
RESEARCH ARTICLE

Evolutionary trade-off and mutational bias

could favor transcriptional over translational

divergence within paralog pairs

Simon AubéID
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Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada
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Abstract

How changes in the different steps of protein synthesis—transcription, translation and deg-

radation—contribute to differences of protein abundance among genes is not fully under-

stood. There is however accumulating evidence that transcriptional divergence might have

a prominent role. Here, we show that yeast paralogous genes are more divergent in tran-

scription than in translation. We explore two causal mechanisms for this predominance of

transcriptional divergence: an evolutionary trade-off between the precision and economy of

gene expression and a larger mutational target size for transcription. Performing simulations

within a minimal model of post-duplication evolution, we find that both mechanisms are con-

sistent with the observed divergence patterns. We also investigate how additional properties

of the effects of mutations on gene expression, such as their asymmetry and correlation

across levels of regulation, can shape the evolution of paralogs. Our results highlight the

importance of fully characterizing the distributions of mutational effects on transcription and

translation. They also show how general trade-offs in cellular processes and mutation bias

can have far-reaching evolutionary impacts.

Author summary

Changes in the cellular abundance of proteins are of great importance in evolution, as

they are associated with phenotypic variation and adaptation. They can result from muta-

tions acting on multiple biochemical processes, of which the most important are the tran-

scription of mRNAs and their translation into polypeptides. While the evolution of

transcription levels has been extensively studied, the interplay between transcriptional

and translational changes remains to be fully elucidated. Yet, there is accumulating evi-

dence that transcription may evolve at a faster rate. We show that this is the case within

paralog pairs of the yeast Saccharomyces cerevisiae, where divergence is significantly larger
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at the transcriptional level than at the translational one. Using simulations, we compare

two potential mechanisms by which such patterns could arise: an evolutionary trade-off in

the process of protein synthesis and a higher probability—or larger effects—for mutations

affecting transcription. We find that both explanations are consistent with the observed

divergence of duplicated genes. Whether these apply generally to all genes or exclusively

to paralogs, this work still provides important insights on the evolution of gene expression

levels. Gene duplication events indeed occur frequently and are thus likely to have pro-

found and lasting impacts on the evolution of protein abundance levels.

Introduction

Gene expression level—the steady-state cellular abundance of the corresponding protein—is a

fundamental property of genes, as shown by extensive reports of fitness-expression dependen-

cies across organisms and biological functions [1–3]. As such, understanding its evolution is of

great biological importance. Gene expression is a multi-step process, involving the transcrip-

tion of mRNAs and their translation into proteins, as well as the active degradation of both

types of molecules and their dilution during cell division [4]. Accordingly, variation in protein

abundance among genes within or between species can arise from changes at multiple levels.

While many studies have described the crucial role of mutations within genes, their regulatory

sequences and their regulators in generating expression variation, most reports focused on one

of these aspects, for instance on the transcriptional component [5]. How each of these levels of

regulation change during evolution, independently or jointly, thus remains to be fully

elucidated.

One intriguing possibility which has emerged following recent investigations is that tran-

scription may evolve at a higher rate than translation, such that variation in the abundance of

transcripts would accumulate faster than changes in their translation efficiencies. It has for

instance been reported that expression divergence between humans and other primates

occurred mostly at the level of mRNA abundance, with little translational contribution [6].

Similarly, virtually none of the expression divergence observed between lines of the bacterium

Escherichia coli evolved for 50 000 generations involved changes in the translation efficiency of

transcripts [7]. A similar observation has been made in yeasts, where a greater number of vari-

ants affecting the abundance of mRNAs rather than their translation have been identified

between Saccharomyces cerevisiae strains [8]. Further interspecies comparisons however

revealed mostly equal contributions of transcriptional and translational changes [9–11]. Exten-

sive reports that changes in transcription are only partially masked by variations in translation

might also support a higher evolutionary rate for transcription. Such observations have been

made both in mammals [12, 13] and in yeasts [9–11], although the latter are more ambiguous

and have been challenged [8, 14].

Overall, it appears likely that transcriptional changes play a larger role than translational

ones in the evolution of gene expression levels. Potential mechanisms underlying this discrep-

ancy however remain to be elucidated. One powerful context in which such an investigation

can be performed is that of gene duplication, an evolutionary process which creates a pair of

paralogs from an ancestral gene. Since the two resulting paralogs are usually identical, their

expression levels are likely similar immediately after the duplication event. Paralogs would

thus gradually diverge from a common starting point over millions of years of evolution by the

accumulation of expression changes. As such, differences in transcription and in translation

which can currently be measured between two paralogs allow to approximate their relative
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evolution in both dimensions. Moreover, the numerous paralog pairs present in a given organ-

ism constitute as many evolutionary replicates within the same cell environment. Because a

given variation in protein abundance can be obtained from an infinity of transcriptional and

translational changes, any consistent pattern across paralog pairs may be telling about the

underlying mutational process as well as the selective pressures potentially involved. Most

importantly, a predominant role of changes at the level of mRNA abundance in the expression

divergence of paralogs has previously been reported in two model plant species [15].

In addition to providing a model for the study of the evolution of gene expression levels,

the divergence of paralogs is in itself of high biological relevance. It is estimated that between

30% and 65% of all genes are part of duplicate families in most eukaryotes [16, 17], while new

single-gene duplications may be more frequent than single-nucleotide mutations [18, 19].

Besides their high frequency, gene duplication events also have far-reaching consequences.

This phenomenon is often associated with the divergence of the resulting paralogs into two

functionally distinct genes through processes known as neofunctionalization and subfunctio-

nalization, respectively involving the acquisition of new function(s) [20] and the partitioning

of ancestral ones [21]. Protein abundance changes frequently accompany and may even shape

this divergence. Post-duplication expression reduction has for instance been reported within

paralog pairs [22]. Moreover, a compensatory drift of expression levels may also occur, allow-

ing both gene copies to diverge while maintaining a constant cumulative protein abundance

[23, 24]. As such, elucidating how the transcription and translation of paralogous genes jointly

evolve is important to better understand both the general evolution of gene expression levels

and the evolutionary impact of gene duplications.

To this end, we leveraged a published set of transcriptional and translational measurements

for 4440 genes of the yeast S. cerevisiae [25], which is a well-recognized model for the study of

gene duplication. These data present a major advantage: they are transcription and translation

rates expressed in molecular terms, respectively transcripts synthesized per time unit and pro-

teins produced per transcript per time unit. They thereby allow for the investigation of potential

mechanisms at the molecular level. We first validated whether the paralog pairs included in this

dataset show a significantly larger divergence in transcription than in translation. Having con-

firmed this observation, we next investigated potential underlying mechanisms. We considered

two hypotheses: an evolutionary trade-off in the optimization of gene expression levels [25] and

the possibility that transcriptional mutations are more frequent and/or have larger effects.

Using in silico evolution, we show that both explanations are consistent with the observed

divergence patterns. We conclude by stressing the need for measuring the mutational parame-

ters of genes in transcription and in translation in order to be able to further support one

model or the other, as well as to fully understand the multi-level evolution of gene expression.

Results

Yeast paralogs mostly diverged in transcription

We first examined whether transcription changes played a larger role in the evolution of yeast

paralogs by comparing the extent of transcriptional and translational divergence within dupli-

cate pairs using transcription rates βm and translation rates βp—respectively in mRNAs per

hour and in proteins per mRNA per hour [25]. Because protein abundance is proportional to

the product of these two rates, they contribute equally to overall expression and their relative

changes are directly comparable.

Among the 4440 genes for which βm and βp have been estimated, we identified 409 high-

confidence paralog pairs, each derived from a whole-genome duplication (WGD; n = 245) or a

single small-scale duplication event (SSD; n = 164). We quantified the contributions of
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transcriptional and translational changes by computing the magnitude of relative divergence

in transcription and translation as follows, where θ represents the transcription or translation

rates of paralogs 1 and 2 within a pair:

log2‐fold change ¼ log2

max ðy1; y2Þ

min ðy1; y2Þ

� �

ð1Þ

The distributions of these two measures across paralog pairs are consistent with a higher

evolutionary rate for the regulation of transcription than for that of translation, as relative

divergence in βm is significantly higher (Fig 1A). The median is 1.5 times larger in transcrip-

tion than in translation, with only slight differences depending on duplication type (1.45× for

WGD and 1.48× for SSD). In addition, about 70% (74.3% for WGD and 62.2% for SSD) of

paralog pairs are more divergent transcriptionally than translationally. A potential caveat is

that the transcription rates used have been obtained under the assumption that decay rates do

not vary among transcripts [25]. When measurements of mRNA decay [26] are employed to

recalculate βm, the observation that relative divergence is larger in transcription than in

Fig 1. Gene expression divergence of duplicated genes is greater in transcription than in translation. (A)

Distributions of relative divergence for S. cerevisiae paralog pairs according to the associated mechanism of duplication

(245 WGD pairs; 164 SSD pairs), using transcription and translation rates inferred by [25]. The dashed line indicates

the median transcriptional divergence of WGD pairs. P-values from Mann-Whitney-Wilcoxon two-sided tests are

shown. (B) Same distributions of relative divergence, but using transcription rates recalculated to account for gene-to-

gene variations in mRNA decay [26]. The dashed line is set to the same value as in A. (C) Correlation (Spearman’s ρ)

between the magnitudes of relative divergence in transcription and translation rates across all paralog pairs. (D)

Correlation (Spearman’s ρ) between the signed relative divergences in transcription and in translation for all duplicate

pairs. Signed log2-fold changes were calculated in the two possible orientations for each gene pair and the correlation

was computed on the resulting duplicated dataset (n = 818).

https://doi.org/10.1371/journal.pgen.1010756.g001
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translation holds, although statistical significance is lost for SSD-derived paralog pairs (Fig

1B). Further analyses using three other independent sets of mRNA decay rates [27–29]—

obtained through distinct experimental approaches—confirm our initial observation. In all

cases, the relative expression divergence is significantly higher in transcription than in transla-

tion (p< 0.05; Mann–Whitney–Wilcoxon two-sided test) for WGD- and SSD-derived paralog

pairs, although with different magnitudes (S1B Fig). We also made sure that βp log2-fold

changes are representative of the true translational variation between paralogs. To this end, we

compared the protein abundance log2-fold changes calculated from βm and βp divergence to

experimental measurements of protein abundance, which revealed strong correlations

(r = 0.63- 0.80; S1E Fig).

An additional potential confounder is experimental variation. If transcriptional measure-

ments were noisier than translational ones, the magnitude of relative divergence in transcrip-

tion could be artificially inflated. This is however unlikely to be the case, owing to how

transcription and translation rates were inferred from mRNAseq and ribosome profiling data

[30]. Whereas βm was obtained through a normalization of the mRNA abundances measured

by sequencing, βp for a given gene was defined as the normalized ratio of its number of ribo-

somal footprints over its mRNA abundance [25]. Hence, translation rates could be inherently

noisier, since they compound any noise in mRNAseq measurements affecting βm as well as

additional variance introduced by the ribosome profiling. We could thus expect our assess-

ment of expression divergence to be conservative regarding any predominance of transcrip-

tional changes. The analysis of simulated data supports this intuition, as the addition of noise

leads to an underestimation of the relative contribution of transcription in most cases (S1 Fig).

The robustness of our initial observation is further confirmed by additional simulations com-

bining the effect of experimental noise with that of unaccounted-for variations in transcript

decay rates. While slightly overestimating the relative contribution of transcription changes

appears plausible, in no instance does a predominantly translational divergence falsely appear

mostly transcriptional (S3 Fig).

To more thoroughly characterize the joint evolution of transcriptional and translational

regulation within yeast paralog pairs, we also looked for correlations between the relative mag-

nitudes of divergence in transcription and in translation. This revealed a weak but significant

positive association (Fig 1C and S1C Fig). We additionally repeated this analysis without first

defining the log-fold changes as strictly positive, thus preserving information on the direction

of the changes at both levels. In this case, a stronger positive correlation is observed (Fig 1D

and S1D Fig). Because mRNA abundances are used in the calculation of both βm and βp [25],

spurious correlations between the magnitudes of relative divergence may occur (S4A Fig).

Taking into account the very strong association between the mRNA abundance and ribosomal

footprints of individual genes within the dataset (r = 0.981, p< 1 × 10−6; S4B Fig), only very

weak to nonexistent correlations are however expected between the magnitudes of relative

divergence, both for absolute and signed values (S4C Fig). Accordingly, the relationships

observed here suggest that duplicate pairs which diverged more transcriptionally also tend to

have accumulated more changes at the level of translation—and usually in the same direction.

This finding may reflect the action of gene-specific selective constraints on protein abundance

or the existence of a correlation between transcriptional and translational mutations (see

below).

Interestingly, a recent study examining the divergence of mRNA abundance and translation

efficiency (analogous to transcription and translation rates, respectively) within paralog pairs

in the model plants Arabidopsis thaliana and Zea mays reported patterns strikingly similar to

our observations (Fig 1), with one notable exception [15]. In this study, a predominance of

compensation between changes at the transcriptional and translational levels was observed,
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disagreeing with the positive correlation that we report between signed divergences in tran-

scription and translation (Fig 1D). This discrepancy is consistent with predicted differences in

the efficiency of selection, and may support an involvement of selective constraints. The effec-

tive population size of A. thaliana is indeed one to two orders of magnitude smaller than that

of Saccharomyces yeasts [31–33]. These organisms however differ in many other ways, as

plants are multicellular—meaning that paralogs could also diverge along other dimensions

that are not captured in yeasts—and the regulation of their gene expression may feature addi-

tional layers of complexity.

A minimal model of post-duplication expression evolution

We next investigated how a higher evolutionary rate for the regulation of transcription than

for that of translation—as seen among yeast paralogs—could potentially emerge. To this end,

we considered two non-mutually exclusive hypotheses (Fig 2A). First, transcriptional changes

might accumulate faster because they have more beneficial—or less deleterious—fitness effects

than translational ones. Such a discrepancy could arise through a recently described evolution-

ary trade-off [25], according to which corresponding changes in transcription and in transla-

tion are equivalent in terms of amount of protein produced, but not in cost and precision (Fig

2A, left). Accordingly, the precision and economy of gene expression cannot be maximized

simultaneously, although it would provide fitness benefits, because they inversely depend on

the relative contributions of transcription and translation. While a larger transcriptional con-

tribution reduces the magnitude of stochastic fluctuations in protein abundance [35, 36]—or

expression noise—and thus increases precision, it also incurs additional metabolic costs

through the synthesis of more mRNA molecules [25, 37, 38]. Within this framework, the sole

relevant cost of gene expression is this latter transcription-dependent one, as the cost of pro-

tein production itself only depends on how many molecules are synthesized, regardless of

whether translation is done from many or few mRNAs. A greater relative translational contri-

bution on the other hand increases economy (since fewer transcripts are synthesized) but

amplifies noise, which thereby decreases precision. By having distinct effects on the economy

and precision of gene expression, changes to βm and βp could therefore be differently favored

by natural selection.

