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Abstract

This study develops a new limited information estimator for random intercept Multilevel 

Structural Equation Models (MSEM). It is based on the Model Implied Instrumental Variable 

Two-Stage Least Squares (MIIV-2SLS) estimator, which has been shown to be an excellent 

alternative or supplement to maximum likelihood (ML) in SEMs (Bollen, 1996). We also develop 

a multilevel overidentification test statistic that applies to equations at the within or between 

levels. Our Monte Carlo simulation analysis suggests that MIIV-2SLS is more robust than ML 

to misspecification at within or between levels, performs well given fewer that 100 clusters, and 

shows that our multilevel overidentification test for equations performs well at both levels of the 

model.

Introduction

Structural Equation modeling is a general multivariate statistical framework that allows for 

the modeling of latent variable regressions (Bollen, 1989). Given clustered data such as 

students nested within classrooms or patients within hospitals, researchers use multilevel 

structural equation modeling (MSEM) to model latent variables while simultaneously 

accounting for clustered observations and different levels of effects. Much progress has been 

made to develop and validate MSEM techniques making the framework more accessible 

now more than ever (Bentler & Liang, 2003).

The most used estimator in MSEM is maximum likelihood (ML) applied to all levels 

of the model simultaneously. This is not without reason—ML offers desirable asymptotic 

properties (e.g., consistency, asymptotic efficiency) for valid models. Despite the flexibility 

and success of ML for estimating MSEMs, there are potential shortcomings. ML requires 

strong assumptions such as correct model specification and no excessive multivariate 

kurtosis (Browne, 1984). If these assumptions are violated, there is no guarantee of 

consistency, asymptotic efficiency or asymptotic unbiasedness of the ML estimator.
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We highlight five primary shortcomings with the usual ML approach. First, given 

structural misspecification, system-wide estimators such as ML can spread the effects of 

misspecification across model parameters. The problem of structural specification may be 

exacerbated by the multilevel nature of MSEMs in the sense that structural misspecification 

can occur both at the within level and at the between level. Only limited studies focus on 

the effects of structural misspecification in MSEMs and robust estimation methods, despite 

that various studies have been devoted to evaluation of model fit and detection of model 

misspecification. The only two studies of which we are aware are Yuan and Bentler (2007) 

and Wang and Kim (2017). Yuan and Bentler (2007) pointed out that a misspecified level 

will affect other correctly specified levels. Hence, they proposed to segregate the multilevel 

model into single-level models for estimation. In a simulation study, Wang and Kim (2017) 

investigated the bias caused by a misspecified latent dimension in the multilevel bifactor 

model. Second, assessing model fit is complicated and often misleading given traditional 

chi-square based SEM fit statistics (Yuan & Bentler, 2007; Ryu & West, 2009; Ryu, 2014; 

Hsu, Kwok, Lin, Acosta, 2015). Potential solutions to model fit assessment have been 

suggested, though these solutions require fitting additional models (See Ryu, 2014) or 

fitting each level of the model separately and applying corrections (See Yuan & Bentler, 

2007). Third, MSEMs estimated with ML can require prohibitively large sample sizes. The 

current best practice guidance states that 100 clusters should be the minimum level (Hox 

& Maas, 2004; Julian, 2001; Holtmann, Koch, Lochner, & Eid, 2016). In many fields, it 

is largely impractical to obtain more than 50 clusters. Fourth, due to model complexity 

MSEMS are more likely to encounter estimation complications due to lack of convergence 

(Ryu, 2009). Fifth, underidentification anywhere in the model can prevent estimation. For 

instance, one could have an adequately identified model at level 2, but if the model is not 

properly identified at level 1, then the entire system might not be estimable with ML. To 

illustrate, suppose that our primary interest lies in the level 2 model and that this model is 

overidentified. But the level 1 model which is only of secondary interest is underidentified 

due to insufficient number of indicators for a latent variable. The underidentification of the 

level 1 model would stymie the ML estimation of the level 1 model.

In this paper, we propose and test a novel limited information estimation approach for 

MSEMs which we expect to alleviate many of the preceding problems. This approach is 

based on the Model Implied Instrumental Variable, Two-Stage Least Squares (MIIV-2SLS) 

estimator, which originates from Bollen (1996). In the context of single level SEMs, the 

principle of MIIV-2SLS has been used in various studies. For example, Bollen, Kolenikov, 

and Bauldry (2014) proposed the generalized method of moments estimators based on MIIV; 

Nestler (2014) used the MIIV-2SLS to handle equality constraints in SEM; Nestler (2015a) 

used the overidentification test for MIIV-2SLS to test latent nonlinear terms in SEM models; 

Nestler (2015b) proposed the MIIV-2SLS estimator for the growth curve models; Fisher, 

Gates, and Bollen (2019) applied MIIV-2SLS to dynamic time-series models; Fisher and 

Bollen (2020) proposed a way to incorporate the mean structures in MIIV-2SLS; Gates, 

Fisher, and Bollen (2020) applied MIIV-2SLS to group iterative multiple model estimation 

to search for relations among latent variables.

The MIIV-2SLS approach has been shown to be a useful alternative to ML for estimating 

single level SEMs (Bollen, 2019). MIIV-2SLS provides solutions for each of the ML 

Giordano et al. Page 2

Struct Equ Modeling. Author manuscript; available in PMC 2023 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shortcomings. First, MIIV-2SLS has been shown to be more robust for factor loadings 

and latent regression coefficients against structural misspecification in single level SEMs 

(Bollen, 2020; Bollen, Gates, Fisher, 2018; Bollen, Kirby, Curran, Paxton, Chen, 2007). 

We expect the robustness properties continue to apply in MSEMs. However, the MIIV 

approaches still use system-wide estimators to estimate the covariance matrix of factors 

and the covariance matrix of error terms (e.g., Bollen and Maydeu-Olivares, 2007; Jin, 

Yang-Wallentin, and Bollen, 2021), which are not robust against structural misspecification. 

