 and express its corre-

sponding f s0 6¼ 0 as a function of the other fluxes via the density constraint (Eq 18),

fs0 ¼
1

gs0
1 �

X

l

gl f
l

 !

; ð35Þ

where l 6¼ s0 sums over all other reactions. Thus,

@f s0

@f j
¼ �

gj

gs0
; ð36Þ

which is non-zero only if j is also a transport reaction (so γj 6¼ 0). We now define the Growth
Control Coefficients Γj as

Gj :¼ @ jm � @s0m
gj

gs0
; ð37Þ

where the first term quantifies the growth change caused by f j itself, and the second term

quantifies the growth change caused by a change in f s0 , itself changed due to the changed f j

and the density constraint. Note that for the ribosome and enzymatic reactions, their growth

control coefficient is simply their marginal value, since gr ¼ ge ¼ 0. For models with only one

transport reaction s, Γs = 0, since fs = (γs)
−1 is fixed by the density constraint and cannot be

changed. Conveniently, this is also captured by Eq 37. If s0 is optimal, θs0 = 0, and Eq 26 deter-

mines @s0μ = −λγs0, so in that case

Gj ¼ @ jmþ l gj ; ð38Þ

and the balance equation Eq 26 is thus equivalent to

Gj fj ¼ 0 : ð39Þ

We may also see the optimal condition for enzymes (Eq 34) in terms of protein concentra-

tions, by multiplying it element-wise with ve (so it is also valid now for inactive enzymes),

pe ¼
X

l

pl C
l
e ; ð40Þ

where we defined

Cl
e :¼

fe
vl

@vl

@f e

� �

pl
¼

fe
vl

@ðpl=tlÞ
@f e

� �

pl
¼ �

fe
tl
@tl

@f e
; ð41Þ
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via Eq 4 and using partial derivatives at fixed pl. Cl
e can be seen as (scaled) control coefficients

(CC), analogous to (scaled) control coefficients in MCA [9, 10]. This result is analogous to

how enzyme concentrations and their respective CC relate at optimal fluxes constrained by a

fixed total enzyme concentration [38] (see S1 Text for a detailed discussion). For an example

of control coefficients where τ follows a simple Michaelis-Menten rate law, see S1 Text.

We now explore the sensitivity of the optimal growth rate to changes in one parameter π in

the vector π. The growth problem (Eq 21) is constrained by the parameters π, including the

arguments necessary to determine the turnover times τ at given f. This means that any mar-

ginal change in one of the parameters π would lead to changes in the solution f* of the optimi-

zation (Eq 21). In this sense, the parameters π can be understood as control variables, while

the corresponding optimal state f*, and its functions μ* = μ(f*), v* = v(f*), p* = p(f*), and c* =

c(f*) are the response variables. Fig 4 summarizes these relationships.

Because growth rate is closely related to fitness, we are also particularly interested in how

marginal changes in one of the previously fixed parameters π affect the optimal growth rate μ*
[39]. We can estimate this effect directly via the envelope theorem [4, 40], by effectively consid-

ering the optimal state f* as fixed and treating the parameters π as the new independent vari-

ables, making it unnecessary to calculate the new optimal state after the parameter change. To

do that, we first simplify the problem by assuming that these marginal changes have no effect

on which reactions are active, so we simplify the Lagrangian (Eq 25) by ignoring the inequality

constraints; note that in this case only the objective function μ can be influenced by parameter

changes, since the density constraint only depends on M, whose entries cannot be changed

continuously. Second, we can think about the optimal growth rate μ* as a function of the

parameters m∗ðπÞ≔Lðf∗ðπÞ; λ∗ðπÞ; πÞ, so the total change dm∗=dp induced by a marginal

change in a parameter π can be calculated via the chain rule

dm∗

dp
¼
@L
@fj

df ∗j
dp
þ
@L
@l

dl∗
r

dp
þ
@L
@p
¼
@L
@p

; ð42Þ

where the last equality comes from @L=@f j ¼ @L=@l ¼ 0 according to the stationarity (Eq

49) and primal feasibility (Eq 18) at an optimal state.

We now define growth adaptation coefficients A as the relative change in the optimal growth

rate μ* in response to a small, relative change in one control variable π

Ap :¼
p

m∗
dm∗

dp
¼

p

mðfÞ
@L
@p

; ð43Þ

where here and in the rest of this section f is to be understood as the optimal state before the

change in the parameter π. Note that in the following discussion, the parameters π of interest

only influence L via the objective function μ, so the partial derivatives @L=@p are simply evalu-

ated as @μ/@π at fixed f.