Second, the faster accumulation of transcriptional variation could be explained without any

direct involvement of selection, if the rate of transcription was more likely to be altered by

mutations. Our other hypothesis is thus that transcription has a larger mutational target size

than translation (Fig 2A, right), meaning that mutations acting on this trait would be more fre-

quent or have larger effects, or both. Under neutral evolution or even under stabilizing selec-

tion to maintain protein abundance, more changes would thereby accumulate at the

transcriptional level.

In order to test these two hypotheses (precision-economy trade-off vs differences in muta-

tional target sizes), we defined a minimal model of post-duplication evolution. Within this

framework, natural selection solely acts to maintain the cumulative expression of a pair of

duplicated genes at a certain level (S1 File), as the two proteins are functionally equivalent.

Such selection on total protein abundance is likely an important feature of the early evolution

of most paralog pairs, as suggested by several observations. The retention of duplicates after

WGD events is for instance higher for genes whose products are part of protein complexes

[39–41], for which the lowered expression resulting from the loss of a gene copy would be

more deleterious. In addition, reduction in the cumulative expression of paralog pairs, so as to

more closely replicate the expression of their singleton ancestor, appears widespread [22].

More importantly, quantitative subfunctionalization—under which selection acts on the
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Fig 2. Overview of the modeling and simulation approach. (A) Two hypotheses are considered: an evolutionary trade-off

between the precision and economy of gene expression (left) and a larger mutational target size for transcription than for

translation (right). (B) A minimal model of post-duplication evolution is defined under the assumption that selection acts to

maintain the cumulative protein abundance of two paralogs. Parabolic functions of fitness according to cumulative protein

abundance with varying curvatures are used for different gene pairs. The model is complexified by the addition of precision-

economy constraints [25] to test the hypothesized evolutionary trade-off. (C) The expression divergence of paralogs is

simulated by sequential fixation, through multiple rounds of mutation-selection. A relative mutational effect δ is first sampled

from a normal distribution of mean 0 and standard deviation σmut for each paralog pair. It is then assigned to transcription or

translation rate, according to relative probabilities Pβm and Pβp. This mutation is randomly performed on one of the two

paralogs P1 and P2, which are equally likely to be mutated. The transcriptional (δβm) or translational (δβp) mutational effect is

applied in such a way that it increases or decreases expression by a fraction of its current level. A new mutant fitness Fj is

PLOS GENETICS Two mechanisms could favor transcriptional divergence within paralog pairs
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cumulative expression of both duplicates, such that the protein abundance of the ancestral

gene is effectively subfunctionalized between the two copies—has been shown to likely be a

major mechanism for the long-term maintenance of WGD-derived paralogs [23]. Under this

model, as well as within our minimal framework, the individual expression levels of two dupli-

cates can vary as long as their sum remains close enough to an optimum, resulting in a com-

pensatory drift of expression levels as mutations accumulate [23, 24]. Quantitative

subfunctionalization can of course be accompanied by functional changes within proteins,

both simultaneously [42] or sequentially [43]. To ensure the generality of our minimal model,

we nonetheless choose to ignore all forms of divergence other than expression changes. Func-

tional variation is indeed much more difficult to quantify and probably occurs through a

greater variety of mechanisms. Within the scope of this work, this simplification appears rea-

sonable, as analyses show that the transcriptional bias of expression divergence is at worst

weakly related to various proxies for the divergence of molecular functions among yeast para-

log pairs (S5 Fig). Accordingly, we assume that the two copies comprising any paralog pair are

identical and express the same protein, as could be expected early after a duplication event.

More formally, we model the evolution of the expression levels of two copies (paralogs) of

the same gene across a landscape of diagonal fitness isoclines where the optimum is along a

central diagonal of constant (optimal) cumulative expression (Fig 2B I). Such a landscape is

obtained from a parabolic function of fitness according to the cumulative protein abundance

of both paralogs. For this minimal model to be more directly applicable to the complete yeast

genome, a family of functions with varying curvatures (Fig 2B II)—taken from a distribution

inferred from [25]—is defined, so that distinct fitness landscapes can be obtained for different

gene pairs. The model is additionally complexified in two ways to implement the precision-

economy trade-off, such that this hypothesis can be tested. First, expression noise (and thus

the importance of precision) is explicitly taken into account by considering the mean fitness of

a population of cells expressing two paralogs at a mean cumulative protein abundance Ptot
with standard deviation σtot, which itself depends on the relative contribution of transcription

to overall expression [25] (Fig 2B III and Methods). Second, economy considerations are

implemented by the addition of a cost of transcription, in the form of a penalty C to fitness

increasing linearly with the total number of transcribed nucleotides [25] (Fig 2B IV and

Methods).

To compare our two hypotheses, we performed in silico evolution. Only transcription and

translation rates were evolved, while mRNA and protein decay rates were assumed to be con-

stant (Methods). This restriction to only the two traits of interest had the advantage of reduc-

ing the parameter space we had to explore, while being a reasonable simplification. Most of the

variation in gene expression levels indeed occurs at these two regulatory levels [25]. In addi-

tion, taking into account changes in mRNA decay has little impact on the patterns of transcrip-

tional divergence, as we show (Fig 1A and 1B and S1 Fig). The simulations were carried out

following a sequential fixation approach [44], meaning that each successive mutation was

instantaneously brought to fixation or rejected.

Each simulation run was initialized from randomly generated singleton genes, each dupli-

cated into two paralogs retaining the ancestral βm and βp rates (Methods). We assumed that a

duplication event causes a doubling of total transcriptional output without affecting the

obtained from the resulting cumulative protein abundance and/or transcription rates, according to the minimal model or its

precision-economy version. By comparing this fitness to its ancestral value Fi, a fixation probability is computed [34],

according to which the mutation is instantly fixed or lost at random. The mutation-selection process is repeated until a

realistic level of protein abundance divergence is reached (Methods).

https://doi.org/10.1371/journal.pgen.1010756.g002
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translation rate of individual transcripts, which is realistic since the translation rates of most

mRNA do not change upon gene copy number increase [45]. Previous descriptions of the

quantitative subfunctionalization framework, which we used as a minimal model, have postu-

lated that the initial post-duplication cumulative protein abundance is already optimal [23,

24]. In order to be more general, we instead simply assumed that the immediate loss of a newly

created paralog is deleterious. Due to the high frequency of loss-of-function mutations, any

duplicate whose loss was neutral or beneficial would rapidly be lost even if it did reach fixation

[46]. Accordingly, only simulated gene pairs for which the instant loss of a paralog would be

deleterious were considered, while the post-duplication optimum of cumulative protein abun-

dance was set to slightly less than double the ancestral protein abundance (1.87×)—such that

the duplication-induced doubling would overshoot the optimum but still result in a positive

fitness (S1 Methods).

Simulated paralog pairs were subjected to successive mutation-selection rounds, so that

their transcription and translation rates could evolve (Fig 2C). During each such round, a

mutation affecting the βm or βp of one of the two paralogs is attempted, and later filtered by

selection according to its effect on fitness. Whether each individual mutation acts on transcrip-

tion or on translation is chosen randomly, following relative probabilities Pβm and Pβp which

represent the relative mutational target sizes of the two traits. Additionally, because only one

gene copy is affected at a time, all mutations can be considered as cis-acting ones occurring in

the regulatory or coding sequences of a paralog. Changes in trans, which affect both duplicates

simultaneously and would not result in expression divergence between two fully identical gene

copies, are therefore ignored. The subsequent filtering of mutants is performed in accordance

with a fixation probability computed using a modified Metropolis criterion [34], which can be

adjusted for different levels of selection efficacy with a parameter N analogous to effective pop-

ulation size. This complete mutation-selection process was repeated numerous times within

each simulation, until the median relative protein abundance divergence (Eq 1) for the simu-

lated set of duplicate pairs was not significantly different from the empirical value observed for

the appropriate reference set of yeast paralogs (Methods).

The precision-economy trade-off promotes transcriptional divergence

We first performed a small-scale ‘mock’ simulation of 50 randomly generated duplicate pairs

according to the precision-economy implementation of our minimal model. Transcription

and translation were assumed to have equal mutational target sizes (Pβm = Pβp), so that only

the effect of the precision-economy trade-off was tested.

This simulation revealed a clear bias towards transcriptional changes, with the relative

divergence in transcription accounting for almost all the total variation of protein abundance

(Fig 3A). After * 6500 mutation-selection rounds, the median relative divergence was nearly

twice larger for βm than for βp across the 50 simulated paralog pairs. The resulting evolutionary

trajectories highlight that expression divergence was driven by transcriptional changes, as the

most transcribed paralog is almost always associated with the highest protein abundance,

while the same is not true for the most translated one (Fig 3C). Interestingly, these patterns do

not arise because the divergence of transcription levels is itself beneficial under the precision-

economy trade-off, as illustrated by the fitness plateau observed from round 1000, while tran-

scription rates are still actively diverging (Fig 3B). Indeed, since expression noise scales accord-

ing to both protein abundance and transcription rate (Methods), variance in the cumulative

expression of two paralogs depends on their total βm and expression. Similarly, the cost of tran-

scription only depends on the total number of mRNAs synthesized. As such, both the preci-

sion and economy of expression are not impacted by the distribution of the relative
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transcriptional contributions between two paralogs, which thus has no effect on fitness.

Rather, it is the ratio of the cumulative translation and transcription rates which dictates fitness

under precision-economy constraints, as clearly shown by the early adaptation phase of the

simulated evolutionary trajectories (Fig 3B). After an initial reduction of cumulative protein

abundance to reach the new post-duplication expression optimum, the transcription of both

duplicates is decreased while their translation is increased (Fig 3C), to rebalance the
bp
bm

ratio

[25] of the paralog pair. Following this first phase of post-duplication adaptation, compensa-

tory drift of cumulative protein abundance takes place [23, 24], but changes are almost exclu-

sively biased towards transcriptional divergence. This occurs due to interactions between

transcription- and translation-acting mutations introduced by the precision-economy trade-

off. Further transcriptional changes can for instance be expected to be favored by selection

Fig 3. The precision-economy trade-off favors transcriptional divergence. (A) Distributions of the final log-fold relative divergence in

transcription, translation and protein abundance for the simulation of 50 randomly generated paralog pairs. The standard deviation of mutational

effects was set to an arbitrarily small magnitude (σmut = 0.025) and a scenario of high selection efficacy was considered (N = 106). The simulation

was stopped once protein abundance divergence matched that observed in yeast WGD-derived duplicates (Methods). (B) Fitness for each of the 50

duplicate pairs (faint lines) throughout the simulation. The mean value at any time point is shown by the black line. Fitness is scaled individually

for each gene pair between its minimum (0) and maximum (1) values reached during the simulation. (C) Full evolutionary trajectories of the 50

simulated paralog pairs in transcription rate, translation rate and protein abundance. All three features are shown as log-scaled relative changes

from the ancestral value for each duplicate pair and the darker lines represent the means through time.

https://doi.org/10.1371/journal.pgen.1010756.g003
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after the fixation of a mutation altering βm, as they have the potential to compensate effects on

both precision and economy, while a change of translation can individually only act on

precision.

This first simulation thus shows that the trade-off between the precision and economy of

gene expression can lead to a mostly transcriptional expression divergence between two para-

logs, potentially creating evolutionary patterns as observed in yeast.

Selecting a biologically plausible parameter space

The precision-economy trade-off is sufficient to favor the transcriptional divergence of dupli-

cated genes, but it might still not be the most likely explanation for the evolutionary patterns

observed in yeast paralogs. To rigorously compare our two competing hypotheses, we per-

formed series of large-scale simulations under biologically realistic assumptions. All the corre-

sponding in silico evolution experiments were carried out in three replicates of 2500 randomly

generated paralog pairs. Throughout these computational experiments, the WGD-derived

duplicates of S. cerevisiae were used as a reference set, both for identifying when to stop iterat-

ing through mutation-selection rounds as well as for assessing the results of each simulation.

We chose to restrict our analysis to this group of paralogs, because the mechanism of quantita-

tive subfunctionalization, which we use as a minimal evolutionary model, was initially pro-

posed in the context of whole-genome duplication [23] and its applicability to other

duplication events is thus less clear. An additional reason to focus on WGD-derived paralogs

is that our initial observation is less certain for duplicates which originated from SSD. In one

instance, controlling for variations in mRNA decay erased the difference between the magni-

tudes of transcriptional and translational divergence within this set of gene pairs (Fig 1B).

Ensuring the biological plausibility of our simulations also required a careful examination of

two important parameters—the efficacy of selection N and the standard deviation of muta-

tional effects σmut –, for which there are only partial estimations.

Many estimates of the effective population size of Saccharomyces yeasts, which is analogous

to the N parameter of the evolutionary algorithm regarding the efficiency of selection [34], are

available [32, 33]. The relevance of such historical values to the immediate post-WGD context

is however unclear, because the whole-genome doubling could have been accompanied with a

strong founder event. Identifying a most realistic N is therefore difficult. Accordingly, we

instead chose to consider two scenarios, respectively of high (N = 106) and reduced (N = 105)

efficacy of selection, and compare our two hypotheses in both contexts.

Similarly, only limited information is available on the effect of mutations—and especially

cis-occuring ones—on expression. Previous studies often focused on only a small subset of

genes [47, 48], did not differentiate between cis and trans mutations [48, 49], assessed too few

mutations [49] or were limited to substitutions occurring within a short segment of the pro-

moter sequence [50]. Thus, instead of arbitrarily choosing a σmut, we performed simulations

across a range of standard deviations to identify the most biologically plausible value. As most

mutations affect the expression level of selected yeast genes by 20% or less [48], we considered

values ranging from 0.01 to 0.35 (1% to 35%).

Our second hypothesis only stipulates that the regulation of transcription may have a larger

mutational target size than that of translation without specifying the magnitude of this differ-

ence. Testing it therefore requires using various relative probabilities of transcriptional and

translational mutations, Pβm and Pβp (Fig 2C). To ensure the robustness of the identification of

the best-fitting σmut, it was combined with this screening into a grid search, which was per-

formed separately for the two scenarios of selection efficacy (Methods). This approach identi-

fied best σmut of 0.025 and 0.075, respectively under high (N = 106) and reduced (N = 105)

PLOS GENETICS Two mechanisms could favor transcriptional divergence within paralog pairs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010756 May 26, 2023 11 / 38

https://doi.org/10.1371/journal.pgen.1010756


selection efficacies (S6 Fig). Interestingly, the value obtained for N = 106 is highly consistent

with a previous experimental characterization of cis-regulatory mutations in the yeast TDH3

promoter [47]. Whether the latter is representative of the typical S. cerevisiae gene is however

unclear [48].

A difference of mutational target sizes may better explain the observed

divergence patterns

We next assessed the extent to which our minimal model and its precision-economy version

could replicate the main features of the divergence patterns of yeast paralogs (Fig 1): 1) a pre-

dominance of transcriptional changes, 2) a weak positive correlation between the magnitudes

of relative divergence in transcription and in translation and 3) a high frequency of amplifying

changes at the two regulatory levels.

We focused on simulations performed in three replicates of 2500 paralog pairs using the

best-fitting σmut values identified previously, for the two selection efficacy regimes (N = 106

and N = 105). At the end of each simulation, summary statistics were computed on the set of

2500 diverged gene pairs to test whether each of the three empirically observed properties

could be replicated (Fig 4A).

