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Abstract

On the problem of scoring genes for evidence of changes in the distribution of single-cell 

expression, we introduce an empirical Bayesian mixture approach and evaluate its operating 

characteristics in a range of numerical experiments. The proposed approach leverages cell-subtype 

structure revealed in cluster analysis in order to boost gene-level information on expression 

changes. Cell clustering informs gene-level analysis through a specially-constructed prior 

distribution over pairs of multinomial probability vectors; this prior meshes with available model-

based tools that score patterns of differential expression over multiple subtypes. We derive an 

explicit formula for the posterior probability that a gene has the same distribution in two cellular 

conditions, allowing for a gene-specific mixture over subtypes in each condition. Advantage is 

gained by the compositional structure of the model not only in which a host of gene-specific 

mixture components are allowed but also in which the mixing proportions are constrained at the 

whole cell level. This structure leads to a novel form of information sharing through which the 

cell-clustering results support gene-level scoring of differential distribution. The result, according 

to our numerical experiments, is improved sensitivity compared to several standard approaches for 

detecting distributional expression changes.
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1. Introduction.

The ability to measure genome-wide gene expression at single-cell resolution has 

accelerated the pace of biological discovery. Overcoming data analysis challenges caused by 

the scale and unique variation properties of single-cell data will surely fuel further advances 

in immunology (Papalexi and Satija (2017)), developmental biology (Marioni and Arendt 
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(2017)), cancer (Navin (2015)) and other areas (Nawy (2013)). Computational tools and 

statistical methodologies created for data of lower resolution (e.g., bulk RNA-seq) or lower 

dimension (e.g., flow cytometry) guide our response to the data-science demands of new 

measurement platforms, but they remain inadequate for efficient knowledge discovery in this 

rapidly advancing domain (Bacher and Kendziorski (2016)).

An important feature of single-cell studies that could be leveraged better statistically is 

the fact that cells populate distinct, identifiable subtypes determined by lineage history, 

epigenetic state, the activity of various transcriptional programs or other distinguishing 

factors. Extensive research on clustering cells has produced tools for identifying subtypes, 

including SC3 (Kiselev et al. (2017)), CIDR (Lin, Troup and Ho (2017)) and ZIFA (Pierson 

and Yau (2015)). We hypothesize that such subtype information may be usefully utilized in 

other inference procedures in order to improve their operating characteristics.

Assessing the magnitude and statistical significance of changes in gene expression 

associated with changes in cellular condition has been a central statistical problem in 

genomics. New tools specific to the single-cell RNA-seq data structure, including MAST 

(Finak et al. (2015)), scDD (Korthauer et al. (2016)), and D3E (Delmans and Hemberg 

(2016)) have been deployed to address this problem. These tools respond to scRNA-seq 

characteristics, such as high prevalence of zero counts and gene-level multimodality, but 

they do not fully exploit cellular-subtype information and, therefore, may be underpowered 

in some settings. The proposed method, which uses negative binomial mixtures to measure 

changes in a gene’s marginal sampling distribution, acquires sensitivity to a variety of 

distributional effects by how it integrates gene-level data with subtype information. From 

input data the associated R package scDDboost1 prioritizes genes with a local false-

discovery rate against the null hypothesis of no condition effect on the marginal sampling 

distribution. The complement of this rate is an empirical Bayesian posterior probability of 

differential distribution (DD). By incorporating transciptomic information on cell subtypes, 

scDDboost leverages useful and previously untapped information on each gene’s expression 

sampling distribution.

Through the compositional model underlying scDDboost, subtypes inferred by clustering 

inform the analysis of gene-level expression. The proposed methodology merges two lines 

of computation after cell clustering: one concerns patterns of differential expression among 

the cellular subtypes, and here we take advantage of the powerful EBseq method for 

detecting patterns in negative-binomially-distributed expression data (Leng et al. (2013)). 

The second concerns the counts of cells in various subtypes; for this we propose a double 

Dirichlet mixture distribution to model the pair of multinomial probability vectors for 

subtype counts in two experimental conditions. Further elements are developed on the 

selection of the number of subtypes and on accounting for uncertainty in the cluster output, 

in order to provide an end-to-end solution to the differential distribution problem. We note 

that modularity in the necessary elements provides some methodological advantages. For 

example, improvements in clustering may be used in place of the default clustering without 

1 http://github.com/wiscstatman/scDDboost/ 
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altering the form of downstream analysis. Also, by avoiding Markov chain Monte Carlo, 

scDDboost computations are relatively inexpensive for a Bayesian procedure.