For direct changes in the turnover times τ j (e.g., through changing the corresponding

1=kjcat), the growth adaptation coefficient is calculated by evaluating the growth function μ and

Fig 4. The parameters π and their control on the optimal cellular state f*.

https://doi.org/10.1371/journal.pcbi.1011156.g004
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its partial derivative at fixed f,

Aτj :¼
tj

m∗
dm∗

dtj
¼
tj

m

@m

@tj
¼ �

mr fj tj
ca
¼ � �j ; ð44Þ

where we effectively treated τj as a variable in the growth equation Eq 16, and ϕj = pj/ca is the

optimal proteome fraction allocated to reaction j before the change in τ j. This result is consis-

tent with the observation that drugs targeting the most highly expressed catalysts, such as the

ribosome, have the strongest effects on cellular growth rates [5, 41].

For changes in some external parameter such as a concentration x, the growth adaptation

coefficient is again calculated by evaluating the growth function μ and its partial derivative at

fixed f, and using the chain rule of differentiation we obtain

Ax :¼
x
m∗

dm∗

dx
¼

x
m

X

s

@m

@ts
@ts

@x
¼ �

X

s

�s
x
ts
@ts

@x
; ð45Þ

where we have a summation over s (only transporters s have kinetic rate laws depending on

external concentrations). According to Eq 45, the growth adaptation coefficient of an external

concentration x is simply the sum over the “scaled elasticities”
x
ts
@ts

@x
of the transporters of x,

weighted by the optimal proteome fractions ϕs allocated to each s before the change in x. This

result gives an explicit quantitative estimation on which external concentrations should be

changed in order to cause the most change in the optimal growth rate. This equation may

hence provide a useful tool for improving the growth media environment for industrial cell

cultures, and for quantifying the effect of drugs aimed at decreasing the growth of pathogens

and cancer cells. If the turnover times τ depend explicitly on other external parameters, such

as pH and temperature, growth adaptation coefficients can be calculated and interpreted

exactly as in Eq 45.

The growth adaptation coefficient with respect to the mass density ρ, assuming it affects

turnover times τ only through reactant concentrations c, reads

Ar≔
r

m∗
dm∗

dr
¼
r

m

X

l;i

@m

@tl
@tl

@ci
@ci

@r
¼ �

r

m

X

l;i;j

m2

ba
fl
@tl

@ci
Mi

jf
j

� �

¼ �
m

ba
f>E f ; ð46Þ

where @ci=@r ¼ bi ¼
P

jM
i
j f

j according to Eqs 9 and 11, and the last equality comes from the

definition of the indirect elasticity (Eq 24). From this expression and λ in Eq 28, we see that −λ
= μAρ; at optimality, the negative KKT multiplier for the density constraint, −λ, quantifies the

absolute increase in growth rate caused by a marginal increase in ρ, given by μ itself times the

proportional change, Aρ. Thus, the extra term in the shadow price of transporters (compare θs
in Eq 56 to θr and θe) quantifies the growth rate benefit gained by allowing the violation of the

density constraint (Eq 18) caused by a small increase in fs.
Just as the economy of growth is deeply connected to protein allocation, so is growth con-

trol. For Aj and Ax, this connection is clear from Eqs 44 and 45, respectively. For Aρ, we first

note that it relates to optimal marginal values via Eq 53,

mAr ¼ � l ¼
X

j

ð@ jmÞ f
j ¼
X

s

ð@smÞ f
s : ð47Þ

At optimality, the summands on the RHS are zero for the ribosome and for enzymatic reac-

tions (@j μ fj = 0 for j ¼ r; e), and the summation over j can thus be restricted to only transport-

ers s. Thus, at optimality, the absolute change in optimal growth rate caused by increasing ρ,
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μAρ, is equal to the summed marginal effects of transport fluxes on the growth rate, @sμ,

weighted by the flux fractions f s themselves. To see the full connection between Aρ and protein

allocation, we insert Eq 33 into Eq 47 to obtain

Ar ¼ �
X

l;s

@�
l

@f s

� �

m

f s : ð48Þ

This equation shows that the proportional effect on the optimal growth rate that is exerted

by a marginal increase in ρ, Aρ, equals the combined marginal effects of transport fluxes f s on

proteome allocation fractions, weighted by the transport fluxes themselves.