We first used a mean Kolmogorov-Smirnov (KS) statistic—comprised between 0 and 1 and

for which a lower value indicates a better fit—to quantify the overall distance between the sim-

ulated and empirical distributions of relative divergence (log2-fold change) in transcription

and translation rates as well as in protein abundance (Fig 4A). This comparison reveals the

contrasting performance of the two models, depending on the choice of parameters (Fig 4B).

When a high efficacy of selection is assumed, the minimal model is by far the most accurate,

as shown by the attainment of much lower mean KS statistics (as low as * 0.07, compared to

values> 0.2 for the other model). The best fit is obtained when a higher probability of muta-

tions affecting βm is assumed, and especially when Pβm/Pβp is between 3 and 6, which supports

the hypothesis of a larger mutational target size for transcription. The poor performance of the

precision-economy model in these conditions is almost entirely due to its inability to produce

a realistic translational divergence (S7A and S7B Fig). We thus performed additional simula-

tions with Pβp> Pβm, which however did not result in a better fit (S8A and S8B Fig). In con-

trast, when the efficacy of selection is reduced, the performance of the two models is much

more similar, as illustrated by the obtention of mean KS statistics below 0.1 in both cases (Fig

4B). The most accurate replication of the empirical relative divergence distribution is still

observed for the minimal model, more precisely when transcriptional mutations are three to

six times more likely than translational ones, but the precision-economy trade-off performs

almost as well when mutations affecting βp are as frequent or even twice likelier than ones on

βm. Supplemental simulations show that increasing the relative probability that mutations act

on translation rates—up to Pβm/Pβp = 1/10—does not further improve the performance of the

precision-economy model (S8C Fig). This overall highlights how both hypothesized mecha-

nisms might have shaped the expression divergence of yeast paralogs, although the mutational

target size hypothesis appears much more robust to assumptions about the values of evolution-

ary parameters. Which explanation is most likely to apply will ultimately depend on empirical

measurements of parameter values that we can at best approximate here.

We also computed the two types of divergence correlations used previously—either

between the transcription and translation log2-fold changes or between their signed versions—

on the complete set of 2500 diverged paralog pairs obtained from each replicate simulation

(Fig 4A).
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The replication of the first correlation, which reflects the positive association between the

absolute magnitudes of transcription and translation changes (Fig 1C), is again dependent on

the choice of model and selection efficacy regime, but much less on the relative frequencies of

transcriptional and translational mutations. When N = 106, it is reasonably reproduced only

by the minimal model, for which almost all simulations result in a correlation that falls within

the 95% confidence interval of the empirical value (Fig 4C). For N = 105, implying a reduced

efficacy of selection, it is instead the precision-economy trade-off which is associated with the

Fig 4. A larger mutational target size for transcription more robustly replicates the expression divergence patterns of yeast WGD-derived

paralogs across levels of selection efficacy. (A) For each combination of model and parameters, three replicate simulations of 2500 paralog pairs were

performed. Two types of summary statistics were computed to compare simulation results to empirical observations. The Kolmogorov-Smirnov (KS)

statistic, equal to the largest difference between two cumulative distribution functions, was used to quantify the distance between simulated and

empirical distributions of log2-fold changes in transcription, translation and protein abundance (top). For each replicate simulation, the three resulting

KS statistics were combined into a single mean value. The two divergence correlations between transcriptional and translational changes were also

calculated on the set of paralog pairs obtained from each simulation, resulting in three measurements for each combination of model and parameter

values (bottom). Created with BioRender.com. (B) Replication of the distributions of relative divergence in transcription rate, translation rate and

protein abundance following simulations, as shown by the mean KS statistics obtained from the pairwise comparisons of all the corresponding

empirical and simulated distributions. (C) Correlations between the magnitudes of transcriptional and translational log2-fold changes for gene pairs

evolved in silico according to the minimal and precision-economy models. The shaded area shows the 95% confidence interval for the empirical

correlation observed in S. cerevisiae WGD-derived paralogs. (D) Correlations between signed log2-fold changes in transcription and translation rates for

the same simulated gene pairs. The shaded area represents the 95% confidence interval on the empirical correlation.

https://doi.org/10.1371/journal.pgen.1010756.g004
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most realistic such correlations. All the corresponding simulation runs indeed produce corre-

lation coefficients within the confidence interval. The minimal model is however also able to

generate realistic correlations, for one or two replicates under most of the tested ratios of tran-

scriptional and translational mutational target sizes (Fig 4C). This again highlights the plausi-

bility of the two alternative hypotheses. Yet, it also further reveals the increased robustness of

the minimal model.

The second correlation, showing that transcriptional and translational changes often

occurred in the same direction (Fig 1D), could be replicated by neither model, across the selec-

tion efficacy regimes as well as the range of mutational target size ratios tested (Fig 4D). Never-

theless, all simulations are interestingly associated with strictly positive correlations, even the

minimal model, contrary to the intuitive expectation of a compensatory drift at both levels to

maintain protein abundance [23, 24]. This, as well as the inability to replicate the empirical

correlation, may reveal an effect of the postulated post-duplication expression optimum. We

thus performed additional simulations while varying this optimum, to consider the alternative

possibilities that the duplication-induced expression doubling was perfectly optimal or did not

sufficiently increase the expression level. These showed that the correlation between signed rel-

ative divergences is mostly independent from the posited expression optimum (S9B Fig),

ensuring that we were not being misled by a potentially poor choice of this value. We note that

the effect of the post-duplication optimum is stronger for the correlation between the absolute

magnitudes of the log2-fold changes (Fig 4C and S9A Fig), but still insufficient to invalidate

our previous conclusion on the replication of this feature.

Overall, these comparative analyses show that both mechanisms may realistically have

contributed to the greater importance of transcriptional changes in the expression diver-

gence of yeast WGD-derived paralogs. They however also reveal that the two hypotheses

cannot fully explain the observed evolutionary patterns—since one of the three features of

the empirical divergence can be replicated by none of the models—and as such require

refining. The hypothesis of a larger mutational target size for transcription emerges as the

preferred explanation, since it results in the best fit (the lowest mean KS statistic found on

Fig 4B) while being more robust to assumptions about the efficacy of natural selection.

Although the relative mutational target sizes of transcription and translation regulation are

not known, the fact that the best agreement with our observations is obtained for a modest

difference of relative mutation probability means that the bias need not be important to

impact evolution.

Revisiting the hypotheses when considering transcription-translation

couplings and biased mutational effects distributions

Some of the assumptions we made about the mutational process may be unrealistically simple,

and this might explain both models’ inability to replicate the strong positive correlation

observed between signed transcriptional and translational changes (Fig 1D). First, the extent

to which mutations may independently act on transcription and translation is unclear. Second,

mutational effects might not be distributed symmetrically.

Many mutations in the transcribed region of a gene may for instance simultaneously have

transcriptional and translational effects, as the identity of the translated codons might affect

both mRNA stability and translation itself [51–53]. In addition, mutations at one regulatory

level may be associated with amplifying or buffering regulatory changes at the other—as sug-

gested by stress responses [54–56]. The effects of random mutations on expression level might

also often be distributed asymmetrically, as shown by the experimental characterization of

mutations affecting ten yeast genes [48]. Recent work additionally predicted that mutations
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increasing expression are rarer for highly expressed promoters, and vice-versa for lowly

expressed ones [50]. As such, there are many potential constraints on the effects of mutations

which could create correlations between transcriptional and translational changes. Taking

these effects into account may allow at least one of our models to fully replicate the expression

divergence patterns of yeast WGD-derived paralogs.

While it is not possible to include all of the complexity of gene regulation in a single

model, we examined these additional potential factors. We made two new versions of our

simulation framework, respectively implementing an asymmetry in the distribution of muta-

tional effects and a correlation between the transcriptional and translational effects of muta-

tions. This second addition to the model, which allows mutations to act on both βm and βp at

once, could account for regulatory responses as well as for the potential coupling between

mRNA stability and translation efficiency. Within our minimal model, under which identical

changes to transcription and mRNA stability are entirely equivalent (as only their effect on

protein abundance matters), correlated effects on βm and βp can indeed represent such a

coupling.

Mutation asymmetry was implemented using a skew normal distribution of mutational

effects with skewness parameter α 6¼ 0, while correlations between transcriptional and transla-

tional mutations were added using a bivariate normal distribution of mutational effects.

Because the latter modification meant that each mutation now affected both transcription and

translation, differences of mutational target size between the two traits had to be modeled dif-

ferently, using the effect size of mutations (Methods). An additional grid search was also

required to identify the best-fitting standard deviations of mutational effects to use in subse-

quent simulations (S10 Fig).

Simulations were performed as previously across ranges of distribution asymmetry and

correlation of mutational effects (Methods). While both negative and positive correlations

between transcriptional and translational effects were assayed, only negative skewness values

—biasing mutations towards a decrease of expression—were used, since a positive skew

lengthened simulations too much by impeding the initial protein abundance reduction. The

accuracy of each simulation run was again assessed using summary statistics computed on

the complete set of 2500 paralog pairs simulated (Fig 5A). For all three metrics used previ-

ously, the values obtained for each of three replicate simulations were combined into a mean

—or grand mean in the case of KS statistics –, which was then used in comparisons of model

and parameter values combinations. An additional set of summary statistics was also com-

puted: p-values of Mood’s median test for the comparison of empirical and simulated distri-

butions of relative divergence at the levels of transcription, translation and protein

abundance. These allowed to classify each simulation run as generating expression diver-

gence of a realistic magnitude or not. When considering our minimal model of post-duplica-

tion evolution in a context of high selection efficacy (N = 106), both tested mutational

constraints are sufficient to create a strong positive correlation between transcriptional and

translational signed log2-fold changes, as observed within real WGD-derived paralog pairs

(Fig 5D). A high negative skew on distributions of mutational effects or a strong positive cor-

relation between effects on βm and βp can both result in Spearman’s correlation coefficients

which fall within the empirical confidence interval, for a wide range of mutational target

sizes ratios. This can even coincide with the obtention of realistic relative divergence distri-

butions, as shown by non significant Mood’s median tests (p> 0.05) on all three properties

and low grand mean KS statistics (Fig 5B). There is however no combination of parameters

for which the other divergence correlation—between the absolute magnitudes of fold

changes—can simultaneously be replicated (Fig 5C). As such, the addition of more realistic

mutational constraints can rescue one type of divergence correlation at the expense of the
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other, which was in contrast properly replicated by our previous simulations assuming per-

fectly independent mutations and normally distributed mutational effects. An identical con-

clusion is reached when the efficacy of selection is reduced (S11 Fig) or when the precision-

economy model is instead considered (S12 Fig).

While this attempt at more realistically modeling the effect of mutations did not clearly

favor one hypothesis or the other, the fact that it rescued the replication of one feature of the

expression divergence of yeast paralogs (Fig 1D) suggests that at least one of our two models

may be adequate when combined with truly realistic mutational biases and correlations. A

larger mutational target size for transcription and the evolutionary trade-off between the preci-

sion and economy of gene expression thus both appear as suitable non-mutually exclusive

Fig 5. Adding skewness and transcription-translation correlations to the distribution of mutational effects affects the replication of the

divergence correlations. Results shown for evolutionary simulations performed under the minimal model with the assumption of N = 106. (A) For each

combination of parameters, three replicate simulations of 2500 paralog pairs were performed, and summary statistics were computed as previously. The

mean KS statistics (top) and divergence correlations (bottom) obtained for each replicate were combined into a grand mean KS statistic and a mean

correlation coefficient, respectively. Created with BioRender.com. (B) Replication of the three distributions of relative divergence (transcription,

translation and protein abundance) for a range of mutational effects distribution asymmetry (left) or correlations between the effects of transcriptional

and translational mutations (right), as shown by grand mean KS statistics. Asterisks identify instances where all three magnitudes of relative divergence

are realistic for at least one of three replicate simulations (p> 0.05, Mood’s median test). (C, D) Average final correlation across the three replicate

simulations between 1) the magnitudes of transcriptional and translational log2-fold changes (in C) and 2) the signed log2-fold changes in transcription

and translation (in D) across the same ranges of mutational effects distribution asymmetry or correlations between the effects of transcriptional and

translational mutations. In each case,� designates parameter combinations where a correlation coefficient within the 95% confidence interval of the

empirical value was obtained for at least one replicate simulation.

https://doi.org/10.1371/journal.pgen.1010756.g005
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explanations for the predominance of transcriptional changes in the divergence of yeast

paralogs.

Discussion

Our analysis of published data [25] suggests that transcriptional changes played a greater role

than translational ones in the divergence of paralogs in the yeast S. cerevisiae. Whether this is a

general feature of the evolution of duplicated genes remains to be fully investigated, but a

report of very similar evolutionary patterns in plants A. thaliana and Z. mays [15] highlights

the plausibility of such a generalization.

Focusing more specifically on WGD-derived paralogs, we used in silico evolution to investi-

gate two potential mechanisms explaining this predominantly transcriptional divergence: an

evolutionary trade-off between the precision and economy of gene expression [25], and a

larger mutational target size for the regulation of transcription. Simulations revealed that both

hypotheses may be consistent with the observed patterns of evolution. We turned to WGD-

derived paralogs because the minimal model of post-duplication evolution we used was ini-

tially described for cases of whole-genome doubling [23]. It might however still be applicable

to other types of duplication events. Our framework for instance also partially replicated the

divergence patterns of SSD-derived paralog pairs, albeit with a lower overall agreement (S13

Fig).

The precision-economy trade-off is sufficient for divergence to occur mostly in transcrip-

tion, which highlights how interactions at two levels of expression regulation can shape evolu-

tionary trajectories. The general relevance of this type of epistasis in the evolution of duplicate

genes is however unclear. Due to the small magnitude of the fitness effects involved [25], preci-

sion-economy constraints may only be impactful in large populations where selection is partic-

ularly efficient. This might not be the case in the early evolution of WGD-derived paralogs,

even in S. cerevisiae, as WGD events initially create a small polyploid population. We also note

that, contrary to what the N parameter of 105−106 would suggest, our simulations are not

exactly representative of such a large finite population. Because any beneficial or perfectly neu-

tral mutation is automatically accepted [34], even infinitesimal fitness gains are visible to selec-

tion, rather than only those larger than 1/N. In a more realistic scenario, weakly beneficial and

mildly deleterious mutations acting on transcription or translation may both be close to neu-

trality and have similar fixation probabilities, limiting the ability of the precision-economy

trade-off to favor transcriptional divergence.