Hence, we will focus on estimation of factor loadings and latent regression coefficients 

in this study. Second, model specification tests such as the Sargan test offer equation-by-

equation tests of model fit (Sargan, 1958). As we will demonstrate, it is possible to modify 

the Sargan test to create a multilevel overidentification test in a MSEM context [see Jin & 

Cao (2018) for an example of modification of Sargan for categorical indicators, and Jin, 

Yang-Wallentin, and Bollen (2021) for an example of modification of Sargan for indicators 

of different types]. Comparing to the goodness-of-fit tests based on ML, the Sargan test 

is a local test in the sense that each overidentified equation is tested by a Sargan test. 

Hence,one can detect multiple structural misspecifications after testing all equations (Jin 

& Cao, 2018), before fitting the whole model. In contrast, the ML-based goodness-of-fit 

tests are performed sequentially with the modification index, one modification after another. 

Third, if a model has numerous parameters and the sample size is modest, then MIIV-2SLS 

might help in that it estimates individual equations with fewer parameters per equation than 

parameters in the full model. Fourth, MIIV-2SLS is a non-iterative procedure. The procedure 

we propose restricts iterative estimation to the between and within covariance matrices, 

which are less likely to involve convergence problems than estimation of the full model 

with ML. Fifth, the procedure we propose involves fitting each level individually, removing 

the problem of needing all equations at all levels to be identified. The logic of fitting 

each level separately was first proposed by Yuan and Bentler (2007) to prevent cross level 

misspecification and improve model testing. This idea naturally follows using MIIV-2SLS.

Random Intercepts MSEM Model

Our focus is on the random intercepts MSEM model. We begin by defining the model. Let yij

be the p × 1 vector of observations with i indexing individuals within clusters and j indexing 

clusters. Thus i = 1,2, …, nj and j = 1,2, …, J, where nj is the sample size for cluster j, and J is 

the total number of clusters. We represent yij as:

yij = μ + uij + vj (1)

where μ is the grand mean vector, uij represents the within level variation (i.e., disturbance 

or deviation from a group mean), and vj represents the between level variation (group 

level disturbance or deviation from grand mean). We make the following assumptions 

E uij = 0, uij = ΣW , E vj = 0 and V vj = ΣB. We assume that uij is independent of vj. 

Consequently, level-2 clusters are randomly sampled and level-1 observations are randomly 

sampled from within each level-2 cluster.
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A key component of the MSEM is the decomposition of the total covariance matrix into 

parts corresponding to each level. Under the assumption that uij and vj are independent, we 

get

V yij = V uij + V vj = ΣW + ΣB (2)

(Searle, Casella, & McCulloch, 1992). The above equation explicitly shows that we 

decompose the total covariance of yij into the additive and orthogonal covariance matrices 

ΣW  and ΣB.

In MSEM, one can explain variation at each level of the model by defining measurement and 

latent variable models. For the measurement model, let

uij = ΛWηWij + εW ij (3)

vj = ΛBηBj + εBj (4)

where ΛW are the within groups factor loadings, ηW ij are the within group factors, εW ij

are within group disturbances, ΛB are the between groups factor loadings, ηBj are the 

between groups factor, and εBj are the between level disturbances. We assume that 

E εW ij = E εBj = 0, V εW ij = ΘεW , V εBj = ΘεB, V ηW ij = ΨW , V ηBj = ΨB. We also assume 

that the disturbances are uncorrelated with the η′s in each equation. Because of the 

independence assumption between uij and vj, ηW ij is independent with ηBj, and εW ij is 

independent with εBj.

Next, we can define the structural/latent variable portion of the model. As with the 

measurement model, we have a latent variable model for both levels.

ηW ij = BWηWij + ζW ij (5)

ηBj = BBηBj + ζBj (6)

where BW are the latent variable regressions at the within part of the model and 

BB are the latent variable regressions at the between part of the model, ζW ij are the 

within groups distrubances, and ζBj are the between group disturbances. We assume that 

E ζW ij = E ζBj = 0, V ζW ij = ΘζW , and V ζBj = ΘζB. We also assume that the errors are 

uncorrelated with any exogenous variables in the equation. Because of the independence 

assumption between uij and vj, ζW ij is independent with ζBj. Finally, we can express the 

covariance structure as:

ΣB(θ) = ΛB I − BB
−1ΨB I − BB

−1′ΛB
′ + ΘB,

ΣW(θ) = ΛW I − BW
−1ΨW I − BW

−1′ΛW
′ + ΘW ,

(7)

Giordano et al. Page 4

Struct Equ Modeling. Author manuscript; available in PMC 2023 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where θ is the vector of all model parameters. The above models and the covariance 

structures are similar to those of the single level SEM. The primary difference is that random 

intercept MSEMs consists of a SEM for each level.

The most common approach to estimate a MSEM uses ML. To this end, we further assume 

the variables at both levels follow multivariate normal distributions. If the within level 

observations are independent and identically distributed, then the ML fitting function is of 

the form

FML = ∑
j = 1

J
nj − 1 log ΣW(θ) + tr ΣW

−1(θ)SyW j

+ ∑
j = 1

J
log Σgj(θ) + tr Σgj

−1(θ)Sgj ,
(8)

where SyW j = nj − 1 −1∑i = 1
nj (yij − yj)(yij − yj)′, Σgj(θ) = ΣB(θ) + nj

−1ΣW (θ), and 

Sgj = (yj − y)(yj − y)′ (Bentler & Liang, 2003; Liang & Bentler, 2004). We note that the 

ML fitting function consists of two components. The first component corresponds to the 

level-1 portion of the model and second component corresponds to the level-2 portion of 

the model. The within groups portion of the model is compared to the sample pooled within 

groups covariance matrix (SyW j) while the second part of the equation fits the between groups 

model Σgj(θ) to the between groups covariance matrix. As usual, standard errors of parameter 

estimators are computed from the asymptotic variance covariance matrix (e.g., the inverse of 

the information matrix).