Discussion

Modeling frameworks that are essentially linear, such as FBA and RBA, are typically analyzed

numerically, as the efficiency of linear programming facilitates fast solutions even for genome-

scale models [7, 8, 11]. In contrast, the construction and solution of genome-scale non-linear

models faces two major obstacles, both intimately linked to the kinetic rate laws. First, experi-

mental estimates for the required kinetic parameters—kcat and Km values in the simplest case

of generalized Michaelis-Menten kinetics—are lacking for most reactions [42]. This problem

can be alleviated by using parameter estimates from artificial intelligence approaches [43–45].

Second, the non-linearity of enzymatic rate laws makes numerical optimizations much more

difficult than for linear systems, explaining why existing studies have been limited to models

with only a handful of reactions [6, 15–19]. Numerical optimization is particularly problematic

for models with redundant pathways, where the optimization problem is non-convex [20].

The succinct mathematical formulation for modeling balanced cellular growth developed

in this paper helps to address both problems. On the one hand, the reduction of the problem

description to a minimal number of independent variables—the flux fractions—reduces the

dimensionality of the search space, and may thus help to accelerate numerical approaches to

find optimal states. On the other hand, this formulation allowed us to identify necessary condi-

tions for states of maximal growth rate. For enzymatic reactions e, these conditions (Eq 34) are

“local” in the sense that they only depend on the flux fractions f and on the kinetic parameters

of reactions directly connected to e itself, i.e., they only depend on the fluxes and parameters of

reactions whose turnover times τj are directly affected by changes in f e. On the other hand, the

optimality conditions for the ribosome and transport reactions (see Eqs 57 and 59) do require

the knowledge of the full vector f and of all model parameters, which are required explicitly or

via μ as determined by Eq 16.

The concise formulation also helped in the interpretation of the optimality conditions

from the perspectives of economy and control theory. The marginal change in growth rate

induced by each flux change is seen as the flux’s marginal economic value, while the growth

adaptation coefficient of each model parameter or external concentration is the change in

the optimal growth rate induced by a marginal change in this parameter. The close corre-

spondence between the mathematical expressions obtained in both perspectives helps to

clarify the mathematical and conceptual links between these usually separate fields of study,

including the extension of previous results of metabolic control analysis (MCA), developed

for ad-hoc objectives in static sub-networks, to the holistic problem of cellular growth in

GBA models. In MCA, one typically treats enzyme concentrations as control variables and

studies how small changes to them affect reactant concentrations and fluxes. Here, all these

variables are not only connected, but are uniquely determined by the flux fraction vector f.

Moreover, the growth rate μ itself is explicitly connected to f through the growth function

(Eq 16). Through these connections, we can quantify the sensitivity of the cellular growth
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rate, and hence approximately of organismal fitness, to changes in the control variables π,

something not possible in the usual MCA framework [9, 10]. The growth adaptation coeffi-

cients provide explicit expressions for the effects on growth rate caused by small changes in

control variables at optimality. Due to the close relationship between growth rate and fit-

ness, these estimates could be used to interpret and predict evolutionary changes in these

variables.

A closely related nonlinear cellular modeling approach accounts for the different amino

acid compositions of individual proteins by including “personalized” ribosome reactions for

each protein [23, 46, 47]. In contrast to GBA, this type of model cannot be simplified using

flux fractions f, as it requires a mathematical formulation that includes explicit variables for

metabolite concentrations. Experimental data for E. coli [48] indicates that the 20 amino acid

content into its total proteome changes very little over 22 highly distinct growth environments

(mean coefficient of variation = 2.46%, maximal CV = 7.55%, see Table A in S1 Text), suggest-

ing that—at least globally—different protein compositions are likely not a major factor driving

significant changes in the optimal cellular state. Thus, a unique ribosome reaction with fixed

column Mr is a realistic assumption over all these growth conditions. Further study is neces-

sary to identify whether the different compositions of individual proteins may cause significant

changes in their allocation across environments.

All analytical results in this study were derived exclusively from the growth constraints

assumed in GBA models: mass conservation in balanced growth, reaction kinetics, cellular

density, and non-negative concentrations. For the analysis of optimal growth, we encoded all

corresponding information into a single Lagrangian function, parameterized in terms of the

constraints. We formulated the problem with the flux fractions f as the only free variables, and

used KKT conditions to obtain the necessary conditions for optimal growth states (OGSs).