A larger mutational target size for transcription, modeled as a higher relative mutation

probability, emerges as the preferred hypothesis, as it is robust to assumptions about selection

efficacy. The high similarity between the expression divergence patterns of WGD- and SSD-

derived paralogs (Fig 1 and S1 Fig; [15]), which have been shown to differ substantially in their

initial properties and subsequent evolutionary trajectories [57–59], may also support such a

more general mutational mechanism. In addition, when strictly considering cis mutations—

the only changes which can cause two identical gene copies to diverge—as in the current work,

a larger mutational target for transcription is intuitively likely. Because cis mutations acting on

translation have to occur within the transcribed sequence while transcriptional mutations can

also arise upstream or downstream of the gene, more nucleotide positions could potentially

affect transcription. Determining whether a higher frequency of mutations affecting transcrip-

tion truly contributes to the predominance of transcriptional changes within paralog pairs

would however require direct measurements of the neutral evolutionary rates of transcrip-

tional and translational efficiencies.
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Since the current distribution of transcription and translation rates among S. cerevisiae
genes has previously been attributed to the optimization of the precision-economy trade-off

[25], suggesting that such constraints may not be needed to explain the divergence patterns of

paralogs might appear contradictory. This is especially true considering the significant ener-

getic costs of even small increases of transcription and translation [37, 60]. Yet, even when pre-

cision-economy considerations are fully neglected under the minimal model, extended in
silico evolution results in only minor deviations from the reported distribution of genes in the

transcription-translation space (S14 Fig). One plausible explanation could be that precision-

economy constraints impact evolutionary trajectories on longer timescales and/or along

greater ranges of variation, while mutational effects dominate on the shorter timescales and

smaller expression changes associated to the divergence of duplicated genes.

While we have identified two potential underlying mechanisms for the preeminent contri-

bution of transcriptional variation to the expression divergence of paralogs, their wider appli-

cability to the evolution of gene expression levels remains to be investigated. Whether any of

them could explain general trends of faster transcriptional evolution within and between spe-

cies [6–8] is indeed unclear. If a larger mutational target size for transcription was involved, it

would presumably affect singleton genes as well as paralog pairs—unless it were unique to

duplicates, potentially because more nucleotide positions might affect transcription than trans-

lation in cis. In contrast, if the precision-economy trade-off was responsible for the greater

magnitude of transcriptional divergence among yeast paralogs, it likely would not explain any

general tendency for transcription to evolve at a faster rate. It is indeed interactions between

mutations in the two paralogs that favor transcription divergence and bias expression changes

within our simulation, which could hardly apply to singletons genes. The precision-economy

trade-off may nevertheless have less intuitive effects on the evolution of expression levels in

such genes if combined with other mechanisms, for instance a slight difference of mutational

target sizes. How this trade-off [25] could affect the relative evolutionary rates of transcription

and translation at the genome scale, particularly over long timescales, thereby warrants further

investigation.

Besides providing explanations for the patterns of expression divergence observed in yeast

paralogs—as well as suggesting hypotheses for a more general propensity for transcription

changes to dictate protein abundance variations –, we also illustrate how biases in the mutation

process can impact the multi-level evolution of expression levels. Asymmetry in the distribu-

tion of mutational effects and correlations between transcriptional and translational effects

both markedly affect the correlation between transcription and translation changes within

gene pairs in our simulations. This further shows that various types of mutational bias could

impact the evolutionary trajectories of a duplicate pair under selection to maintain its cumula-

tive protein abundance, as might be the case for singleton genes in the absence of selection

[48]. Overall, our work thus highlights the importance of thoroughly characterizing the distri-

butions of mutational effects on expression at multiple regulatory levels in order to fully under-

stand the expression divergence of paralogs, and, more widely, the genome-wide evolution of

expression levels. Future experiments could for instance perform large-scale measurements of

the transcriptional and translational effects of mutations and assess what correlation(s) exist

between them.

Irrespective of its cause(s), the predominance of transcriptional changes in the expression

divergence of paralogs, whether yeast-specific or more general, might have significant evolu-

tionary consequences. Due to the relationship between transcription rate and expression noise

[25, 35, 36], it could result in a greater divergence of noise levels within duplicate pairs than

symmetrical or mostly translational expression changes. Whether this could affect or even dic-

tate the evolutionary paths followed by paralogs remains to be investigated. One intriguing
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possibility is that such early divergence of noise levels could favor the resolution of noise-con-

trol conflicts [61] while maintaining functional redundancy. This is exemplified by paralogous

yeast transcription factors MSN2/MSN4, which appear to combine the benefits of low and

high expression noise. While one gene is stably expressed with low noise across conditions, the

other is expressed with high noise and is environmentally responsive [62]. Although the main-

tenance of this gene pair likely involved other mechanisms such as post-translational changes

[63], it is conceivable that the benefit of such two-factor regulation was first revealed by early

transcriptional divergence, and later refined through changes in promoter architecture. A high

prevalence of such trajectories could help explain why 40% of WGD-derived transcription fac-

tor pairs in S. cerevisiae bind the same targets [64]. While speculative, this possibility under-

scores how a simple bias towards transcriptional divergence may have far-reaching impact.

We studied the expression divergence of paralogs while neglecting all types of changes to

protein function and regulation. This simplification is supported by the absence of a clear con-

tinuous relationship between functional divergence and the relative contribution of transcrip-

tional variation to expression changes, although stronger relationships with the magnitude of

expression divergence advise caution (S5 Fig). Such an approach would be particularly suitable

if expression changes were not affected by functional divergence, which could for instance be

true if expression diverged first during evolution. This was postulated by previous models,

according to which early expression changes under selection to maintain cumulative protein

abundance lengthen the retention of duplicates and allow function-altering mutations to arise

and fix [23, 43]. Whether the divergence of protein function really follows expression changes

is however unclear, as it might also occur simultaneously or even precede it [42].

If expression divergence did occur first in the evolution of duplicated genes, it would also

shape their subsequent functional divergence. Any mutation affecting the function of one of

two identical paralogs needs to overcome the deleteriousness of the associated reduction in the

abundance of the ancestral gene product [23], meaning that such changes might be restricted

to new functions for which the protein abundance of the mutated gene copy is already close to

optimal. The addition of precision-economy constraints suggests an intriguing extension of

this model. If transcription cost and tolerance to expression noise dictate optimal transcription

and translation rates for all genes as described by [25], functional changes may be further

restricted to molecular functions which are compatible with the precision and cost of the

expression of the affected paralog.

While this work provides insights on the expression divergence of duplicated genes—and

thus more generally on the evolution of gene expression –, it presents limitations. A first one is

the assumption that all paralog pairs were initially made of two identical gene copies. This is

especially significant in the case of WGD-derived pairs, as the yeast WGD likely involved a

hybridization event [65]. As such, some paralogs were already diverged and their expression

fold changes may not be representative of the evolution of duplicates. The agreement between

WGD- and SSD-derived pairs would however support the idea that a predominance of tran-

scriptional changes is a general feature of the divergence of paralogs. Other simplifying

assumptions made to simulate the evolution of S. cerevisiae WGD-derived duplicated genes

also warrant examination. Sequential fixation, where mutants never coexist in the population

[44], is likely not fully representative of evolutionary processes in yeasts with large population

sizes. It is also unable to replicate the fixation dynamics of pairs of compensatory mutations

[66], which could play a role in the expression divergence of duplicated genes. More impor-

tantly, the use of the Metropolis criterion to accelerate simulations may skew the resulting evo-

lution patterns by equally valuing all positive fitness changes and artificially widening the gap

between mildly beneficial and slightly deleterious mutations. Another important limitation of

our approach is the absence of gene loss. Post-WGD paralog retention is known to be on the
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order of 15% in Saccharomyces yeasts after *100 million years of evolution [67], yet all ran-

domly generated duplicate pairs are retained throughout our simulations. Including loss-of-

function mutations, through which gene copies could have been inactivated when tolerated by

selection, would have been more realistic, but tests showed that it made the end condition of

the simulation an ever-moving target. We note that performing all tolerated loss-of-function

mutations at the end of the simulations (Methods), prior to the calculation of summary statis-

tics, produces qualitatively similar results (S15 Fig), which strengthens our conclusions. An

alternative could have been to restrict our simulations to duplicate pairs which were destined

to be retained for an extensive period. Using the current transcription and translation rates of

paralogs to infer the expression levels of ancestral singletons and then investigate the diver-

gence of duplicates would however have proved circular. Caution is additionally in order

before generalizing our observations, and the two underlying mechanisms investigated, to the

evolution of all duplicated genes. The patterns of divergence among paralogs that motivated

our work are by definition observed for pairs that survived to this day, such that we cannot

infer what happened for pairs which returned to single-copy genes.

Conclusion

The expression divergence of yeast paralogs mostly occurred at the transcriptional level, which

may be due to two mechanisms: an evolutionary trade-off between the precision and economy

of gene expression and a larger mutational target size for transcription than for translation.

Whether these explanations also hold for more general observations that transcription may

evolve at a faster rate within and between species remains to be elucidated. Interestingly, some

features of the divergence of duplicate pairs can be replicated by either model only when muta-

tional biases—asymmetry and transcription-translation correlations in the distributions of

mutational effects—are added. This observation illustrates the importance of fully characteriz-

ing how mutations jointly affect the different traits contributing to gene expression. More

importantly, our work highlights how measuring the neutral evolutionary rates of transcrip-

tion and translation efficiencies is essential to a complete understanding of the evolution of

expression levels. Such measurements would be pivotal in discriminating between the two

alternative mechanisms, as well as in elucidating whether our findings apply only to duplicated

genes. Further research will additionally help clarify the wider evolutionary implications of

predominantly transcriptional expression divergence, especially regarding the impact of gene

duplication events.

Methods

Expression divergence of yeast paralogs

Transcriptional and translational divergence. We downloaded the transcription and

translation rates of 4440 yeast genes from [25]. These rates have been inferred from a mRNA-

seq and ribosome profiling experiment by [30]. Transcription rates βm for each gene i were

obtained as follows (Eq 2). The fraction ri of mRNA-seq RPKMs rj associated to gene i was

first converted into mRNA abundance mi using the total number Nm of transcripts per cell,

estimated to 60 000 molecules. Then, m was inferred from the mRNA abundance using decay

rate αm,i, in hours−1. The rates reported by [25] were obtained under the assumption that

mRNA decay rate does not vary between genes, such that αm,i becomes constant αm, equal to
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the median transcript decay rate of 5.10 h−1.

mi ¼ Nm
riP
jrj

bm;i ¼ miam;i

ð2Þ

To obtain the translation rate βp for each gene i, the total translational flux (in proteins per

h) was first estimated as the product of median protein decay rate αp, equal to 1.34 h−1, and

total number of proteins per cell Np, amounting to 1.1 × 108 molecules [25]. The fraction of

this synthesis flux directed to gene product i was then obtained from the corresponding frac-

tion si of ribosome profiling RPKMs sj, which was divided by the abundance mi of the tran-

script [25].

bp;i ¼
Npap

mi

siP
jsj

ð3Þ

We identified paralogs originating from either whole-genome duplications (WGD) or

small-scale duplication events (SSD) using annotations by [68]. Groups of more than two

duplicates, derived from successive duplication events, were excluded by only considering

genes annotated “WGD” and “SSD” in the cited work. We obtained a final set of 409 high-con-

fidence paralog couples, of which 245 are WGD-derived and 164 have originated from SSD

events.

To assess the relative expression divergence of paralogs, we computed log2-fold changes in

transcription rates and translation rates within each gene pair, according to Eq 1. The two cor-

relations between transcriptional and translational divergences within paralog pairs were cal-

culated as Spearman’s ρ. For the correlation computed from signed log2-fold changes, the

latter were calculated similarly to Eq 1, but without defining the ratio as max/min. For each

pair, the ratio was computed in the two possible orientations and a duplicated dataset was gen-

erated, on which the correlation was then calculated.

The 95% confidence intervals for each of the two correlations were obtained by bootstrap-

ping, involving 10 000 sampling with replacement of 409 true pairs of observations (or 818

when using a duplicated dataset). The corresponding correlation was recomputed on each of

the resampled datasets.

Taking into account gene-to-gene variation in mRNA decay. We recalculated βm using

experimental measurements of mRNA decay. The αm constant was replaced with gene-specific

decay rates, taken from four datasets [26–29]. All measurements were converted into hours−1.

As decay rates compound active degradation and dilution due to cell division within the

framework of [25], the effect of this dilution was added when necessary [26, 28, 29]. As [25],

we assumed a cell division time of 99 minutes, such that the decay rate of transcript i is

obtained from the experimental decay constant γi as follows: am;i ¼ gi þ
logð2Þ
99=60

. Relative diver-

gences (log2-fold changes) as well as the two correlations were recalculated with these datasets.

Validating the translation rates. For the 818 paralogs previously identified, protein

abundances were computed from transcription and translation rates reported by [25] using Eq

5. To better isolate whether the translation rates βp are representative of translational flux, con-

stant αp was replaced by gene-specific protein decay rates αp,i obtained from experiments [69,

70]. As for transcript decay, the effect of dilution due to cell division was added when neces-

sary. Variations in mRNA decay were not taken into account, simply because they could not

have any effect on the calculation. Any constant or gene-specific transcript decay rate would

indeed be present both at the numerator—to obtain transcription rate βm,i (since βm,i = miαm,i)
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—and denominator. Only mRNA abundance mi for each gene i (read counts obtained in

mRNA-seq normalized into a number of transcripts per cell [25]) was thereby needed as tran-

script-level data. The abundance of each protein i was thus estimated as pi ¼
mibp;i
ap;i

. Within each

of the 409 duplicate pairs, an estimated log2-fold change of protein abundance was computed

from these values pi. Measurements of the abundance of each protein [69, 71, 72] were also

used to calculate an experimental log2-fold change of protein abundance within each paralog

pair. For each combination of datasets, the Pearson correlation between the estimated and

experimental log2-fold changes was computed. To assess the significance of the resulting corre-

lations, we compared them to distributions of correlation coefficient obtained from 10 000

repetitions of this process using randomly shuffled βp rates.

Estimating the impact of experimental noise. We generated simulated mRNA and ribo-

somal footprints abundances for a range of measurement errors. These values, which can be

directly inferred from the mRNA-seq and ribosome profiling RPKMs, correspond to the

experimental component of the calculations of βm and βp.
Each simulated dataset was obtained as follows. Rates βm and βp were first sampled from

the dataset produced by [25] for paralog P1 of each of n gene pairs. Then, sets of βm and βp
log2-fold changes were sampled randomly from two normal distributions of mean 0 and

respective standard deviations σΔβm and σΔβp. The transcription and translation rates for all

paralogs P2 were next computed by applying the selected fold changes to the rates previously

sampled for the P1 of each pair. These first steps generate the true βm and βp for the simulated

gene pairs, from which noisy experimental measurements were subsequently inferred. From

Eq 2, the true βm values can directly be used as (exact) measurements of mRNA abundance m,

since mRNA decay rate αm is assumed to be constant. Using Eq 3 and ignoring all constants,

equally exact measurements of the abundance of ribosomal footprints si for gene i (ribosome

profiling RPKMs) can be obtained as: si = βp,imi. Following this calculation, experimental vari-

ation was added to the m and s measurements for each paralog as Gaussian noise. Relative

measurement errors were sampled independently for both properties of each gene from nor-

mal distributions with means 0 and respective standard deviations cvβm and cvβp, which are a

percentage of the corresponding m or s, and added to the exact experimental measurements

previously calculated. Apparent βm and βp rates were finally computed from the noisy mea-

surements, and used in the calculation of apparent log2-fold changes, which were themselves

compared to the true sampled fold changes.