MIIV-2SLS Estimation for MSEMs

In this section, we extend the MIIV-2SLS estimator for the single level SEM to MSEM. 

The MIIV-2SLS estimator for MSEMs consists of two stages. Stage 1 estimates the 

level-specific covariance matrices V uij  and V vj . Stage 2 uses the estimated covariance 

matrices from Stage 1 to estimate the model parameters by MIIV-2SLS. A modified Sargan 

overidentification test statistic is proposed to test the validity of MIIVs.

In the first stage, we temporarily ignore the parametrized covariance structure (7). Rather, 

we consider the saturated covariance matrices ΣW  and ΣB, where the unique entries in them 

are freely estimated. Here note that we use ΣB and ΣB to denote the saturated matrices, 

whereas ΣW θ  and ΣB θ  are used to the denote the parametrized covariance matrices of the 

hypothesized SEMs. In practice, there are a number of ways to estimate ΣW  and ΣB. The 

simplest way is to estimate them by minimizing the ML fit function

∑
j = 1

J
nj − 1 log ΣW + tr ΣW

−1SyW j

+ ∑
j = 1

J
log ΣB + nj

−1ΣW + tr ΣB + nj
−1ΣW

−1Sgj .
(9)
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This may seem like a contradiction to the spirit of this paper since MIIV-2SLS is 

traditionally fully noniterative and requires fewer distributional assumptions than ML. We 

do expect one would encounter fewer convergence issues estimating saturated models as 

opposed to fitting a more complicated MSEM model with more restrictions. Nevertheless, 

this stage is the same as Stage 1 in Yuan and Bentler (2007). Under mild conditions, the 

sample estimates SW  and SB are consistent estimators of ΣW  and ΣB, respectively, even when 

yij is not normally distributed (Yuan & Bentler, 2007). Yuan and Bentler (2007) also showed 

that the estimators are asymptotically normal. We direct the readers there for the expression 

of asymptotic covariance matrices.

Analysts can use a variety of packages to estimate ΣW  and ΣB from (9). This is certainly 

not an exhaustive list, but options include Mplus, lavaan or OpenMX (Muthén & Muthén, 

2017; Rosseel, 2012; Neale et al, 2016). Additionally, Yuan and Bentler (2007) provide an 

accompanying SAS script. Most packages also return the asymptotic covariance matrices of 

SW  and SB, which is needed to compute the standard errors in the second stage.

In the second stage, one applies MIIV-2SLS to each level of the model using SW  and SB from 

the first stage of estimation. Importantly, covering the specific stages of MIIV-2SLS in detail 

is beyond the scope of this paper and we only briefly present the MIIV-2SLS estimator here. 

We direct readers unfamiliar with MIIV-2SLS to Bollen (1996; 2019) for more in-depth 

discussions of MIIV-2SLS. Following the L2O transformation in Bollen (2019), equation (3) 

can be expressed as

uij, 1

uij, 2
=

I
ΛW, 2

ηWij +
εW ij, 1

εW ij, 2
,

where the scale of indicators is set using scaling indicators. Consequently, equations (3) and 

(5) yield

uij, 2

uij, 1
= ΛW , 2

BW
uij, 1 +

εW ij, 2 − ΛW , 2εW ij, 1

I − BW εW ij, 1 + ζW ij

. (10)

Likewise, equations (4) and (6) yield

vj, 2

vj, 1
= ΛB, 2

BB
vj, 1 +

εBj, 2 − ΛB, 2εBj, 1

I − BB εBj, 1 + ζBj
. (11)

Equations (10) and (11) are merely regression models, but the regressors are correlated with 

the error terms. To consistently estimate the regression coefficients, we use model implied 

instrumental variables (MIIVs). For the MIIVs to be valid, they must be correlated with 

the endogenous regressors and uncorrelated with the composite error term. The MIIVs that 

satisfy these two requirements can be easily found by the algorithm described in Bollen 

(1996), which is implemented in the R package MIIVsem (Fisher et al., 2017). It is worth 

mentioning that, because of the independence assumption between uij and vj, only entries in 

uij can be used as MIIVs to fit Equation (10) and only entries in vj can be used as MIIVs to 

fit Equation (11).
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We note that the regressions in (10) and (11) in most papers are concerned with raw data. 

However, neither uij nor vj are observed. Fox (1979) provided equations for two stage least 

squares (2SLS) estimation using covariance matrices. Let Σ be either ΣW  and ΣB, and θ be 

the unknown parameter in one of the rows of (10) or (11). The MIIV-2SLS estimator of θ
depends on

θ2SLS(σ) = Σzx
T Σzz

−1Σzx
−1Σzx

T Σzz
−1Σzy, (12)

where σ is the vector of unique entries in Σ, y is the dependent variable, x is the vector 

of independent variables, and z is the vector of MIIVs. The estimator of θ2SLS is obtained 

by θ2SLS = θ2SLS(s), replacing Σ in (12) by the first stage estimate S. It is worth mentioning 

that the number of MIIVs (denoted by L) must be no lower than the number of entries in x

(denoted by K). Otherwise, Σzx
T Σzz

−1Σzx
−1 in Equation (12) is not well defined, if L < K.

Since SW  and SB are asymptotically normal (Yuan and Bentler, 2007), we can apply the delta 

method to obtain the standard errors of θ2SLS. In particular

V (θ2SLS) ≈ ΔϒΔT , (13)

where ϒ is the covariance matrix of ŝ, and Δ are the partial derivatives the Jacobian of 

Equation (12), i.e., Δ = ∂θ2SLS σ / ∂σT . In particular, ϒ can be easily estimated from the first 

stage.