Through these conditions, the marginal protein allocation emerges as the natural underlying

currency in the cell economy; this relationship has frequently been asserted [31, 36, 37], but is

derived here entirely from first principles.

The KKT framework provides a straight-forward way to incorporate new constraints, anal-

ogous to how physical theories using the Lagrangian formalism account for additional forces

by adding corresponding functions and Lagrange multipliers into the Lagrangian. A re-deriva-

tion of the KKT conditions will then result in an extended set of balance equations. Among the

potential extra physiological constraints, one might consider also phenomenological con-

straints such as the recently reported relationship between the cellular surface/volume ratio

and the growth rate [49].

One fundamental physiological limitation that could be included in this way but is not con-

sidered explicitly here is the diffusion limit of molecules within cellular compartments. This

limit links density and kinetic constraints. A higher dry mass density increases the “crowding

effect” within cells [26], which entails a lower diffusion rate and by consequence a longer time

for reactants to find their catalysts; this effect can be modeled directly by including a corre-

sponding dependence in the Michaelis constants Km. A study on the crowding effects of all cel-

lular concentrations—including those of small molecules—found that the observed E. coli dry

mass density is in the range expected if evolution had optimized the cellular density for maxi-

mal growth rate [33]. In this sense, a fixed density constraint on all molecules, as considered

here, may be seen as a simplifying approximation, justified by the observed constancy of cellu-

lar buoyant and dry mass densities across different growth conditions [25, 49], with the excep-

tion only of large changes in environmental osmolarities [26].

The Lagrangian formalism described here also allows a direct generalization of the theory

to other objective functions, i.e., other measures of fitness at balanced growth. This can be

done by incorporating a new objective function F(f) and adding a new constraint for the
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growth rate via ω(μ − μ0), where μ is determined by the growth function, ω is the correspond-

ing KKT multiplier, and μ0 is the constrained growth rate given now as an input.

An important step toward a more general theory of cellular growth would be to extend the

present analytical approach to changing environments, and to derive similar analytical condi-

tions for time-dependent optimal cellular states f(t). In this situation, fitness is determined by

the proportional growth in a given period of time, so the objective function becomes the inte-

gral of the specific growth rate μ(t) [17, 50], under the same constraints as discussed here. This

dynamical extension to a theory of proportional growth optimization would help to generalize

the existing results on dynamic metabolic flux optimization [51], and building more realistic

models for cells in cyclical environments, such as feast-famine cycles of the gut microbiome

[52] or day-night cycles of photosynthetic microbes [19].

In sum, the concise mathematical formulation of the growth optimization problem devel-

oped here provides a powerful toolbox for the analysis and solution of mechanistic descrip-

tions of optimal cellular physiology and growth. It thereby opens a path toward a fundamental

understanding of organizing principles of biological cells. While biological systems will never

be fully optimal, the study of optimal growth strategies provides an extremely useful null

model for the action of natural selection.

Methods

The necessary KKT conditions include the primal feasibility conditions given by Eqs 18 and

19), and

@ jL ¼ 0 ðstationarityÞ ð49Þ

yj fj tj ¼ 0 ðcomplementary slacknessÞ ; ð50Þ

where @j≔ @/@f j indicates the partial derivative with respect to f j.
The stationarity conditions can be solved for the corresponding optimal multipliers θj,

resulting in

yj ¼ � ð@ jmþ lgjÞ=tj ; ð51Þ

where λ is the optimal value for the density multiplier. After an element-wise multiplication of

both sides of Eq 51 with fjτj, we can use the complementary slackness (θjτjfj = 0) to get

ð@ jmÞ fj þ lgj fj ¼ 0 : ð52Þ

Now summing the last equation over all j and using the primal feasibility (Eq 18) results in

l ¼ �
X

j

ð@ jmÞ f
j : ð53Þ

Combining Eqs 51, 27 and 28, we can now express each multiplier θj explicitly in terms of

the flux fractions f at optimality, resulting in slightly different expressions for ribosomal,