A slightly modified version of this approach was also used to estimate the combined impact

of noise and gene-to-gene variations in mRNA decay. In this case, the initial sampling of βm
and βp rates and the corresponding fold changes was accompanied by a draw of experimental

mRNA decay rates and log2-fold changes—both taken from one of the datasets previously used

[26–29]. Then, when calculating the exact experimental measurements (before the addition of

noise), mRNA abundance for gene i was computed as mi ¼
bm;i
am;i

. This way, simulated experi-

mental measurements at both levels were impacted by variations in mRNA decay. Once

Gaussian noise had been added as previously, apparent βm and βp values were computed under

the assumption of invariable mRNA decay rates (using constant αm = 5.10 h−1), which were

used to obtain the apparent fold changes. These were again compared to the true fold changes

initially sampled.

Assessing the significance of divergence correlations. We looked at the correlations

which could be expected from the fact that mRNA abundance m is used in the calculations of

both βm and βp. We first considered a scenario in which m and the abundance s of ribosomal

footprints are entirely independent. For both variables, pairs of values (for paralogs P1 and P2)

were sampled from normal distributions and converted to pseudo rates of transcription and

PLOS GENETICS Two mechanisms could favor transcriptional divergence within paralog pairs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010756 May 26, 2023 22 / 38

https://doi.org/10.1371/journal.pgen.1010756


translation (βm = m and bp ¼
s
m), as previously. From these, absolute and signed log2-fold

changes were obtained, and then used to compute the two correlations of divergence. A similar

approach was used to consider a situation in which m and s are very strongly correlated

(r = 0.98), as in the dataset [30] used by [25]. In that case, m and s values for each paralog were

sampled simultaneously from a bivariate normal distribution showing such a high correlation.

Absolute and signed log2-fold changes were then computed and used to calculate the diver-

gence correlations, as described.

Measuring the relationship between expression divergence and functional changes. To

investigate the relationship between the patterns of expression divergence and functional

changes within paralog pairs, we introduced a divergence ratio D, measuring the bias towards

transcriptional changes, and correlated it with proxies of functional divergence. This correla-

tion analysis was also repeated to investigate how the magnitude of protein abundance diver-

gence (log2-fold changes of estimated protein abundance obtained from the βm and βp values;

see Eq 5) and functional changes are related.

D ¼ log2

max ðbm;1; bm;2Þ=min ðbm;1; bm;2Þ
max ðbp;1; bp;2Þ=min ðbp;1; bp;2Þ

 !

ð4Þ

The matrix of pairwise genetic interaction profile similarities was downloaded (access:

2021-12-17) from TheCellMap.org [73]. Only results from the AllxAll genetic interaction

screen were considered. All paralog pairs for which both duplicates were represented in this

dataset were kept, leaving 377 gene pairs. When more than one unique mutant had been

screened for one gene, the corresponding vectors of pairwise similarity were averaged. For

each paralog pair, we kept the mean of the reported similarity (Pearson correlation) between

the interaction profiles of genes P1 and P2.

For GO overlap, the GO Slim mappings from the SGD project [74] were downloaded

(http://sgd-archive.yeastgenome.org/curation/literature/[2022-01-12]). Annotations from the

three ontology levels (Process, Function and Component) were combined and the Jaccard

index was computed within each paralog pair as the ratio of the intersection over the union of

GO terms.

Amino acid sequences for all S. cerevisiae ORFs were downloaded from the SGD project

(http://sgd-archive.yeastgenome.org/sequence/S288C_reference/orf_protein/[2022-01-12]).

Pairwise global alignments were performed within each of the 409 paralog pairs using BioPy-

thon (v 1.80) and the corresponding amino acid identities were computed.

These three proxies of functional divergence were correlated with the divergence ratios D
and log2-fold changes of protein abundance described above for each paralog pair using Spear-

man’s ρ.

Minimal model of post-duplication evolution

Selection on cumulative protein abundance. We defined a minimal model of post-

duplication evolution based on the idea of quantitative subfunctionalization [23]. Accord-

ingly, selection acts to maintain the cumulative protein abundance of two paralogs near an

optimal level.

In accordance with [25], an ancestral gene with a transcription rate βm and a translation

rate βp is defined. The resulting steady-state protein abundance is obtained using equation Eq

5 [25], where αm and αp are the previously described constants set to median mRNA and
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protein decay rates of 5.10 h−1 and 1.34 h−1 [25].

p ¼
bmbp

amap
ð5Þ

This gene is also associated with a unique function W (p) of fitness according to protein

abundance. This function is assumed to be a parabola of vertex (popt, μ), where popt is a gene-

specific protein abundance optimum (in proteins per cell) and μ is the maximal growth rate of

S. cerevisiae (0.42 h−1 [25]). This function is additionally described by a noise sensitivity

parameter Q, which measures curvature relative to the value of popt [25] and is also gene-spe-

cific. A higher Q means that fitness decreases more sharply following any relative protein

abundance variation away from the optimum (for instance ±5% of popt), and thereby repre-

sents a more stringent selection to maintain protein abundance. The three parameters a, b and

c of the standard form of the parabolic fitness function W (p) are all obtained directly from

popt, μ and Q (see S1 Methods).

Following the duplication of any ancestral gene, two paralogs P1 and P2 are considered.

Each inherits the ancestral transcription and translation rates, meaning that βm = βm,1 = βm,2

and βp = βp,1 = βp,2. The total number of mRNAs synthesized is thus doubled while the transla-

tion rate of each transcript remains unchanged, such that protein abundance is also doubled.

The function W (p) becomes the function W (p1 + p2) of fitness according to cumulative pro-

tein abundance for the duplicate pair. Because it seems unrealistic to assume that the new

post-duplication protein abundance is perfectly optimal, the optimum of this function is set to

1.87popt, such that the gene doubling overshoots the optimal expression level. This value has

been selected as it is the smallest multiple which ensures fitness W (p1 + p2)> 0 immediately

after the duplication event, even for the narrowest fitness function (S1 Methods). Apart from

the optimum, the other parameters (Q and μ) of the parabolic function do not change follow-

ing the duplication.

Within this minimal model, mutations affecting the βm and/or βp of a paralog are filtered

by natural selection solely according to their effect on fitness W (p1 + p2).

Addition of precision-economy constraints. To obtain the precision-economy model,

we added precision-economy constraints to the minimal model described above. These

implement the evolutionary trade-off between the precision and economy of gene expres-

sion that was conceptualized by [25]. This involves modifying the fitness calculations to

account for stochastic fluctuations of protein abundance (expression noise) and transcrip-

tion costs.

According to [25], the variance of protein abundance for a singleton gene within a popula-

tion of isogenic cells can be approximated from the relative contribution of transcription to its

expression. This is done according to Eq 6, where cv0 is a constant representing the minimal

coefficient of variation for protein abundance observed within a clonal population, referred to

as noise floor. In S. cerevisiae, its value is 0.1 [25].

s2 � p2
1

p
þ
ap

bm
þ c2

v0

� �

ð6Þ

From this relationship, we have obtained an equation for the variance s2
tot on the cumulative

abundance of a protein expressed from two identical paralogous genes, according to the rela-

tive expression levels and transcription rates of each of the two gene copies (S1 Methods).

Using this variance s2
tot and the parabolic function W (p1 + p2), it is possible to compute fit-

ness while taking into account expression noise. In this case, the fitness F becomes the mean of

function W (ptot) for a population of cells expressing the paralog pair at expression levels ptot
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distributed around the mean Ptot with variance s2
tot:

F ¼ EðW ðptotÞÞ ð7Þ

Because the variance s2
tot of cumulative protein abundance ptot and the function W linking

its mean to fitness are known, the populational (mean) fitness F can be computed in an exact

manner. The mean of W (ptot) can be expressed as equation Eq 8, where a, b and c are the

parameters of the corresponding parabolic function. Using the definition of variance as the

difference between the mean of the squares and the square of the mean, the mean E ðp2
totÞ of

the squared cumulative protein abundance can be obtained from variance s2
tot and squared

mean cumulative abundance P2
tot (Eq 9). Plugging this expression into Eq 8, The fitness for any

combination of expression levels when accounting for expression noise is thus given by Eq 10,

where s2
tot depends on the relative contribution of transcription to the expression of the paralog

pair (S1 Methods).

EðW ðptotÞÞ ¼ aE ðp2
totÞ þ bE ðptotÞ þ c ð8Þ

E ðp2
totÞ ¼ s

2
tot þ P2

tot ð9Þ

E ðW ðptotÞÞ ¼ a ðs2
tot þ P2

totÞ þ bPtot þ c ð10Þ

For a given protein abundance, the fitness cost of expression varies according to whether

translation is done from few or many mRNAs. Following work by [25], the cost of transcrip-

tion C for two paralogs is calculated from equation Eq 11, where lm is the length of the pre-

mRNA (identical for both copies), in nucleotides, and cm is the transcription cost per nucleo-

tide, in nt−1. In the current model, lm is considered to be a constant and set to the median

yeast pre-mRNA length of 1350 nt [25]. The cost per nucleotide cm is another constant,

which has been estimated as 1.2 × 10−9 nt−1 under the assumption that transcriptional

resources are limiting and that any increase in transcription level is done at the expense of

other transcripts [25].

C ¼ lmcmðbm;1 þ bm;2Þ ð11Þ

Taking expression noise and transcription costs into account, the population-level fit-

ness F at mean cumulative protein abundance Ptot thus becomes the mean of fitness W
under protein abundance variance s2

tot minus the penalty C (Eq 12). Within the precision-

economy model, mutations are favored or not by selection according to their effect on this

fitness F.

F ¼ E ðW ðptotÞÞ � C ð12Þ

Simulating the expression divergence of paralogs

We used a sequential fixation approach [44] to simulate the expression divergence of paralogs,

thus making the simplifying assumption that mutation rate is low enough for only two alleles

(the ancestral state and a mutant) of a given duplicate pair to coexist simultaneously in the

population.

Initialization. To obtain a set of n paralog pairs, the same number of ancestral singletons

are first generated as an array of n rows containing ancestral βm and βp values. Thus, no nucle-

otide or amino acid sequences are modeled—only their expression phenotypes. Two distinct
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groups of ancestral genes are generated depending on whether their evolution is simulated

according to the minimal model or to its precision-economy implementation.

Combinations of protein abundance popt—obtained from the reported transcription and

translation rates using Eq 5—and Q are first independently sampled n times with replacement

from the 4440 individual genes (singletons as well as duplicates) included in the dataset. The

full distribution of Q for yeast genes had been inferred beforehand in accordance with [25],

using Eq 13. For this sampling, values of Q above the theoretical maximum reported by [25]

(* 6.8588 × 10−6) are excluded. Combinations of popt and noise sensitivity resulting in a fit-

ness function curvature below a specified threshold are also filtered out, to avoid cases where a

two-fold reduction of cumulative expression immediately after the duplication would be neu-

tral or beneficial (see S1 Methods).

Q ¼ cmamlm
bm
bp

ð13Þ

For the first group of ancestral singletons, used in simulations under the minimal model,

transcription and translation rates are set accordingly with Eq 13. It is used to calculate an opti-

mal
bp
bm

ratio set by precision-economy constraints [25]. The transcription rate βm and transla-

tion rate βp which satisfy both this ratio and the optimal expression popt are then computed.

Strictly speaking, an infinity of combinations of βm and βp are optimal for any gene under the

minimal model, as long as they result in the specified protein abundance popt. We thus use

equation Eq 13 to reproducibly choose one realistic combination for each ancestral singleton.

Because the minimal model should not account in any way for the precision-economy con-

straints on gene expression, Q values are subsequently resampled with replacement from the

genomic distribution. As previously, values above the theoretical maximum are excluded and

the sampling is repeated if the new Q results in a fitness function curvature below the

threshold.

To define the second group of ancestral genes—for simulations under the precision-econ-

omy trade-off –, the first combinations of Q and popt generated are again taken as a starting

point. This time, ancestral βm and βp are set to the combination of rates which maximizes fit-

ness F (Eq 12), computed according to gene-specific functions W (p) of fitness according to

expression level. This optimization is performed using a differential evolution algorithm—the

differential_evolution method of the optimize suite of the SciPy module [75]. Although equa-

tion Eq 13 already describes an optimal βm−βp pair, the latter may not correspond to the true

optimum, as it is restricted to values which result in protein abundance popt. Since the magni-

tude of stochastic expression fluctuations (noise) scales with protein abundance (Eq 6), the

true optimal expression under the precision-economy trade-off may indeed be slightly below

the abundance optimum popt.
Once generated, all ancestral genes are duplicated as previously described into two paralogs

P1 and P2, both with the ancestral rates βm and βp. For each duplicate pair, a new function W
(ptot) of fitness according to cumulative protein abundance is defined and its optimum is set to

the ancestral popt times Δopt = 1.87.

Mutation-selection approach. The two sets of duplicate pairs thereby generated are then

used in a sequential fixation simulation, as previously described. One random mutation is first

sampled individually for each of the n paralog pairs from a normal distribution with mean 0

and standard deviation σmut. These mutational effects are each assigned randomly to transcrip-

tion or translation rates according to relative probabilities Pβm and Pβp, which represent the

relative mutational target sizes of the two traits. For instance, Pβm = 2 and Pβp = 1 would be

used in a simulation where the mutational target size of transcription is assumed to be twice
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that of translation. Once it has been defined as either transcriptional or translational, each

mutation is assigned at random to one of paralogs P1 and P2 of the corresponding duplicate

pair, which are both equally likely to be mutated. These steps of mutation generation and

assignment are done at once for the two sets of simulated gene pairs. As such, the nth paralog

couple of both simulations—respectively performed according to the minimal and precision-

economy models—receives the exact same series of mutations.

So that their impact on fitness can be assessed, the sampled mutational effects are applied to

the transcription or translation rates of the designated gene copies across the minimal model

and precision-economy simulations. Epistasis is assumed to be multiplicative, so that every

mutational effect is relative to the current trait value as shown in equation Eq 14, where δm and

δp respectively represent the transcriptional and translational magnitudes of the mutation.

Because a given mutation affects βm or βp but not both simultaneously, at least one of δm and

δp is null every time a mutational effect is applied.

bmj ¼ bmi þ dmbmi

bpj ¼ bpi þ dpbpi

ð14Þ

The new transcription and translation rates are used to compute mutant fitness values Fj
for each paralog pair of the two simulations, according to the specifications of the minimal

and precision-economy models. Thus, while the same mutations are attempted across the two

models, they do not necessarily have the same fitness effects in both scenarios.

Mutant fitness Fj is compared to ancestral fitness values Fi computed using the pre-muta-

tion βm and βp of all duplicates and a fixation probability Pfix is calculated for each mutation.

This is done using a modified Metropolis criterion to accelerate the simulation [34]. Following

equation Eq 15, any beneficial or completely neutral mutation is automatically accepted, while

deleterious mutations are fixed with a probability which decreases exponentially according to

the magnitude of their fitness effect.