Finally, we propose to use the Sargan overidentification test to test the specification of every 

row in Equations (10) and (11). The test statistic is of the form

T aχ2 = n(Szy − Szxθ2SLS)′Ω̂
− 1

2GΩ̂− 1
2(Szy − Szxθ2SLS), (14)

where G is the Moore-Penrose inverse of QQT ,

Q = I − Ω−1/2Σzx Σzx
T Σzz

−1Σzx
−1Σzx

T Σzz
−1Ω1/2, (15)

Ω = ∂g σ
∂σT ϒ ∂g σ

∂σT
T

, (16)

and g σ = Σzy − Σzxθ. The test statistic Taχ2 is the same as the test statistics in Jin and 

Cao (2018), who proposed test statistic for ordinal indicators, and Jin, Yang-Wallentin, and 

Bollen (2021), who extended the test statistic to different types of indicators. Even though 

their test statistics were developed for single level data, Taχ2 remains applicable to the current 

context, since MIIV-2SLS is applied to the within level and the between level separately. 

Hence, we only present the test statistic here. If the equation to be tested is correctly 

specified, all MIIVs are valid, and L > K, then Taχ2 is asymptotically chi-square distributed 

with L − K degrees of freedom. The readers who are interested in the derivative of Taχ2 is 

directed to Jin, Yang-Wallentin, and Bollen (2021) for details.
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The proposed MIIV-2SLS estimator is expected to have several desirable qualities, making 

it a reasonable alternative to ML estimation. First, MIIV-2SLS has been shown to be more 

robust than ML to the spread of structural model misspecifications in single level models. 

In the multilevel context we expect to have similar robustness properties both within and 

between levels, since MIIV-2SLS is applied to each level separately. Hence, the robustness 

conditions in Bollen, Gates, and Fisher (2018, Table 7) and Bollen (2020) are applicable. 

For example, if B contains structural misspecifications, then Λ is still robust in MSEMs. It is 

worth mentioning that our Stage 1 is the same as Stage 1 in Yuan and Bentler (2007). 

However, they use system-wide estimators in their Stage 2. Hence, in their approach, 

structural misspecification in one level can affect other parameter estimators in the same 

level. Second, the new overidentification test offers equation-by-equation tests of model fit. 

Third, two-stage least squares estimators have been shown to perform well in small samples 

(Bollen, et al, 2007). Fourth, we expect convergence to be less of an issue with MIIV-2SLS 

as compare to ML, though our method does use an iterative procedure for the first stage of 

estimation, so we do not retain the full non-iterative nature of MIIV-2SLS as implemented 

in single level SEMs. Finally, given that MIIV-2SLS does not require identification of the 

whole model, one could estimate only one level of the model (if another level were not 

identified) or individual identified equations if other parts of the model were not identified.

Monte Carlo Simulation Design

In this section, we examine the empirical performance of MIIV-2SLS estimation for MSEMs 

in a Monte Carlo simulation study. Our primary research questions are:

1. Robustness: One of the desirable properties of MIIV-2SLS is its robustness 

to structural misspecification. Do we find the same robustness in MSEM 

estimation? Do we find evidence that MIIV-2SLS is robust to the cross-

level spread of misspecification? Alternatively, do we find evidence that 

misspecification spreads across levels when using ML?

2. Efficiency: One might imagine that the trade-off for MIIV-2SLS robustness is a 

less efficient estimator. Do we find evidence for a noticeable loss of efficiency 

when comparing MIIV-2SLS to ML? Single level analyses have found similar 

efficiency for both estimators (e.g., Bollen et al., 2007).

3. Standard Errors: Delta method standard errors are approximations, which 

should be asymptotically unbiased. Do we find evidence that the delta method 

standard errors correctly reflect the sampling variability in finite samples?

4. Model Fit: Does the multilevel Taχ2 overidentification test adequately identify 

model misfit at both levels of the model? Does this depend on the type 

of misspecification? Alternatively, does the Taχ2 overidentification test have 

appropriate Type-I error rates?

5. Sample Size: Can we use MIIV-2SLS in smaller samples to fit models, when 

ML might otherwise be problematic? One specific problem in small samples is 

nonconvergence. Does MIIV-2SLS have a better convergence rate and does this 

depend on the sample size?
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Data generation—Figure 1 displays the population data-generating model. The general 

pattern of zero and non-zero parameters are the same for the within and between levels. 

Factor loadings and latent variable regressions also share the same values between levels 

while latent variable variances and residual variances are smaller at the between level than 

the within level. In this model, the ICCs for individual indicators range from 0.2–0.3, which 

could be considered a moderate amount of variance at the group level.

We manipulated two primary factors in generating the data: number of clusters and the 

average cluster size. The number of clusters varied continuously between 30 and 300 (this 

range covers well above and below the suggested 100 clusters). We varied the average 

cluster size between 5 and 50. This range captures small to sufficiently large cluster sizes. 

In practice, smaller clusters might be expected in studies of classrooms and larger clusters 

could be expected in studies where clustering is based on geography or policy.

Instead of picking specific discrete conditions for cluster size and number of clusters, 

we allowed these variables to vary continuously between the limits described above. For 

example, for each replication the value of the number of clusters was sampled from a 

random discrete uniform condition with lower and upper bounds of 30 and 300, respectively. 

The same random sampling procedure was used to set the average size of clusters, except 

that the lower and upper limits were 5 and 50.

To reflect real world applications, cluster sizes were unbalanced within datasets. Real data 

rarely have balanced clusters except in very controlled study designs. The method proposed 

in this study does not require the assumption of balanced clusters. Unbalanced data was 

simulated by fixing the average cluster size but allowing the individual cluster sizes to vary 

around that average. The degree of unbalance was fixed such that minimum and maximum 

cluster sizes were 50% smaller or larger than the average cluster size.

