Skip to main content
. Author manuscript; available in PMC: 2024 Feb 28.
Published in final edited form as: Neurocomputing (Amst). 2022 Dec 15;523:116–129. doi: 10.1016/j.neucom.2022.12.024

Table 2:

Number of trainable parameters and computational speed of processing Sintel image sequences for lightweight and heavyweight models. Runtime is measured using Sintel image sequences with a frame size of 1024 × 436 pixels. General speed differences between the computational frameworks such as Tensorflow and Caffe should be considered when comparing the run times of various networks.

Method Number of layers Number of parameters (M) Framework GPU (NVIDIA) Time (ms) FPS
DDCNet-B0 31 1.03 TF2 Quadro RTX 8000 76 13
DDCNet-B1 30 2.99 TF2
Possible Caffe
Quadro RTX 8000
Quadro RTX 8000
30
7
33
142

FlowNet Simple 17 38 TF1
Caffe
Tesla K80
GTX 1080
86
18
11
55
FlowNet Correlation 26 39.16 TF1
Caffe
Tesla K80
GTX 1080
179
32
5
31
FlowNet2 115 162.49 TF1
Caffe
Tesla K80
GTX 1080
692
123
1
8

LiteFlowNet 94 5.37 Caffe GTX 1080 88.53 12
SPyNet 35 1.2 Torch GTX 1080 129.83 8
PWC-Net+ 59 8.75 Caffe TITAN Xp 39.63 25

CA-DCNN - - Caffe RTX 1080Ti 480 -
RAFT - 5.3 PyTorch RTX 2080Ti 100 -
GMA - 5.9 PyTorch RTX 2080Ti 73 -
SAMFL - 10.45 PyTorch - - -
PMC-PWC - 7.86 PyTorch RTX 1080Ti 200 -