To set the context by way of example, Figure 1 highlights the ability of scDDboost to 

sense subtype composition changes and thus detect subtle gene expression changes between 

conditions. The three panels on the left compare expression from 91 human stem cells 

known to be in the G1 phase of the cell cycle, as well as from 76 such cells known to be 

in the G2/M phase (Leng et al. (2015)) in three genes (BIRC5, HMMR and CKAP2), which 

we happen to know from prior studies have differential activity between G1 and G2/M (Li 

and Altieri (1999), Sohr and Engeland (2008), Dominguez et al. (2016)). Several standard 

statistical tools applied to the data behind Figure 1 do not find the observed differences in 

any of these genes to be statistically significant when controlling the false discovery rate 

(FDR) at 5%, but scDDboost does include these genes on its 5% FDR list. Considering 

prior studies, these subtle distributional changes are probably not false discoveries. The 

right panel in Figure 1 shows these three among many other genes also known to be 

involved in cell-cycle regulation but not identified by standard tools as altered between G1 

and G2/M at the 5% FDR level. The color panel provides insight into why scDDboost 

has identified these genes. For this data set, six cellular subtypes were identified in the 

first step of scDDboost (colors red, blue, green and orange are visible). These subtypes 

have changed in their proportions between G1 and G2/M; there is a lower proportion of 

red cells and a greater proportion of orange cells in G2/M, for example. These proportion 

shifts, which are inferred from genome-wide data, stabilize gene-specific statistics that 

measure changes between conditions in the mixture distribution of expression and, thereby, 

increase power. We note that scDDboost agrees with other statistical tools on very strong 

differential-distribution signals (not shown), but it has the potential to increase power for 

subtle signals owing to its unique approach to leveraging cell subtype information.

Numerical experiments on both synthetic and published scRNA-seq data bear out the 

incidental finding in Figure 1 that scDDboost has sensitivity for detecting subtle 

distribution changes. In these experiments we take advantage of splatter for generating 

synthetic data (Zappia, Phipson and Oshlack (2017)) as well as the compendium of scRNA-

seq data available through conquer (Soneson and Robinson (2018)). Additional numerical 

experiments show a relationship between scDDboost findings and more mechanistic 

attempts to parameterize transcriptional activation (Delmans and Hemberg (2016)). Finally, 

we establish first-order asymptotic results for the methodology.

On manuscript organization we present the modeling and methodology elements in Section 

2, numerical experiments in Section 3, asymptotic analysis in Section 4 and a discussion in 

Section 5. We relegate some details to an Appendix and many others to the Supplementary 

Material (Ma et al. (2021)).

2. Modeling.

2.1. Data structure, sampling model and parameters.

In modeling scRNA-seq data we imagine that each cell c falls into one of K > 1 classes, 

which we think of as subtypes or subpopulations of cells. For notation, zc = k means 
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that cell c is of subtype k, with the vector z = zc  recording the states of all sampled 

cells. Knowledge of this class structure prior to measurement is not required, as it will be 

inferred as necessary from available genomic data. We expect that cells arise from multiple 

experimental conditions, such as by treatment-control status or some other factors measured 

at the cell level, but we present our development for the special case of two conditions. 

Notationally, y = yc  records the experimental condition, say yc = 1 or yc = 2. Let’s say 

condition j measures nj = ∑c 1 yc = j  cells, and, in total, we have n = n1 + n2 cells in the 

analysis. The examples in Section 3 involve hundreds to thousands of cells. Further, let

tk
j = tk

j y, z = ∑
c

1 yc = j, zc = k (1)

denote the number of cells of subtype k in condition j, and Xg, c denote the normalized 

expression of gene g in cell c. This is one entry in a typically large genes-by-cells data 

matrix X. Thus, the data structure entails an expression matrix X, a treatment label vector y
and a vector z of latent subtype labels.

We treat subtype counts in the two conditions, t1 = t1
1, t2

1, …, tK
1  and t2 = t1

2, t2
2, …, tK

2 ), as 

independent multinomial vectors, reflecting the experimental design. Explicitly,

t1 ∣ y MultinomialK n1, ϕ   and  t2 ∣ y MultinomialK n2, ψ (2)

for probability vectors ϕ = ϕ1, ϕ2, …, ϕK  and ψ = ψ1, ψ2, …, ψK  that characterize the 

populations of cells from which the n observed cells are sampled. This follows from the 

more basic sampling model: P zc = k ∣ yc = 1 = ϕk and P zc = k ∣ yc = 2 = ψk.