With the above specifications, we generated 20,000 independent datasets using the Monte 

Carlo function of Mplus (Muthén & Muthén, 2017).

Models Specifications—We fit three possible model specifications: the true model, 

omitted cross loadings at the within level and omitted cross loadings at the between 

level. They are referred to as the True Model, Misspecified Within, and Misspecified 

Between, respectively. Fitting three possible model specifications allowed us to investigate 

performance of all estimators under ideal circumstances as well as circumstances that were 

more realistic where the model is not correctly specified.

Estimators—For each dataset and model specification, we obtained parameter estimates 

using three estimators. The first estimator was ML as implemented in Mplus with the 

“Model = TWOLEVEL” framework. The second estimator was MIIV-2SLS using all 

possible MIIVs for each equation, denoted by 2SLS-ALLIV. The third estimator was 

MIIV-2SLS with a subset of MIIVs for each equation such that the equation is overidentified 

by two degrees of freedom (i.e., L − K = 2) under the True Model specification. This will be 

denoted by 2SLS-OVERID2. Both 2SLS-ALLIV and 2SLS-OVERID2 were carried out in 

R.
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Table 1 lists the observed variables and MIIVs for the MIIV-2SLS estimators. The equations 

listed apply to both levels of the model. To select MIIVs used by 2SLS-OVERID2, we 

choose the MIIVs that have the highest correlation with the right-hand side variable. We 

believe this reflects how one would select a subset of MIIVs in practice. For example, if 

the equation contains one unknown factor loading, we selected MIIVs from the same latent 

variable plus one additional instrument from the closest latent variable in the causal chain. If 

the equation contains two unknown factor loadings, we selected two MIIVs from each latent 

variable.

As we can see from Table 1, most equations as well the MIIVs remain unchanged when 

the model is misspecified. According to the robustness properties of MIIV-2SLS (e.g., 

Bollen et. al., 2018), the equations that remain unchanged will be robust to misspecifications 

for MIIV-2SLS. For misspecified equations, the MIIV-2SLS estimator is not robust any 

more. In contrast, the ML estimator is not necessarily robust even for unchanged equations. 

It is worth mentioning that the set of MIIVs used for 2SLS-ALLIV in the misspecified 

models uses the set of MIIVs under the True Model specification due to the omitted 

cross loading. Regarding 2SLS-OVERID2, we use the same set of MIIVs from the True 

Model specification. Hence, the overidentification degrees of freedom are 3 in misspecified 

equations.

Simulation Evaluation—The outcome measures that we examined included relative bias, 

empirical standard deviation of estimates, standard error relative bias, root mean squared 

error, and proportion of overidentification test rejections given α = 0.05. Due to space 

limitation, only selected results will be presented here. More results can be found in the 

supplementary material. Further, we discretize the average cluster size into three levels 

(i.e., 5–15, 16–30, 31–50). Since the number of clusters range from 30 to 300, there 

are 813 difference combinations of number of clusters and cluster size. We also classify 

the parameters into three types (i.e., Latent Variable Regression, Primary Loading, Cross 

Loading).

Results

Convergence and Extreme Outliers

Failure to converge can occur for both ML and MIIV-2SLS in this study, though we 

expected that more models would converge with MIIV-2SLS. If either ML or MIIV-2SLS 

did not converge, results were thrown out for all three estimators. Overall, less than 0.5% 

of cases were dropped. Dropping few cases is unlikely to influence the general pattern of 

results. In cases when ML failed to converge but MIIV-2SLS did converge, the MIIV-2SLS 

results did appear to be slightly more aberrant than other cases. Though given a small 

sample it was difficult to draw any serious conclusions from this pattern.

Figure 2 displays a heat map of convergence rates. As expected, MIIV-2SLS had a higher 

convergence rate, though this difference was small and rates of convergence were generally 

high for both estimators. In total, 27 models did not converge with MIIV-2SLS, and this was 

unaffected by model specification. Using ML, 71 models did not converge when the true 

model was fitted, 80 models did not converge when the within model is misspecified, and 96 

Giordano et al. Page 10

Struct Equ Modeling. Author manuscript; available in PMC 2023 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models did not converge when the between model is misspecified. It is unsurprising to note 

that the majority of models that did not converge had both a small number of clusters and a 

small average cluster size.

Relative Bias

To investigate the accuracy of the estimators, the relative bias of parameter θ in each of 813 

conditions of number of clusters and cluster size is given by

1
R ∑

r = 1

R θ r − θ
θ , (17)

where θ̂r is the estimate of θ for replication r and R is the number of replications in the 

condition. The average relative bias is then computed by averaging (17) across parameters of 

the same type.

Figure 3 displays the scatter plot of average relative bias for the True Model specification, 

as well as the smoothing curves. It is seen that the average relative bias for within level 

parameters is effectively zero across all conditions and estimators. Regarding the between 

level parameters, 2SLS-ALLIV tends to be slightly biased when the sample size is small, 

whereas 2SLS-OVERID2 is less biased than 2SLS-ALLIV. This result is consistent with 

previous studies that using a smaller set of MIIVs tends to be less biased in small samples 

whereas this does not matter in larger samples (e.g., Bollen, et al 2007).