PLOS COMPUTATIONAL BIOLOGY Optimal fluxes in cellular reaction networks at balanced growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011156 June 6, 2023 22 / 26

https://doi.org/10.1371/journal.pcbi.1011156


enzymatic, and transport reactions:

yr ¼
m

ba
1

tr
� Ma

r þ m tr þ m f
>Er

� �
ð54Þ

ye ¼
m

ba
1

te
m te þ m f

>Ee

� �
ð55Þ

ys ¼
m

ba
1

ts
m ts þ m f

>Es � m f
>E f gs

� �
: ð56Þ

By inserting these expressions into the complementary slackness conditions (Eq 50), we can

now solve for f, which results in the balance equations for ribosomal, enzymatic, and transport

reactions:

ðMa
r � m tr � m f

>ErÞfr ¼ 0 ð57Þ

ðte þ f>EeÞfe ¼ 0 ð58Þ

ðts þ f>Es � f>E f gsÞfs ¼ 0 ; ð59Þ

where we simplified the expressions by exploiting that μ, ba, τj 6¼ 0.
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J. Lercher.

References
1. Bremer H DP. Modulation of Chemical Composition and Other Parameters of the Cell at Different Expo-

nential Growth Rates. EcoSal Plus. 2008;.

2. Fisher RA, Bennett JH. The genetical theory of natural selection: a complete variorum edition. Oxford

University Press; 1999. Available from: http://books.google.com/books?id=sT4lIDk5no4C.

3. Dourado H, Mori M, Hwa T, Lercher MJ. On the optimality of the enzyme–substrate relationship in bac-

teria. PLOS Biology. 2021; 19(10):1–18. https://doi.org/10.1371/journal.pbio.3001416 PMID: 34699521

4. Dourado H, Lercher MJ. An analytical theory of balanced cellular growth. Nature Communications.

2020; 11(1):1226. https://doi.org/10.1038/s41467-020-14751-w PMID: 32144263

5. Hu XP, Dourado H, Schubert P, Lercher MJ. The protein translation machinery is expressed for maxi-

mal efficiency in Escherichia coli. Nature Communications. 2020; 11(1):5260. https://doi.org/10.1038/

s41467-020-18948-x PMID: 33067428

6. Molenaar D, van Berlo R, de Ridder D, Teusink B. Shifts in growth strategies reflect tradeoffs in cellular

economics. Molecular Systems Biology. 2009; 5(1):323. https://doi.org/10.1038/msb.2009.82 PMID:

19888218

7. Goelzer A, Fromion V, Scorletti G. Cell Design in Bacteria As a Convex Optimization Problem. Automa-

tica. 2011; 47(6):1210–1218. https://doi.org/10.1016/j.automatica.2011.02.038

8. O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson B. Genome-scale models of metabolism and

gene expression extend and refine growth phenotype prediction. Molecular Systems Biology. 2013.

https://doi.org/10.1038/msb.2013.52 PMID: 24084808

9. Heinrich R, Rapoport TA. A Linear Steady-State Treatment of Enzymatic Chains. European Journal of

Biochemistry. 1974; 42(1):89–95. https://doi.org/10.1111/j.1432-1033.1974.tb03318.x PMID: 4830198

10. Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol. 1973; 27:65–104. PMID: 4148886

11. Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype-phenotype relationship

using a phylogeny of in silico methods. Nature Reviews Microbiology. 2012; 10(4):291–305. https://doi.

org/10.1038/nrmicro2737 PMID: 22367118

12. Watson MR. Metabolic maps for the Apple II. Biochemical Society Transactions. 1984; 12(6):1093–

1094. https://doi.org/10.1042/bst0121093

13. Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, Nölker R, et al. Quantitative prediction of

genome-wide resource allocation in bacteria. Metabolic Engineering. 2015; 32:232–243. https://doi.org/

10.1016/j.ymben.2015.10.003 PMID: 26498510

14. Mori M, Hwa T, Martin OC, De Martino A, Marinari E. Constrained Allocation Flux Balance Analysis.

PLOS Computational Biology. 2016; 12(6):1–24. https://doi.org/10.1371/journal.pcbi.1004913 PMID:

27355325

15. Weiße AY, Oyarzún DA, Danos V, Swain PS. Mechanistic links between cellular trade-offs, gene

expression, and growth. Proceedings of the National Academy of Sciences. 2015; 112(9):E1038–

E1047. https://doi.org/10.1073/pnas.1416533112 PMID: 25695966

16. Maitra A, Dill KA. Bacterial growth laws reflect the evolutionary importance of energy efficiency. Pro-

ceedings of the National Academy of Sciences. 2015; 112(2):406–411. https://doi.org/10.1073/pnas.

1421138111 PMID: 25548180
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