Our working hypothesis, referred to as the compositional model, is that any differences 

in the distribution of expression Xg, c between yc = 1 and yc = 2 (i.e., any condition effects) 

are attributable to differences between the conditions in the underlying composition of cell 

types, that is, owing to ϕ ≠ ψ. We suppose that cells of any given subtype k will present 

data according to a distribution reflecting technical and biological variation specific to that 

class of cells, regardless of the condition yc of the cell. Some care is needed in this, as 

an overly broad cell subtype (e.g., epithelial cells) could have further subtypes that show 

differential response to some treatment, for example, and so cellular condition (treatment) 

would then affect the distribution of expression data within the subtype which is contrary 

to our working hypothesis. Were that the case, we could have refined the subtype definition 

to allow a greater number of population classes K in order to mitigate the problem of 

within-subtype heterogeneity. A risk in this approach is that K could approach n, as if 

every cell were its own subtype. We find, however, that data sets often encountered do not 

display this theoretical phenomenon when using a broad class of within-subtype expression 

distributions. Subtypes are considered such that cellular condition affects their composition 

but not the sampling distribution of expression within a subtype.

Within the compositional model, let fg, k denote the sampling distribution of expression 

measurement Xg, c assuming that cell c is from subtype k. Then, for the two cellular 
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conditions and at some expression level x, the marginal distributions over subtypes are 

finite mixtures,

fg
1 x = ∑

k = 1

K
ϕkfg, k x   and  fg

2 x = ∑
k = 1

K
ψkfg, k x .

In other words, Xg, c ∣ yc = j fg
j and Xg, c ∣ zc = k, yc = j fg, k.

We say that gene g is differentially distributed, denoted DDg and indicated by fg
1 ≠ fg

2, if 

fg
1 x ≠ fg

2 x  for some x, and, otherwise, it is equivalently distributed (EDg). Motivated by 

findings from bulk RNA-seq data analysis, we further set each fg, k to have a a negative-

binomial form with mean μg, k and shape parameter σg, as in (Leng et al. (2013), Anders 

and Huber (2010), Love, Huber and Anders (2014) and Chen et al. (2018)). This choice is 

effective in our numerical experiments though it is not critical to the modeling formulation. 

The use of mixtures per gene has proven useful in related model-based approaches (e.g., 

Finak et al. (2015), McDavid et al. (2014), Huang et al. (2018)).

We seek methodology to prioritize genes for evidence of DDg. Interestingly, even if we 

have evidence for condition effects on the subtype frequencies, it does not follow that a 

given gene will have fg
1 ≠ fg

2. That depends on whether or not the subtypes show the right 

pattern of differential expression at g, using the standard terminology from bulk RNA-seq. 

For example, if two subtypes have different frequencies between the two conditions ϕ1 ≠ ψ1

and ϕ2 ≠ ψ2  but the same aggregate frequency ϕ1 + ϕ2 = ψ1 + ψ2  and also, if components are 

equivalent, fg, 1 = fg, 2, then, other things being equal, marginals fg
1 = fg

2, even though ϕ ≠ ψ. 

Details confirming such equality are exemplified further in Supplementary Material Section 

2.1, Ma et al. (2021). The fact is so central that we emphasize:

Key Issue.—A gene that does not distinguish two subtypes will also not distinguish the 

cellular conditions if those subtypes appear in the same aggregate frequency in the two 

conditions, regardless of changes in the individual subtype frequencies.

We formalize this issue in order that our methodology has the necessary functionality. To 

do so, first consider the parameter space Θ = θ = ϕ, ψ, μ, σ , where ϕ = ϕ1, ϕ2, …, ϕK  and 

ψ = ψ1, ψ2, …, ψK  are as before, where μ = μg, k  holds all the subtype-and-gene-specific 

expected values and where σ = σg  holds all the gene-specific negative-binomial shape 

parameters. Critical to our construction are special subsets of Θ corresponding to partitions 

of the K cell subtypes. A single partition, π, is a set of mutually exclusive and exhaustive 

blocks, b, where each block is a subset of 1, 2, …, K , and we write π = b . Of course, the 

set Π containing all partitions π of 1, 2, …, K  has cardinality that grows rapidly with K. We 

carry along an example involving K = 7 cell types and one three-block partition taken from 

the set of 877 possible partitions of 1, 2, …, 7  (Figure 2).