As shown in Table 1, two equations for factor loadings are misspecified due to omitted 

factor loadings. The other equations are correctly specified and are expected to be robustly 

estimated. Figure 4 displays the scatter plot of average relative bias for the Misspecified 

Within specification. A similar conclusion can be drawn when considering the Misspecified 

Between specification. Hence, we only focus on the Misspecified Within specification to 

save space. It is seen that MIIV-2SLS can still consistently estimate the correctly specified 

equations. The omitted cross loading does not spread the bias to other correctly specified 

equations in the same level nor the equations in the other level. In contrast, when ML is 

used, misspecification spreads the bias to some correctly specified equations both in the 

between level and the within level (Figure 4). It is worth mentioning that the model with a 

biased ML estimator can fit the data poorly. The replications with poor fits are not excluded 

when evaluating the bias. Nevertheless, the robustness properties of MIIS-2SLS imply that it 

can still be reasonable to interpret the estimates in a misspecified model.

Empirical Standard deviation

As was already mentioned, one possible trade-off when using MIIV-2SLS would be the 

potential loss of efficiency. To assess the variability of estimates, we use the empirical 

standard deviation. For any given parameter θ, the empirical standard deviation of each 

condition of number of clusters and cluster size is given by
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sθ̂ = r = 1
R

(θ̂r − θ‾)2

R − 1 , (18)

where R is the total number of replications in a condition and θ‾ is the average estimate of 

θ in the same condition. Figure 5 illustrates the averaged empirical standard deviations of 

different parameter types for the True Model specification. Results from the misspecified 

model conditions are similar and we include them in the supplemental materials. The 

empirical standard deviations of each estimator are remarkably similar on average. As 

expected, ML tends to have a slightly lower variability, though this depends on the level 

of the model and parameter in question. The most notable differences can be seen for 

parameters with the lowest magnitude (cross loadings). For factor loadings, we see almost 

no difference between estimators.

In terms of root mean squared error given by

∑r = 1
R (θ r − θ)2

R ,

it is seen from Figure 6 that ML tends to produce a slightly lower root mean squared error 

than MIIV-2SLS. However, as the case for empirical standard deviation, the differences 

between root mean squared errors are generally small. In general, Figures 5 and 6 suggest 

that ML has a slight efficiency advantage, but MIIV-2SLS does not differ from ML in terms 

of efficiency in a significant way.

Standard Error Bias

The MIIV-2SLS procedure developed in this study used delta method standard errors. Delta 

method standard errors are approximate standard errors which are asymptotically unbiased. 

To verify their performance in finite samples, we consider the standard error bias, computed 

as the difference between the standard error and the empirical standard deviation, scaled by 

the empirical standard deviation. The standard error relative bias of a single estimator is 

given by

SEbias = SEr − sθ̂

sθ̂
, (19)

where SEr is the standard error for an individual parameter of replication r and sθ is given by 

Equation (18). The average standard error relative bias is then computed as

1
R ∑

r = 1

R SEr − sθ

sθ
, (20)

where R is the total number of replications in a condition. Figure 6 displays the scatter 

plot of average standard error relative bias given the True Model specification. Results 

are similar across all three specifications; we focus on the true model for simplicity and 
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results for other model specifications are included in supplemental materials. Compared to 

previous simulation outcomes, the values of standard error bias in each condition appear 

more variable (across all estimators). This is no doubt an artifact of the study design 

containing a relatively small number of replications per condition. The smoothed averages 

reflect what we would expect given larger cell sizes.

On average, there was little standard error bias, across all three estimators. When there was 

bias, it tended to be positive bias on average, suggesting the standard errors are more likely 

to be conservative (i.e., too large). These results suggest that the delta method standard 

errors used with MIIV-2SLS, are generally adequate for capturing the true variability across 

a range of sample sizes and parameters, except in the smallest sample size conditions which 

we discuss next.

In the smallest sample size conditions (small average cluster size and small number of 

clusters) for between level factor loadings, the standard error bias for 2SLS-ALLIV appears 

rather high and positive. This result was extreme and unexpected. It is partly a result 

of several extreme standard error outliers; sensitivity analyses (removing some outliers) 

reduced the magnitude of this effect, but overall bias remained pronounced for these 

parameters given the smallest sample sizes. This result might suggest that these delta 

method standard errors are unstable in very small samples, when using a large number 
of instruments. Similar to the relative bias results, this problem was fully mitigated by using 

a subset of instruments (2SLS-OVERID2).

95% Confidence Intervals

The standard errors are often used to construct confidence intervals. We would expect the 

95% confidence intervals to cover the true population value 95% of the time. Only the True 

Model specification is considered here since the confidence interval is not so meaningful 

in a misspecified equation. It is seen from Figure 8 that the average coverage probability is 

generally close to the nominal level (i.e., 95%), especially when the number of clusters is 

large.

Multilevel Overidentification Test for Equations

Finally, we examined the performance of the proposed multilevel overidentification 

equation test. Rejecting the null hypothesis suggests that one or more MIIVs correlate 

with the equation’s error term. In the correctly specified models, we would expect the 

overidentification test to reject the null hypothesis at the level of alpha α = . 05 . Given 

misspecifications, we expected the test to reject the null hypothesis at a higher rate. Each 

overidentified equation has a test statistic and given the number of equations, this creates a 

multiple testing problem. To take account of this, we estimated rejection rates based on the 

unadjusted p-values and the Benjamini-Hochberg (B-H) corrected p-values to control for the 

false discovery rate (Benjamini and Hochberg, 1995). Benjamini-Hochberg correction was 

applied independently at each replication and level of the model.

Given the True Model specification1, the multilevel overidentification test rejected the null 

hypothesis at or below the level of alpha. There are not any appreciable differences between 
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the 2SLS-ALLIV and 2SLS-OVERID2 estimators. When using the unadjusted p-values the 

rejection rate is generally much closer to 0.05. Using the B-H corrected standard errors 

leads to effectively 0% rejection rates. Given that the unadjusted p-values do not lead to 

rejection rates higher than 0.05, this suggests that correcting for multiple testing may not be 

completely necessary.

Figures 9 and 10 illustrate the empirical rejection proportion of misspecified equations in 

the misspecified within model and the misspecified between model, respectively. Correctly 

specified equations in these conditions are unchanged from the True Model specification. 