Pfix ¼

1 if Fj > Fi

e� 2NðlogðFiÞ� logðFjÞÞ if Fj � Fi

8
<

:
ð15Þ

Prior to this fixation probability calculation, all fitness values—which are growth rates

between 0 and 0.42 h−1—are scaled between 0 and 1. The same set of randomly generated

floats is used in both simulations to decide whether each mutation is rejected or reaches fixa-

tion according to Pfix. Any mutation resulting in Fj< 0 is automatically rejected. In addition,

no mutation taking βm or βp to 0 or increasing either above the maximal value reported by [25]

is tolerated, irrespective of its fitness effect. Once the fate of each mutation has been estab-

lished, the new transcription and translation rates of all simulated paralogs are set and this pro-

cess of mutation-selection is repeated.

Simulations are stopped as soon as they have resulted in a magnitude of protein abun-

dance divergence consistent with what is observed for the extant pairs of yeast paralogs. Fol-

lowing each mutation-selection round, the log2-fold change of protein abundance is

calculated for every simulated duplicate pair using Eq 1. Mood’s median test is used to com-

pare this distribution to its empirical equivalent for real paralog pairs, computed from esti-

mated protein abundances obtained from reported βm and βp values (Eq 5). Once a p-

value > 0.1 is obtained, the simulated protein abundance divergence is considered to have

reached a realistic magnitude and the simulation is stopped. This is done separately for the
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two models, so that their respective simulations may not be completed in the same number

of rounds.

Implementing asymmetrically distributed mutational effects. So that mutations

increasing or decreasing expression could occur with different frequencies, the mutation-selec-

tion framework described above was slightly modified. The normal distribution from which

mutational effects are sampled was replaced by a skew normal distribution of mean 0, standard

deviation σmut and skewness parameter α 6¼ 0. No changes were made to the steps of mutation

assignment and selection.

Implementing correlated mutational effects. The sampling of mutational effects was

modified to consider a bivariate normal distribution of means 0 and standard deviations σβm

and sbp . Within this new framework, the step of assigning mutations to one level of regulation

or the other with relative probabilities Pβm and Pβp has to be skipped, because each affects tran-

scription and translation simultaneously. Consequently, mutational target size differences

were modeled differently: the magnitudes of transcriptional and translational mutational

effects were used instead of their relative probabilities. A larger mutational target size was thus

implemented as a higher corresponding standard deviation of effects. For instance, a target

size twice larger for transcription than for translation was modeled as σβm = 2σβp.

The precise values of σβm and σβp were set to ensure a roughly constant expected protein

abundance change per mutation across all simulations. To this end, an additional optimization

step was added to the initialization of simulations. During this step, a brute-force optimization

approach—the brute method of the optimize suite of the SciPy module [75]—is used to find the

σβm and σβp values which verify the desired mutational target size ratio while resulting in the

same mean absolute protein abundance change per mutation as a chosen reference σmut in the

general framework. From the two resulting standard deviations, the covariance matrix of the

bivariate normal distribution is computed, according to a specified correlation coefficient rmut
between δm and δp.

Assessment of the simulations. Once the two simulations are completed, summary statis-

tics are computed for each of them. The resulting distributions of log2-fold changes (Eq 1) in

transcription rates, translation rates and protein abundance are compared to their empirical

counterparts using the two-sample KS test and Mood’s median test. Depending on the simula-

tion runs, this comparison is made with the set of WGD- or SSD-derived true paralog pairs, or

both. The two previously described correlations are also computed for the gene pairs obtained

from each simulation.

These steps are additionally repeated when considering only gene pairs which would have

remained as duplicates even if loss-of-function mutations had been allowed. Summary statis-

tics are thus recalculated for the subset of simulated pairs for which the loss of either paralog

would be deleterious (decreases fitness by more than 1

N).

Simulation runs

Runs of the simulation script were parallelized on a computing cluster using GNU parallel
[76]. Except in one instance (Fig 3), all simulations were done in three replicates of 2500 para-

log pairs, using the same set of three random seeds throughout. In addition, except when

noted otherwise (S13 Fig), the WGD-derived paralogs of S. cerevisiae were taken as a reference

for the evaluation of the end condition and for the calculation of summary statistics. Most sim-

ulations were repeated for the same set of mutational target size ratios (Pβm/Pβp 2 {1/2, 1, 2, 3,

4, 5, 6, 7, 8, 9, 10}), unless described differently. The details of each set of simulations are

described in the corresponding figure legends and text.
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Identification of the best-fitting standard deviation of mutational effects. A grid search

of σmut and mutational target sizes ratio Pβm/Pβp was performed. It was done twice, under the

assumption of high (N = 106) and reduced (N = 105) selection efficacy. Separately for each

value of N, the best-fitting σmut was defined as the one which resulted in the smallest observed

grand mean KS statistic (mean KS value for βm, βp and protein abundance across the three rep-

licate simulations), irrespective of the combination of model (minimal or precision-economy)

and Pβm/Pβp for which this minimum occurred (see S6 Fig).

Impact of asymmetrically distributed mutational effects. Further simulations were

done using the modified mutation-selection approach which samples mutations from a skew

normal distribution. These simulations, which considered a range of negative values for skew-

ness parameter α, were performed at the best-fitting σmut initially identified for WGD-derived

paralogs, successively for N = 106 and for N = 105.

Impact of correlations between transcriptional and translational mutations. The grid

search of evolutionary parameters was repeated for the mutation-selection framework adapted

to use a bivariate distribution of mutational effects. The range of σmut previously considered

were set as reference values, according to which the standard deviations σβm and σβp were cal-

culated individually for each simulation. This grid search was repeated for the two levels of

selection efficacy N (S10 Fig). In each case, the best-fitting reference σmut was identified using

the same definition as previously and used in subsequent simulations combining a range of

correlation coefficients rmut between the transcriptional and translational effects of mutations

(Fig 5, S11 and S12 Figs).

Supporting information

S1 Fig. Taking into account variations in mRNA decay when calculating transcription

rates does not impact the relationship between transcriptional and translational diver-

gence within yeast paralog pairs. (A) Correlations between the different sets of transcription

rates βm used. The rates originally reported by [25] are identified as “Hausser et al.”, while the

four others are βm recomputed using the data from [25] and the corresponding set of gene-spe-

cific experimental measurements of transcript decay [26–29]. (B) Distributions of relative

divergence in transcription and in translation for S. cerevisiae paralog pairs by duplication

mechanism. Transcription rates have been recalculated using the corresponding set of mRNA

decay measurements, while translation rates are the same as in Fig 1. P-values from Mann-

Whitney-Wilcoxon two-sided tests are shown. (C) Correlation (Spearman’s ρ) between the

magnitudes of relative divergence in transcription and translation rates across all paralog

pairs, using βm rates recalculated when accounting for variations in transcript decay rate. (D)

Correlation (Spearman’s ρ) between the signed relative divergences in transcription and in

translation for all gene pairs, when βm is calculated using the corresponding mRNA decay

measurements. Each correlation was computed on a duplicated dataset, obtained by calculat-

ing the signed log2-fold changes in the two possible orientations for each pair of duplicates. (E)

Correlation of the log2-fold changes of protein abundance within paralog pairs estimated from

the βm and βp with experimentally measured differences in protein abundance [69, 71, 72].

The estimated protein abundance fold changes were computed using two sets of experimental

measurements of protein decay rates [69, 70] and compared to each of four sets of protein

abundances. Correlations obtained for the reported βp rates (left) as well as for randomly shuf-

fled βp rates (right) are shown.

(TIF)

S2 Fig. Experimental noise on mRNA-seq and ribosome profiling measurements is

unlikely to explain the predominance of transcriptional changes within yeast paralog
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pairs. Transcription rates βm and translation rates βp were computed from simulated noisy

measurements for randomized gene pairs. The median ratio of transcriptional over transla-

tional changes was calculated across all pairs from the noisy measurements, and compared to

the ratio obtained from the underlying true βm and βp (center of the color scale on each heat-

map). A ratio of 1 indicates equal magnitudes of transcriptional and translational changes. (A)

When the contribution of transcription to expression divergence is equal (middle) or greater

(right) than that of translation, noise only decreases the ratio and the relative impact of tran-

scription changes is underestimated. An overestimation of the ratio—and thus of the impor-

tance of transcription—can occur when translation divergence dominates (left), but its impact

is small. The respective standard deviations of the distributions of βm and βp log2-fold changes

(σΔβm and σΔβp) have been set according to our estimates of relative divergence. When tran-

scription is assumed to dominate (right, as in the dataset from [25]), these standard deviations

are* 2.29, * 1.11, and vice versa if translational divergence is assumed to be larger (left).

Identical contributions of transcription and translation changes (center) are modeled as equal

standard deviations resulting in the same total variance. (B) When varying the magnitudes of

relative divergence but keeping the transcriptional and translational contributions equal (σΔβm

= σΔβp), noise still mostly results in an underestimation of the contribution of transcription

changes. If the the total variance of the log2-fold changes is much larger than empirically

(right; σΔβm = 3), the transcriptional contribution can be overestimated, but the difference is

negligible. (C) When translational divergence is assumed to predominate, noise is associated

with an overestimation of the contribution of transcription to expression divergence. This

overestimation is small—even if the relative magnitude of translation changes is only slightly

larger than that of transcriptional divergence (left)—and mostly restricted to situations where

noise is larger at the level of mRNA-seq measurements. The summed variance of the βm and βp
log2-fold changes is constant across the six heatmaps shown.

(TIF)

S3 Fig. Experimental noise and mRNA decay variations do not synergize to bias estimates

of relative transcriptional and translational divergence within paralog pairs. Median ratios

of βm/βp relative divergence (value of 1 when both are equal) are shown for randomized gene

pairs (n = 10, 000), across a range of noise levels (equal at the transcriptional and translational

levels) and experimentally-informed distributions of mRNA decay rate. Transcription and

translation log2-fold changes were sampled from distributions with respective standard devia-

tions σΔβm and σΔβp for each simulated pair, while log2-fold changes of decay rate were sampled

from the corresponding datasets. The “None” column indicates simulated paralog pairs with

invariable mRNA decay. The top heatmaps present the apparent ratios, when failing to

account for any gene-to-gene variation in transcript decay, while the bottom single-row heat-

maps show the true ratios. (A) Using the standard deviations of transcriptional and transla-

tional log2-fold changes obtained from the βm and βp rates reported by [25]. The different

scenarios of true divergence (e.g. equal magnitudes of transcriptional and translational diver-

gence, middle) correspond to the same standard deviations σΔβm and σΔβm as in S2A Fig. (B)

Assuming halved variances s2
Dbm and s2

Dbp compared to panel A, while still using empirical

measurements of mRNA decay.

(TIF)

S4 Fig. Significant correlations between the transcriptional and translational magnitudes

of relative divergence within paralog pairs are expected in the absence of any evolutionary

pattern. Distributions of pseudo βm and βp log2-fold changes have been computed from ran-

dom variables (n = 10, 000) mimicking mRNA abundance m and ribosome footprints
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abundance s. Pseudo βm is set as m, while pseudo βp is s
m. (A) Expected correlations for the

strictly positive (left) and signed (right) log2-fold changes within random pairs when m and s
are independent. (B) Correlation between mRNA abundance m and ribosome footprints

abundance s in the data from [30] used in the calculation of the reported βm and βp rates for

yeast genes [25]. (C) Expected correlations for the strictly positive (left) and signed (right) log2-

fold changes when m and s are strongly correlated as seen in B.

(TIF)

S5 Fig. The predominance of transcriptional divergence is only weakly associated with the

level of functional divergence among S. cerevisiae duplicated genes. Correlation of the

divergence ratio (left), for which positive values indicate a relatively larger divergence in tran-

scription (Methods), or the global expression log2-fold change (combined effect of transcrip-

tion and translation; right) with three proxies of functional divergence within paralog pairs,

separately for WGD- and SSD-derived ones. Spearman’s ρ and p-value were calculated for all

duplicate pairs combined. (A) Absolute value of the similarity of genetic interactions profiles

within each paralog pair [73]. (B) Overlap (Jaccard index) of GO Slim annotations between

paralogs of the same pair. (C) Amino acid identity between the two members of each duplicate

pair.

(TIF)

S6 Fig. Identification of the best-fitting σmut across models and selection efficacies. Mean

Kolmogorov-Smirnov statistics for the comparisons between empirical and simulated relative

divergence distributions are shown. Each value is the grand mean for the three parameters

(βm, βp, and P) across three replicate simulations of 2500 randomly generated paralog pairs,

when compared to yeast WGD-derived paralogs. (A) Minimal model and high selection effi-

cacy. (B) Precision-economy model and high selection efficacy. (C) Minimal model and

reduced efficacy of selection. (D) Precision-economy model and reduced selection efficacy.

The smallest grand mean KS statistic across A and B is obtained for σmut = 0.025 (minimal

model with Pβm/Pβp = 3), which is accordingly defined as the most realistic value. For C and D,

the minimum value is obtained for σmut = 0.075 (minimal model with Pβm/Pβp = 3), which is

thus the best-fitting value when a lower selection efficacy is assumed.

(TIF)

S7 Fig. Replication of relative divergence in transcription, translation and protein abun-

dance across models and levels of selection efficacy for the corresponding best-fitting σmut

values. Both models can generate realistic distributions for all three levels, but the precision-

economy model is unable to replicate the observed translational divergence under high selec-

tion efficacy. Same simulations as shown in Fig 4, with σmut = 0.025 for N = 106 and σmut =

0.075 for N = 105, respectively. (A) Kolmogorov-Smirnov statistics for the three replicate simu-

lations of 2500 randomly generated paralog pairs. (B) Corresponding log10-transformed p-val-

ues of the Kolmogorov-Smirnov test. The red dashed line indicates the threshold above which

differences are not significant. (C) As in A. (D) As in B.

(TIF)

S8 Fig. Combining a larger mutational target size for translation to the precision-economy

trade-off does not produce more realistic translational divergence than the minimal

model. (A) Kolmogorov-Smirnov statistics comparing the fit between empirical (WGD-

derived paralogs) and simulated relative divergence distributions for transcription rate (βm),

translation rate (βp) and protein abundance (P) for three replicate simulations of 2500 ran-

domly generated paralog pairs when selection efficacy is high (N = 106) and σmut = 0.025 is pos-

tulated. (B) Empirical divergence of WGD-derived yeast paralogs compared with the final
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simulated divergence in transcription, translation and protein abundance for simulations

under the minimal and precision-economy models when the mutational target size of transla-

tion is ten times larger than that of transcription and selection efficacy is high (same simula-

tions as for Pβm/Pβp = 1/10 on panel A). (C) Same as A, but for simulations with N = 105 and

σmut = 0.075. (D) Same comparisons as in B, but performed for the simulations with Pβm/Pβp =

1/10 shown on panel C. When selection efficacy is high as well as when it is reduced, it is the

minimal model which reaches the better fit (lower KS statistic) to the distribution of relative

translational divergence.