For any partition π = b , consider aggregate subtype frequencies
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Φb = ∑
k ∈ b

ϕk  and  Ψb = ∑
k ∈ b

ψk

and extend the notation, allowing vectors Φπ = Φb:b ∈ π , and similarly for Ψπ. Recall the 

partial ordering of partitions based on refinement, and note that as long as π is not the most 

refined partition (every cell type is in its own block), then the mapping from ϕ, ψ  to Φπ, Ψπ

is many-to-one. Further, define sets

Aπ = θ ∈ Θ:Φb = Ψb ∀b ∈ π (3)

and

Mg, π = θ ∈ Θ:μg, k = μg, k′ k, k′ ∈ b, b ∈ π . (4)

Under Aπ there are constraints on cell subtype frequencies; under Mg, π there is equivalence in 

the gene-level distribution of expression between certain subtypes. These sets are precisely 

the structures needed to address differential distribution DDg (and its complement, equivalent 

distribution, EDg) at a given gene g.

Theorem 1. Let Cg, π = Aπ ∩ Mg, π. For partitions π1 ≠ π2, Cg, π1 ∩ Cg, π2 = ∅. Further, at any gene g, 

equivalent distribution is

EDg = ∪
π ∈ Π

Cg, π .

With additional probability structure on the parameter space, we immediately obtain from 

Theorem 1 a formula for local false discovery rates,

1 − P DDg ∣ X, y = P EDg ∣ X, y = ∑
π ∈ Π

P Aπ ∩ Mg, π ∣ X, y . (5)

Local false discovery rates are important empirical Bayesian statistics in large-scale testing 

(Efron (2007); Muralidharan (2010); Newton et al. (2004)). For example, the conditional 

false discovery rate of a list of genes is the arithmetic mean of the associated local false 

discovery rates. The partition representation guides the construction of a prior distribution 

(Section 2.3) and a model-based method (Section 2.2) for scoring differential distribution. 

Setting the stage, Figure 3 shows the dependency structure of the proposed compositional 

model and the partition-reliant prior specification.

Key to computing the gene-specific local false discovery rate P EDg ∣ X, y  is evaluating 

probabilities P Aπ ∩ Mg, π ∣ X, y . The dependence structure (Figure 3) implies a useful 

reduction of this quantity, at least conditionally upon subtype labels z = zc . For each 

subtype partition π and gene g,

Theorem 2. P Aπ ∩ Mg, π ∣ X, y, z = P Aπ ∣ y, z P Mg, π ∣ X, z .
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In what follows we develop the modeling and computational elements necessary to 

efficiently evaluate inference summaries (5) taking advantage of Theorems 1 and 2. 

Roughly, the methodological idea is that subtype labels z have relatively low uncertainty 

and may be estimated from genome-wide clustering of cells in the absence of condition 

information y. (up to an arbitrary label permutation). We handle the modest uncertainty in 

z through a computationally efficient randomized clustering scheme. Theorem 2 indicates 

that our computational task then separates into two parts given z. On one hand, cell subtype 

frequcies combine with condition labels to give P Aπ ∣ y, z . Then, gene-level data locally 

drive the posterior probabilities P Mg, π ∣ X, z  that measure differential expression between 

subtypes. Essentially, the model provides a specific form of information sharing between 

genes that leverages the compositional structure of single-cell data in order to sharpen our 

assessments of between-condition expression changes.

2.2. Method structure and clustering.

To infer subtypes, we leverage the extensive research on how to cluster cells using scRNA-

seq data: for example, SC3 (Kiselev et al. (2017)), CIDR (Lin, Troup and Ho (2017)) 

and ZIFA (Pierson and Yau (2015)). We propose distance-based clustering on the full 

set of profiles in a way that is blind to the condition label vector y in order to have as 

many cells as possible to inform the subtype structure. We investigated several clustering 

schemes in numerical experiments and allow flexibility in this choice within the SCDDBOOST 

software. Associating clusters with subtype labels zc estimates the actual subtypes zc and 

prepares us to use Theorems 1 and 2 in order to compute separate posterior probabilities 

P Aπ ∣ y, z  and P Mg, π ∣ X, z  that are necessary for scoring differential distribution. The 

first probability concerns patterns of cell counts over subtypes in the two conditions and 

has a convenient closed form within the double-Dirichlet model (Section 2.3). The second 

probability concerns patterns of changes in expected expression levels among subtypes, 

and this is also conveniently computed for negative-binomial counts using EBSeq (Leng 

et al. (2013)). Algorithm 1 summarizes how these elements combine to get the posterior 

probability of differential distribution per gene, conditional on an estimate of the subtype 

labels.