Hence, they are not repeated here. For misspecified equations at the within level (Figure 7) 

the multilevel overidentification test rejects the null hypothesis almost 100% of the time, 

except in very small numbers of clusters where the lowest rate of rejecting the null is still 

around 0.8. There are small differences in the B-H rejection rates leading to slightly lower 

power in small samples. For misspecified equations at the between level (Figure 8) the 

Sargan test has less power especially given smaller sample sizes. 2SLS-OVERID2 rejects 

the null hypothesis at a much higher rate as well, which suggests that the effectiveness 

of multilevel test depends on the MIIVs used. Given medium to large cluster sizes, both 

2SLS-ALLIV and 2SLS-OVERID2 reach roughly 80% power when number of clusters 

reaches 200–250 clusters, using the unadjusted p-values. The difference in the B-H p-values 

are starker in this example, such that using adjusted p-values leads to a dramatic loss in 

power.

Discussion

This study examined several research questions about the properties of MIIV-2SLS in finite 

samples. Our research questions focused on robustness, efficiency, standard errors, sample 

size, and model tests. We review our results with respect to each of these.

(1) Robustness.

This study demonstrated that MIIV-2SLS for MSEMs retains the expected robustness to 

the spread of model misspecification. This quality may be especially important for MSEMs 

where model misspecification can spread bias both within level as well as between levels 

when using system-wide estimators. In line with the suggestion in Yuan and Bentler (2007), 

this study demonstrated that bias can spread across levels when using ML.

(2) Efficiency.

We examine the relative efficiency of the ML and the MIIV-2SLS estimators of MSEMs. 

Any difference in efficiency using MIIV-2SLS was slight in our simulation. One could easily 

argue that the additional robustness qualities is a valuable tradeoff for a very slight loss in 

efficiency. This is especially true if one believes that all models are approximations.

1To save space, the results for the True Model specification are placed in the supplementary material.
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(3) Standard errors.

The delta method standard errors as applied in this study were generally adequate to 

capture sampling variability in finite samples. The one exception to this was in the smallest 

sample sizes when using 2SLS-ALLIV (all possible MIIVs). Given those conditions, our 

results showed that standard errors could be unstable and were magnitudes larger than 

expected. Importantly, given the smallest sample sizes tested in this study, simply using 

2SLS-OVERID2 (a subset of possible MIIVs) fixed any instability in standard errors.

(4) Sample Size.

Our results suggest that MIIV-2SLS is a promising alternative to ML when there are fewer 

than 100 clusters. MIIV-2SLS performed well in sample sizes well below 100 clusters—the 

suggested minimum for ML. Being able to estimate models with fewer than 100 clusters is 

likely to be very valuable for researchers. In samples with fewer than 50 clusters, our results 

indicated that one should use a subset of MIIVs. We tested a rather extreme minimum of 30 

clusters in this study; we are hesitant to suggest one could perform MIIV-2SLS consistently 

in samples this small. The combination of few clusters and small number of clusters had 

one rather serious side effect of positive biased standard errors when using all instruments 

(2SLS-ALLIV). Based on this simulation, we would suggest that between 50 and 100 

clusters are acceptable for using MIIV-2SLS. At the same time, in these simulations ML 

also performed reasonably well across the same range of sample sizes. This performance 

could be partially an artifact of generally well-behaved data. One is likely to encounter more 

problems in small samples with real data.

(5) Model Fit.

The multilevel overidentification test we presented had appropriate rejection rates given 

correctly specified equations, high power to detect misspecification at the within level 

model, and variable power to detect misspecifications at the between level model. 

At the between level model, one would need greater than 100 clusters to detect the 

misspecifications in this study.

One might be tempted to compare the ability of the multilevel overidentification test to 

detect misspecification at the between level model with some of the ML based alternatives 

(e.g., Yuan & Bentler, 2007; Ryu & West, 2014). However, our study contained a 

rather minor misspecification while other studies of ML model fit have assessed major 

misspecifications (two factor model being fit as a single factor). To directly compare 

our multilevel test to other ML based model fit techniques we would need to assess the 

multilevel test in a more comparable simulation study.

Limitations & Future Directions

One of the primary limitations of any simulation study is generalizability to other models 

and conditions. In this study, we examined one model across a range of conditions. One 

might reasonably assume that the conclusions from this study could extend to a broader set 

of models. At the same time, it is imperative to realize that these results do not capture 

all the possible complexities in MSEMs, and we cannot fully predict how these results 
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will reflect on a completely different model. In this way, more research is necessary to 

understand other model complexities. Meanwhile, various Bayesian methods have been 

used to estimate MSEM model (e.g., Depaoli & Clifton, 2015; Holtmann et. al., 2016). 

Since the Bayesian methods often rely on the entire model specification, we conjecture that 

MIIV-2SLS will be more robust against structural misspecifications. It will be of interest to 

conduct a thorough simulation study to compare the performance of Bayesian methods and 

the proposed MIIV-2SLS approach, especially in small samples.

One particularly salient example of this problem with MIIV-2SLS has to do with the 

availability and selection MIIVs. We only examined overidentified models where every 

equation had many possible MIIVs. It is possible to encounter models with many fewer 

instruments. In these models, some equations may be underidentified or perhaps only 

exactly identified for MIIV-2SLS (meaning no overidentification test). In other applications, 

there may be plenty of MIIVs but the instruments could be weak. We did not examine 

these scenarios and future research is needed to study different types of models with varying 

qualities and quantities of MIIVs.