(TIF)

S9 Fig. The postulated post-duplication change of optimal cumulative protein abundance

has limited influence on the divergence correlations generated from simulations. Simulated

divergence correlations for three replicate simulations of 2500 randomly generated paralog

pairs under the minimal and precision-economy models for a sample of mutational target size

ratios and a range of post-duplication variation Δopt of the cumulative protein abundance opti-

mum, when the efficacy of selection is assumed to be high (N = 106; σmut = 0.025). A Δopt of 2.0

indicates that the doubling of protein abundance resulting from the duplication event is per-

fectly optimal. All simulations stopped and evaluated according to the empirical expression

divergence of yeast WGD-derived duplicate pairs, as in Fig 4. The dashed lines and the shaded

areas represent the empirical value of the corresponding correlation and its 95% confidence

interval. (A) Correlation between the magnitudes of the log2-fold changes in transcription and

translation. (B) Correlation between the signed log2-fold changes in transcription and transla-

tion.

(TIF)

S10 Fig. Identification of the best-fitting standard deviations of mutational effects across

models and selection efficacies when bivariate mutational effects are used. Under this

framework, standard deviations σβm and σβp of transcriptional and translational effects are set

by the relative mutational target sizes Pβm and Pβp, but their precise values are chosen to result

in the same mean change of protein abundance per mutation as a reference σmut (shown on

the figure) in the univariate implementation (Methods). The mean Kolmogorov-Smirnov sta-

tistics for the comparisons between empirical and simulated relative divergence distributions

are shown. Each value is the grand mean for the three parameters (βm, βp, and P) across three

replicate simulations of 2500 randomly generated paralog pairs, performed and assessed

according to the WGD-derived paralogs of yeast. (A) Minimal model and high selection effi-

cacy. (B) Precision-economy model and high selection efficacy. (C) Minimal model and

reduced efficacy of selection. (D) Precision-economy model and reduced selection efficacy.

The overall lowest grand mean KS statistic across A and B is obtained for a reference σmut of

0.025 (minimal model with Pβm/Pβp = 3), indicating that it is the most realistic value. Across C

and D, the minimum is obtained for a reference σmut of 0.075 (minimal model with Pβm/Pβp =

3), which is thus similarly the best-fitting value when a lower selection efficacy is assumed.

(TIF)

S11 Fig. The addition of skewness and transcription-translation correlations to the distri-

bution of mutational effects also affects the correlations of divergence generated by the

minimal model under conditions of reduced selection efficacy (N = 105). (A) Replication of

the three distributions of relative divergence (transcription, translation and protein abun-

dance) for a range of mutational effects distribution asymmetry (left) or correlations between

the effects of transcriptional and translational mutations (right), as shown by grand mean KS

statistics. Asterisks identify instances where all three magnitudes of relative divergence are
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realistic for at least one of three replicate simulations (p> 0.05, Mood’s median test). (B, C)

Average final correlation across the three replicate simulations between 1) the magnitudes of

transcriptional and translational log2-fold changes (in B) and 2) the signed log2-fold changes in

transcription and translation (in C) across the same ranges of mutational effects distribution

asymmetry or correlations between the effects of transcriptional and translational mutations.

In each case,� designates parameter combinations where a correlation coefficient within the

95% confidence interval of the empirical value was obtained for at least one replicate simula-

tion. All corresponding simulations performed as in Fig 5, but for N = 105 and σmut = 0.075.

(TIF)

S12 Fig. The skewness of the mutational effects distribution and the magnitude of the cor-

relation between the transcriptional and translational effects also affect the evolutionary

correlations generated by the precision-economy model. Results are shown for three repli-

cate simulations of 2500 paralog pairs, as in Fig 5 and S11 Fig. (A, B) Average correlation

between the magnitudes (log2-fold changes) of relative divergence in transcription and in

translation within duplicate pairs, for a range of skewness of mutational effects distribution

(left) or of correlations between the βm and βp effects (right). (C, D) Average correlation

between the signed magnitudes (signed log2-fold changes) of transcriptional and translational

relative divergences along the same ranges of skewness (left) or transcription-translation muta-

tional correlations (right). Across all heatmaps, the symbol� identifies parameter combina-

tions where a correlation coefficient within the 95% confidence interval of the empirical value

was obtained for at least one replicate simulation.

(TIF)

S13 Fig. The minimal and precision-economy models offer some replication of the diver-

gence patterns of SSD-derived yeast paralogs, but with a lower overall agreement. The

grand means of Kolmogorov-Smirnov statistics (across βm, βp and P) for three replicate simu-

lations of 2500 randomly generated paralog pairs are shown. Testing of the end conditions of

the simulations and comparisons of the resulting divergence patterns were both done accord-

ing to the SSD-derived duplicate pairs of S. cerevisiae. (A) Minimal model and high selection

efficacy. (B) Precision-economy model and high selection efficacy. (C) Minimal model and

reduced efficacy of selection. (D) Precision-economy model and reduced selection efficacy.

(TIF)

S14 Fig. Simulations under both models generate realistic distributions of genes in the

expression space. Comparisons of the empirical distribution of yeast genes in transcription

(βm) and translation (βp) rates [25] with the distributions of simulated paralogs obtained from

the combination of three replicate experiments of in silico evolution with 2500 randomly gen-

erated duplicate pairs (selected simulations from Fig 4). The simulations resulting in the best-

fitting patterns of expression divergence (as previously assessed in S6 Fig) are shown in each

case. The dashed line represents the estimated maximal translation rate [25], while the diago-

nal is the boundary of the depleted region defined by [25]—below which only 1% of all yeast

genes are found. (A) Comparisons with simulations made under the minimal model, under

assumptions of high (left; σmut = 0.025 and Pβm/Pβp = 3) and reduced selection efficacy (right;

σmut = 0.075 and Pβm/Pβp = 4). (B) Comparisons with simulations made under the precision-

economy model for both levels of selection efficacy (left: σmut = 0.025 and Pβm/Pβp = 1; right:

σmut = 0.075 and Pβm/Pβp = 1/2).

(TIF)

S15 Fig. Qualitatively similar results are obtained when only the duplicates which are the

most likely to be retained for an extensive period of time are considered. All gene loss
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events which would have been tolerated by selection at the end of each simulation were per-

formed prior to the calculation of the summary statistics shown. Results for three replicate

simulations of 2500 paralog pairs, stopped and evaluated according to yeast WGD-derived

duplicates, are shown as previously. (A) Grand means of the Kolmogorov-Smirnov statistics

for βm, βp, and P across ranges of standard deviations σmut and mutational target size ratios, as

in S6 Fig). (B) Mean KS statistics and divergence correlations across the range of mutational

target size ratios for three replicate simulations performed at the best-fitting standard devia-

tions of mutational effects (σmut = 0.01 for N = 106, and σmut = 0.05 for N = 105), as in Fig 4B–

4D. Across the latter panel, patterns very similar to those observed in the corresponding figure

of the main text are obtained, but the fit to the empirical distributions is slightly reduced

(increased mean KS statistics).

(TIF)

S1 File. Animation of the divergence of transcription and translation under the minimal

model of post-duplication evolution. Mutations cause small changes in the transcription and

translation rates of paralogs P1 and P2. Selection to maintain cumulative expression however

maintains their total protein abundance at an approximately constant level.

(GIF)

S1 Methods. Extended methods.

(PDF)
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translatome co-evolution in mammals. Nature. 2020; 588(7839):642–647. https://doi.org/10.1038/

s41586-020-2899-z PMID: 33177713

13. Cenik C, Cenik ES, Byeon GW, Grubert F, Candille SI, Spacek D, et al. Integrative analysis of RNA,

translation, and protein levels reveals distinct regulatory variation across humans. Genome Research.

2015; 25(11):1610–1621. https://doi.org/10.1101/gr.193342.115 PMID: 26297486

14. Bader DM, Wilkening S, Lin G, Tekkedil MM, Dietrich K, Steinmetz LM, et al. Negative feedback buffers

effects of regulatory variants. Molecular Systems Biology. 2015; 11(1):785. https://doi.org/10.15252/

msb.20145844 PMID: 25634765

15. Wang S, Chen Y. Fine-Tuning the Expression of Duplicate Genes by Translational Regulation in Arabi-

dopsis and Maize. Frontiers in Plant Science. 2019; 10:534. https://doi.org/10.3389/fpls.2019.00534

PMID: 31156655

16. Zhang J. Evolution by gene duplication: an update. Trends in Ecology & Evolution. 2003; 18(6):292–

298. https://doi.org/10.1016/S0169-5347(03)00033-8

17. Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution. Trends in genetics: TIG.

2021; p. S0168–9525(21)00186–4. https://doi.org/10.1016/j.tig.2021.06.016 PMID: 34294428

18. Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, et al. A genome-wide view of the spec-

trum of spontaneous mutations in yeast. Proceedings of the National Academy of Sciences. 2008; 105

(27):9272–9277. https://doi.org/10.1073/pnas.0803466105 PMID: 18583475

19. Lipinski KJ, Farslow JC, Fitzpatrick KA, Lynch M, Katju V, Bergthorsson U. High Spontaneous Rate of

Gene Duplication in Caenorhabditis elegans. Current biology: CB. 2011; 21(4):306–310. https://doi.org/

10.1016/j.cub.2011.01.026 PMID: 21295484

20. Ohno S. Evolution by Gene Duplication. Springer-Verlag; 1970.

21. Force A, Lynch M, Pickett FB, Amores A, Yan Yl, Postlethwait J. Preservation of Duplicate Genes by

Complementary, Degenerative Mutations. Genetics. 1999; 151(4):1531–1545. https://doi.org/10.1093/

genetics/151.4.1531 PMID: 10101175

22. Qian W, Liao BY, Chang AYF, Zhang J. Maintenance of duplicate genes and their functional redun-

dancy by reduced expression. Trends in genetics: TIG. 2010; 26(10):425–430. https://doi.org/10.1016/

j.tig.2010.07.002 PMID: 20708291

23. Gout JF, Lynch M. Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. Molec-

ular Biology and Evolution. 2015; 32(8):2141–2148. https://doi.org/10.1093/molbev/msv095 PMID:

25908670

PLOS GENETICS Two mechanisms could favor transcriptional divergence within paralog pairs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010756 May 26, 2023 35 / 38

https://doi.org/10.1016/j.cels.2020.09.009
http://www.ncbi.nlm.nih.gov/pubmed/33080209
https://doi.org/10.1038/s41576-020-0258-4
http://www.ncbi.nlm.nih.gov/pubmed/32709985
https://doi.org/10.1038/s41576-020-00304-w
https://doi.org/10.1038/s41576-020-00304-w
http://www.ncbi.nlm.nih.gov/pubmed/33268840
https://doi.org/10.1186/s13059-018-1451-z
https://doi.org/10.1186/s13059-018-1451-z
http://www.ncbi.nlm.nih.gov/pubmed/29950183
https://doi.org/10.7554/eLife.81979
https://doi.org/10.7554/eLife.81979
http://www.ncbi.nlm.nih.gov/pubmed/36214449
https://doi.org/10.1371/journal.pgen.1004692
http://www.ncbi.nlm.nih.gov/pubmed/25340754
https://doi.org/10.1101/gr.165522.113
http://www.ncbi.nlm.nih.gov/pubmed/24318729
https://doi.org/10.1101/gr.164996.113
https://doi.org/10.1101/gr.164996.113
http://www.ncbi.nlm.nih.gov/pubmed/24318730
https://doi.org/10.1093/gbe/evv059
https://doi.org/10.1093/gbe/evv059
http://www.ncbi.nlm.nih.gov/pubmed/25877616
https://doi.org/10.1038/s41586-020-2899-z
https://doi.org/10.1038/s41586-020-2899-z
http://www.ncbi.nlm.nih.gov/pubmed/33177713
https://doi.org/10.1101/gr.193342.115
http://www.ncbi.nlm.nih.gov/pubmed/26297486
https://doi.org/10.15252/msb.20145844
https://doi.org/10.15252/msb.20145844
http://www.ncbi.nlm.nih.gov/pubmed/25634765
https://doi.org/10.3389/fpls.2019.00534
http://www.ncbi.nlm.nih.gov/pubmed/31156655
https://doi.org/10.1016/S0169-5347(03)00033-8
https://doi.org/10.1016/j.tig.2021.06.016
http://www.ncbi.nlm.nih.gov/pubmed/34294428
https://doi.org/10.1073/pnas.0803466105
http://www.ncbi.nlm.nih.gov/pubmed/18583475
https://doi.org/10.1016/j.cub.2011.01.026
https://doi.org/10.1016/j.cub.2011.01.026
http://www.ncbi.nlm.nih.gov/pubmed/21295484
https://doi.org/10.1093/genetics/151.4.1531
https://doi.org/10.1093/genetics/151.4.1531
http://www.ncbi.nlm.nih.gov/pubmed/10101175
https://doi.org/10.1016/j.tig.2010.07.002
https://doi.org/10.1016/j.tig.2010.07.002
http://www.ncbi.nlm.nih.gov/pubmed/20708291
https://doi.org/10.1093/molbev/msv095
http://www.ncbi.nlm.nih.gov/pubmed/25908670
https://doi.org/10.1371/journal.pgen.1010756


24. Thompson A, Zakon HH, Kirkpatrick M. Compensatory Drift and the Evolutionary Dynamics of Dosage-

Sensitive Duplicate Genes. Genetics. 2016; 202(2):765–774. https://doi.org/10.1534/genetics.115.

178137 PMID: 26661114

25. Hausser J, Mayo A, Keren L, Alon U. Central dogma rates and the trade-off between precision and

economy in gene expression. Nature Communications. 2019; 10(1):68. https://doi.org/10.1038/s41467-

018-07391-8 PMID: 30622246

26. Eser P, Demel C, Maier KC, Schwalb B, Pirkl N, Martin DE, et al. Periodic mRNA synthesis and degra-

dation co-operate during cell cycle gene expression. Molecular Systems Biology. 2014; 10:717. https://

doi.org/10.1002/msb.134886 PMID: 24489117

27. Neymotin B, Athanasiadou R, Gresham D. Determination of in vivo RNA kinetics using RATE-seq. RNA

(New York, NY). 2014; 20(10):1645–1652. https://doi.org/10.1261/rna.045104.114 PMID: 25161313

28. Geisberg JV, Moqtaderi Z, Fan X, Ozsolak F, Struhl K. Global Analysis of mRNA Isoform Half-Lives

Reveals Stabilizing and Destabilizing Elements in Yeast. Cell. 2014; 156(4):812–824. https://doi.org/10.