There are technical limitations about the types of models that can be handled with 

MIIV-2SLS in MSEMs, as it currently stands. Our current MSEM estimator does not handle 

categorical data, random slopes, or more than two levels. Additionally, this study entirely 

focused on estimating coefficients and did not consider the mean structure of the model as 

in Fisher and Bollen (2020). We leave it as a topic of future inquiry. Further, it is often of 

interest to estimate the covariance parameters (e.g., residual and latent variable variances) 

in multi-level modeling. As mentioned in Introduction, system-wide estimators are often 

used to estimate those parameters. Consequently, they are not robust against structural 

misspecifications.

Conclusion

To our knowledge, the current study is the first to demonstrate estimating random intercept 

MSEMs with MIIV-2SLS. The primary goal of this research was to adapt MIIV-2SLS 

estimation for MSEMs and study the empirical performance. The MIIV-2SLS for MSEM 

is robust across levels in that misspecification errors at one level (e.g., between level) do 

not impact estimates at the other level (e.g., within level). Furthermore, Bollen’s (2020) 

and Bollen, Gates, and Fisher’s (2018) robustness conditions for MIIV-2SLS in single level 

models carry over to each level in MSEM. This means we can use these analytic conditions 

to know which type of misspecifications affect an equation and which do not. Moreover, 

ours is the first to propose a multilevel overidentification test for equations.

Overall, our results suggest that MIIV-2SLS is a reasonable alternative or supplement to 

ML given random intercept MSEMs. Of course, the MIIV-2SLS procedure developed in this 

study is not intended to replace ML. Instead, our hope is to add MIIV-2SLS an additional 

tool for MSEM estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Data generating model. The Misspecified Within model omits the cross loadings (dashed 

lines) at the within level, and The Misspecified Between omits the cross loadings at the 

between level model.
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Figure 2. 
Convergence rate heat map.

Giordano et al. Page 20

Struct Equ Modeling. Author manuscript; available in PMC 2023 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Average relative bias given the true model. Relative bias is averaged and plotted across level 

of the model, type of parameter, estimator, cluster size and number of clusters. Lowess curve 

overlaid to show trends.
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Figure 4. 
Average relative bias given a misspecified within model. Correct and Incorrect specification 

is with respect to the MIIV-2SLS equations given in Table 1. Lowess curve overlaid to show 

trends.
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Figure 5. 
Empirical Standard Deviation of parameter estimates given the true model. Lowess curve 

overlaid to show trends.
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Figure 6. 
Root Mean Squared Error given true model. Lowess curve overlaid to show trends.
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Figure 7. 
Standard Error Relative Bias given true model. Lowess curve overlaid to show trends.
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Figure 8. 
Proportion of 95% confidence intervals which contain the population parameter given the 

true model. Lowess curve overlaid to show trends.
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Figure 9. 
Proportion of Multilevel Overidentification Test rejecting the null hypothesis for 

misspecified equations in the misspecified within model. Dotted line marks 80% rejection 

rate.
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Figure 10. 
Proportion of Multilevel Overidentification Test rejecting the null hypothesis for 

misspecified equations in the misspecified between model. Dotted line marks 80% rejection 

rate. Lowess curve overlaid to show trends.
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Table 1.

Observed variables corresponding to MIIV-2SLS equations.

Instruments

 LHS RHS ALLIV OVERID2

Correctly Specified Models 

Factor Loadings

  Y2 Y1 Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12 Y3, Y4, Y5

  Y3 Y1 Y2, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12 Y2, Y4, Y5

  Y4 Y1 Y2, Y3, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12 Y2, Y3, Y5

  Y6 Y5, Y1 Y2, Y3, Y4, Y7, Y8, Y9, Y10, Y11, Y12 Y2, Y3, Y7, Y8

  Y7 Y5 Y1, Y2, Y3, Y4, Y6, Y8, Y9, Y10, Y11, Y12 Y6, Y8, Y10

  Y8 Y5 Y1, Y2, Y3, Y4, Y6, Y7, Y9, Y10, Y11, Y12 Y6, Y7, Y10

  Y10 Y9, Y5 Y1, Y2, Y3, Y4, Y6, Y7, Y8, Y11, Y12 Y6, Y7, Y11, Y12

  Y11 Y9 Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y10, Y12 Y8, Y10, Y12

  Y12 Y9 Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y10, Y11 Y8, Y10, Y11

LV regressions

  Y5 Y1 Y2, Y3, Y4 Y2, Y3, Y4

  Y9 Y5 Y1, Y2, Y3, Y4, Y6, Y7, Y8 Y2, Y6, Y7

Incorrectly Specified Models 

Factor Loadings

  Y2 Y1 (see correctly specified equations above)

  Y3 Y1 (see correctly specified equations above)

  Y4 Y1 (see correctly specified equations above)

  Y6 Y5 Y1, Y2, Y3, Y4, Y7, Y8, Y9, Y10, Y11, Y12 Y2, Y3, Y7, Y8

  Y7 Y5 (see correctly specified equations above)

  Y8 Y5 (see correctly specified equations above)

  Y10 Y9 Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y11, Y12 Y6, Y7, Y11, Y12

  Y11 Y9 (see correctly specified equations above)

  Y12 Y9 (see correctly specified equations above)

LV regressions

  Y5 Y1 (see correctly specified equations above)

  Y9 Y5 (see correctly specified equations above)

Note: All equations apply to both levels of the model.

Struct Equ Modeling. Author manuscript; available in PMC 2023 June 16.


	Abstract
	Introduction
	Random Intercepts MSEM Model
	MIIV-2SLS Estimation for MSEMs
	Monte Carlo Simulation Design
	Data generation
	Models Specifications
	Estimators
	Simulation Evaluation


	Results
	Convergence and Extreme Outliers
	Relative Bias
	Empirical Standard deviation
	Standard Error Bias
	95% Confidence Intervals
	Multilevel Overidentification Test for Equations

	Discussion
	Robustness.
	Efficiency.
	Standard errors.
	Sample Size.
	Model Fit.

	Limitations & Future Directions
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Table 1.