1016/j.cell.2013.12.026 PMID: 24529382

29. Munchel SE, Shultzaberger RK, Takizawa N, Weis K. Dynamic profiling of mRNA turnover reveals

gene-specific and system-wide regulation of mRNA decay. Molecular Biology of the Cell. 2011; 22

(15):2787–2795. https://doi.org/10.1091/mbc.E11-01-0028 PMID: 21680716

30. Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP. Improved Ribosome-

Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Transla-

tion. Cell Reports. 2016; 14(7):1787–1799. https://doi.org/10.1016/j.celrep.2016.01.043 PMID:

26876183

31. Hough J, Williamson RJ, Wright SI. Patterns of Selection in Plant Genomes. Annual Review of Ecology,

Evolution, and Systematics. 2013; 44(1):31–49. https://doi.org/10.1146/annurev-ecolsys-110512-

135851

32. Tsai IJ, Bensasson D, Burt A, Koufopanou V. Population genomics of the wild yeast Saccharomyces

paradoxus: Quantifying the life cycle. Proceedings of the National Academy of Sciences. 2008; 105

(12):4957–4962. https://doi.org/10.1073/pnas.0707314105 PMID: 18344325

33. Skelly DA, Ronald J, Connelly CF, Akey JM. Population Genomics of Intron Splicing in 38 Saccharomy-

ces cerevisiae Genome Sequences. Genome Biology and Evolution. 2009; 1:466–478. https://doi.org/

10.1093/gbe/evp046 PMID: 20333215

34. Teufel AI, Wilke CO. Accelerated simulation of evolutionary trajectories in origin-fixation models. Jour-

nal of The Royal Society Interface. 2017; 14(127):20160906. https://doi.org/10.1098/rsif.2016.0906

PMID: 28228542

35. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of noise in the

expression of a single gene. Nature Genetics. 2002; 31(1):69–73. https://doi.org/10.1038/ng869 PMID:

11967532

36. Blake WJ, Kaern M, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. Nature. 2003; 422

(6932):633–637. https://doi.org/10.1038/nature01546 PMID: 12687005

37. Lynch M, Marinov GK. The bioenergetic costs of a gene. Proceedings of the National Academy of Sci-

ences. 2015; 112(51):15690–15695. https://doi.org/10.1073/pnas.1514974112 PMID: 26575626

38. Kafri M, Metzl-Raz E, Jona G, Barkai N. The Cost of Protein Production. Cell Reports. 2016; 14(1):22–

31. https://doi.org/10.1016/j.celrep.2015.12.015 PMID: 26725116

39. Papp B, Pál C, Hurst LD. Dosage sensitivity and the evolution of gene families in yeast. Nature. 2003;

424(6945):194–197. https://doi.org/10.1038/nature01771 PMID: 12853957

40. Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, et al. Global trends of whole-genome duplica-

tions revealed by the ciliate Paramecium tetraurelia. Nature. 2006; 444(7116):171–178. https://doi.org/

10.1038/nature05230 PMID: 17086204

41. Qian W, Zhang J. Gene dosage and gene duplicability. Genetics. 2008; 179(4):2319–2324. https://doi.

org/10.1534/genetics.108.090936 PMID: 18689880

42. Johri P, Gout JF, Doak TG, Lynch M. A Population-Genetic Lens into the Process of Gene Loss Follow-

ing Whole-Genome Duplication. Molecular Biology and Evolution. 2022; 39(6):msac118. https://doi.org/

10.1093/molbev/msac118 PMID: 35639978

43. Teufel AI, Liu L, Liberles DA. Models for gene duplication when dosage balance works as a transition

state to subsequent neo- or sub-functionalization. BMC Evolutionary Biology. 2016; 16(1):45. https://

doi.org/10.1186/s12862-016-0616-1 PMID: 26897341

44. McCandlish DM, Stoltzfus A. Modeling evolution using the probability of fixation: history and implica-

tions. The Quarterly Review of Biology. 2014; 89(3):225–252. https://doi.org/10.1086/677571 PMID:

25195318

PLOS GENETICS Two mechanisms could favor transcriptional divergence within paralog pairs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010756 May 26, 2023 36 / 38

https://doi.org/10.1534/genetics.115.178137
https://doi.org/10.1534/genetics.115.178137
http://www.ncbi.nlm.nih.gov/pubmed/26661114
https://doi.org/10.1038/s41467-018-07391-8
https://doi.org/10.1038/s41467-018-07391-8
http://www.ncbi.nlm.nih.gov/pubmed/30622246
https://doi.org/10.1002/msb.134886
https://doi.org/10.1002/msb.134886
http://www.ncbi.nlm.nih.gov/pubmed/24489117
https://doi.org/10.1261/rna.045104.114
http://www.ncbi.nlm.nih.gov/pubmed/25161313
https://doi.org/10.1016/j.cell.2013.12.026
https://doi.org/10.1016/j.cell.2013.12.026
http://www.ncbi.nlm.nih.gov/pubmed/24529382
https://doi.org/10.1091/mbc.E11-01-0028
http://www.ncbi.nlm.nih.gov/pubmed/21680716
https://doi.org/10.1016/j.celrep.2016.01.043
http://www.ncbi.nlm.nih.gov/pubmed/26876183
https://doi.org/10.1146/annurev-ecolsys-110512-135851
https://doi.org/10.1146/annurev-ecolsys-110512-135851
https://doi.org/10.1073/pnas.0707314105
http://www.ncbi.nlm.nih.gov/pubmed/18344325
https://doi.org/10.1093/gbe/evp046
https://doi.org/10.1093/gbe/evp046
http://www.ncbi.nlm.nih.gov/pubmed/20333215
https://doi.org/10.1098/rsif.2016.0906
http://www.ncbi.nlm.nih.gov/pubmed/28228542
https://doi.org/10.1038/ng869
http://www.ncbi.nlm.nih.gov/pubmed/11967532
https://doi.org/10.1038/nature01546
http://www.ncbi.nlm.nih.gov/pubmed/12687005
https://doi.org/10.1073/pnas.1514974112
http://www.ncbi.nlm.nih.gov/pubmed/26575626
https://doi.org/10.1016/j.celrep.2015.12.015
http://www.ncbi.nlm.nih.gov/pubmed/26725116
https://doi.org/10.1038/nature01771
http://www.ncbi.nlm.nih.gov/pubmed/12853957
https://doi.org/10.1038/nature05230
https://doi.org/10.1038/nature05230
http://www.ncbi.nlm.nih.gov/pubmed/17086204
https://doi.org/10.1534/genetics.108.090936
https://doi.org/10.1534/genetics.108.090936
http://www.ncbi.nlm.nih.gov/pubmed/18689880
https://doi.org/10.1093/molbev/msac118
https://doi.org/10.1093/molbev/msac118
http://www.ncbi.nlm.nih.gov/pubmed/35639978
https://doi.org/10.1186/s12862-016-0616-1
https://doi.org/10.1186/s12862-016-0616-1
http://www.ncbi.nlm.nih.gov/pubmed/26897341
https://doi.org/10.1086/677571
http://www.ncbi.nlm.nih.gov/pubmed/25195318
https://doi.org/10.1371/journal.pgen.1010756


45. Taggart JC, Li GW. Production of Protein-Complex Components Is Stoichiometric and Lacks General

Feedback Regulation in Eukaryotes. Cell Systems. 2018; 7(6):580–589.e4. https://doi.org/10.1016/j.

cels.2018.11.003 PMID: 30553725

46. Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics.

2000; 154(1):459–473. https://doi.org/10.1093/genetics/154.1.459 PMID: 10629003

47. Metzger BPH, Duveau F, Yuan DC, Tryban S, Yang B, Wittkopp PJ. Contrasting Frequencies and

Effects of cis- and trans-Regulatory Mutations Affecting Gene Expression. Molecular Biology and Evolu-

tion. 2016; 33(5):1131–1146. https://doi.org/10.1093/molbev/msw011 PMID: 26782996

48. Hodgins-Davis A, Duveau F, Walker EA, Wittkopp PJ. Empirical measures of mutational effects define

neutral models of regulatory evolution in Saccharomyces cerevisiae. Proceedings of the National Acad-

emy of Sciences. 2019; 116(42):21085–21093. https://doi.org/10.1073/pnas.1902823116 PMID:

31570626

49. Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL. Genetic properties influencing the evolvability

of gene expression. Science (New York, NY). 2007; 317(5834):118–121. https://doi.org/10.1126/

science.1140247 PMID: 17525304

50. Vaishnav ED, de Boer CG, Molinet J, Yassour M, Fan L, Adiconis X, et al. The evolution, evolvability

and engineering of gene regulatory DNA. Nature. 2022; 603(7901):455–463. https://doi.org/10.1038/

s41586-022-04506-6 PMID: 35264797

51. Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, et al. Codon Optimality Is a Major Deter-

minant of mRNA Stability. Cell. 2015; 160(6):1111–1124. https://doi.org/10.1016/j.cell.2015.02.029

PMID: 25768907

52. Chen S, Li K, Cao W, Wang J, Zhao T, Huan Q, et al. Codon-Resolution Analysis Reveals a Direct

and Context-Dependent Impact of Individual Synonymous Mutations on mRNA Level. Molecular Biol-

ogy and Evolution. 2017; 34(11):2944–2958. https://doi.org/10.1093/molbev/msx229 PMID:

28961875

53. Chan LY, Mugler CF, Heinrich S, Vallotton P, Weis K. Non-invasive measurement of mRNA decay

reveals translation initiation as the major determinant of mRNA stability. eLife. 2018; 7:e32536. https://

doi.org/10.7554/eLife.32536 PMID: 30192227

54. Preiss T, Baron-Benhamou J, Ansorge W, Hentze MW. Homodirectional changes in transcriptome

composition and mRNA translation induced by rapamycin and heat shock. Nature Structural & Molecu-

lar Biology. 2003; 10(12):1039–1047. https://doi.org/10.1038/nsb1015 PMID: 14608375

55. Halbeisen RE, Gerber AP. Stress-Dependent Coordination of Transcriptome and Translatome in

Yeast. PLOS Biology. 2009; 7(5):e1000105. https://doi.org/10.1371/journal.pbio.1000105 PMID:

19419242

56. Blevins WR, Tavella T, Moro SG, Blasco-Moreno B, Closa-Mosquera A, Dı́ez J, et al. Extensive post-

transcriptional buffering of gene expression in the response to severe oxidative stress in baker’s

yeast. Scientific Reports. 2019; 9:11005. https://doi.org/10.1038/s41598-019-47424-w PMID:

31358845

57. Hakes L, Pinney JW, Lovell SC, Oliver SG, Robertson DL. All duplicates are not equal: the difference

between small-scale and genome duplication. Genome Biology. 2007; 8(10):R209. https://doi.org/10.

1186/gb-2007-8-10-r209 PMID: 17916239

58. Guan Y, Dunham MJ, Troyanskaya OG. Functional analysis of gene duplications in Saccharomyces

cerevisiae. Genetics. 2007; 175(2):933–943. https://doi.org/10.1534/genetics.106.064329 PMID:

17151249

59. Fares MA, Keane OM, Toft C, Carretero-Paulet L, Jones GW. The Roles of Whole-Genome and Small-

Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genet-

ics. 2013; 9(1):e1003176. https://doi.org/10.1371/journal.pgen.1003176 PMID: 23300483

60. Wagner A. Energy constraints on the evolution of gene expression. Molecular Biology and Evolution.

2005; 22(6):1365–1374. https://doi.org/10.1093/molbev/msi126 PMID: 15758206

61. Lehner B. Conflict between Noise and Plasticity in Yeast. PLOS Genetics. 2010; 6(11):e1001185.

https://doi.org/10.1371/journal.pgen.1001185 PMID: 21079670

62. Chapal M, Mintzer S, Brodsky S, Carmi M, Barkai N. Resolving noise–control conflict by gene duplica-

tion. PLOS Biology. 2019; 17(11):e3000289. https://doi.org/10.1371/journal.pbio.3000289 PMID:

31756183

63. Wu Y, Wu J, Deng M, Lin Y. Yeast cell fate control by temporal redundancy modulation of transcription

factor paralogs. Nature Communications. 2021; 12(1):3145. https://doi.org/10.1038/s41467-021-

23425-0 PMID: 34035307

64. Gera T, Jonas F, More R, Barkai N. Evolution of binding preferences among whole-genome duplicated

transcription factors. eLife. 2022; 11:e73225. https://doi.org/10.7554/eLife.73225 PMID: 35404235

PLOS GENETICS Two mechanisms could favor transcriptional divergence within paralog pairs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010756 May 26, 2023 37 / 38

https://doi.org/10.1016/j.cels.2018.11.003
https://doi.org/10.1016/j.cels.2018.11.003
http://www.ncbi.nlm.nih.gov/pubmed/30553725
https://doi.org/10.1093/genetics/154.1.459
http://www.ncbi.nlm.nih.gov/pubmed/10629003
https://doi.org/10.1093/molbev/msw011
http://www.ncbi.nlm.nih.gov/pubmed/26782996
https://doi.org/10.1073/pnas.1902823116
http://www.ncbi.nlm.nih.gov/pubmed/31570626
https://doi.org/10.1126/science.1140247
https://doi.org/10.1126/science.1140247
http://www.ncbi.nlm.nih.gov/pubmed/17525304
https://doi.org/10.1038/s41586-022-04506-6
https://doi.org/10.1038/s41586-022-04506-6
http://www.ncbi.nlm.nih.gov/pubmed/35264797
https://doi.org/10.1016/j.cell.2015.02.029
http://www.ncbi.nlm.nih.gov/pubmed/25768907
https://doi.org/10.1093/molbev/msx229
http://www.ncbi.nlm.nih.gov/pubmed/28961875
https://doi.org/10.7554/eLife.32536
https://doi.org/10.7554/eLife.32536
http://www.ncbi.nlm.nih.gov/pubmed/30192227
https://doi.org/10.1038/nsb1015
http://www.ncbi.nlm.nih.gov/pubmed/14608375
https://doi.org/10.1371/journal.pbio.1000105
http://www.ncbi.nlm.nih.gov/pubmed/19419242
https://doi.org/10.1038/s41598-019-47424-w
http://www.ncbi.nlm.nih.gov/pubmed/31358845
https://doi.org/10.1186/gb-2007-8-10-r209
https://doi.org/10.1186/gb-2007-8-10-r209
http://www.ncbi.nlm.nih.gov/pubmed/17916239
https://doi.org/10.1534/genetics.106.064329
http://www.ncbi.nlm.nih.gov/pubmed/17151249
https://doi.org/10.1371/journal.pgen.1003176
http://www.ncbi.nlm.nih.gov/pubmed/23300483
https://doi.org/10.1093/molbev/msi126
http://www.ncbi.nlm.nih.gov/pubmed/15758206
https://doi.org/10.1371/journal.pgen.1001185
http://www.ncbi.nlm.nih.gov/pubmed/21079670
https://doi.org/10.1371/journal.pbio.3000289
http://www.ncbi.nlm.nih.gov/pubmed/31756183
https://doi.org/10.1038/s41467-021-23425-0
https://doi.org/10.1038/s41467-021-23425-0
http://www.ncbi.nlm.nih.gov/pubmed/34035307
https://doi.org/10.7554/eLife.73225
http://www.ncbi.nlm.nih.gov/pubmed/35404235
https://doi.org/10.1371/journal.pgen.1010756


65. Marcet-Houben M, Gabaldón T. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an

Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biology. 2015; 13(8):e1002220.

https://doi.org/10.1371/journal.pbio.1002220 PMID: 26252497

66. Carter AJR, Wagner GP. Evolution of functionally conserved enhancers can be accelerated in large

populations: a population-genetic model. Proceedings Biological Sciences. 2002; 269(1494):953–960.

https://doi.org/10.1098/rspb.2002.1968 PMID: 12028779

67. Scannell DR, Frank AC, Conant GC, Byrne KP, Woolfit M, Wolfe KH. Independent sorting-out of thou-

sands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Pro-

ceedings of the National Academy of Sciences of the United States of America. 2007; 104(20):8397–

8402. https://doi.org/10.1073/pnas.0608218104 PMID: 17494770
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