We invoke K-medoids (Kaufman and Rousseeuw (1987)) as the default clustering method 

in scDDboost, and customize the cell-cell distance by integrating two measures. The first 

assembles gene-level information by cluster-based-similarity partitioning (Strehl and Ghosh 

(2003)). Separately at each gene, modal clustering (Dahl (2009) and in the Supplementary 

Material Section 2.2, Ma et al. (2021)) partitions the cells, and then we define dissimilarity 

between cells as the Manhattan distance between gene-specific partition labels. A second 

measure defines dissimilarity by one minus the Pearson correlation between cells, which is 

computationally inexpensive, less sensitive to outliers than Euclidean distance and effective 

at detecting cellular clusters in scRNA-seq (Kim et al. (2019)). The default clustering 

in scDDboost combines these two measures by weighted average, with wC = σP
σC + σP

 and 

wP = 1 − wC, where wC, σC, wP, σP are the weights and standard deviations of cluster-based 

distance and Pearson-correlation distance, respectively. The software allows other distances, 
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such as provided by SC3, which we use in some numerical experiments; in any case, the 

final distance matrix is denoted D = di, j .

Any clustering method entails classification errors, and so zc ≠ zc for some cells. To mitigate 

the effects of this uncertainty, scDDboost averages output probabilities from SCDDBOOST-

CORE over randomized clusterings z*. These are not uniformly random but rather are 

generated by applying K-medoids to a randomized distance matrix D* = di, j/wi, j , where 

wi, j are nonnegative weights wi, j = ei + ej , where ei  are independent and identically Gamma 

distributed deviates with shape a/2 and rate a and where a is estimated from D. (Thus, 

wi, j is Gamma a, a  and has unit mean.) The distribution of clusterings induced by this 

simple computational scheme approximates a Bayesian posterior analysis, as we argue in 

the Appendix where we also present pseudo-code for the resulting scDDboost Algorithm 2. 

Averaging over results from randomized clusterings gives additional stability to the posterior 

probability statistics (Supplementary Figure S10).

Computations become more intensive the larger is the number K of cell subtypes. Version 

1.0 of scDDboost is restricted to K ≤ 9; we consider further computational strategies 

in Section 5. Inferentially, taking K to be too large may inflate the false positive rate 

(Supplementary Figure S11). The approach taken in ScDDboost is to set K using the 

validity score (Ray and Turi (2000)) which measures changes in within-cluster sum of 

squares as we increase K. Our implementation, in Supplementary Material Section 2.2, Ma 

et al. (2021), shows good operating characteristics in simulation.

2.3. P Aπ ∣ y, z .

We introduce the double Dirichlet mixture (DDM), which is the partition-reliant prior p ϕ, ψ
indicated in Figure 3, in order to derive an explicit formula for P Aπ ∣ y, z . We lose no 

generality here by defining Aπ = ϕ, ψ :Φb = Ψb ∀b ∈ π  rather than as a subset of the full 

parameter space, as in (3). Each Aπ is closed and convex subset of the product space holding 

all possible pairs of length- K probability vectors.

We propose a spike-slab-style mixture prior with the following form:

p ϕ, ψ = ∑
π ∈ Π

ωπpπ ϕ, ψ . (6)
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Each mixture component pπ ϕ, ψ  has support Aπ; the mixing proportions ωπ are positive 

constants summing to one. To specify component pπ, notice that on Aπ there is a 1–1 

correspondence between pairs ϕ, ψ  and parameter states,

ϕb, ψb, Φb , ∀b ∈ π , (7)

where

ϕb = ϕb
Φb

, ψb = ψb
Ψb

  and  Φb = ∑
k ∈ b

ϕk = ∑
k ∈ b

ψk = Ψb

For example, ϕb is a vector of conditional probabilities for each subtype, given that a cell 

from the first condition is one of the subtypes in b.

We introduce hyperparameters αk
1, αk

2 > 0 for each subtype k and set βb = ∑k ∈ b αk
1 + αk

2  for any 

possible block b. Extending notation, let αb
j be the vector of αk

j for k ∈ b, βπ be the vector of 

βb for b ∈ π, ϕb and ψb be vectors of ϕk and ψk, respectively, for k ∈ b, and Φπ and Ψπ be the 

vectors of Φb and Ψb for b ∈ π. The proposed double-Dirichlet component pπ is determined in 

the transformed scale by assuming Ψπ = Φπ and further,

Φπ DirichetN π βπ ,
ϕb DirichletN b αb

1 ∀b ∈ π,
ψb DirichletN b αb

2 ∀b ∈ π,
(8)

where N π  is the number of blocks in π and N b  is the number of subtypes in b and 

where all random vectors in (8) are mutually independent. Mixing over π as in (6), we write 

ϕ, ψ DDM ω = ωπ , α1 = αk
1 , α2 = αk

2 .

We record some properties of the component distributions pπ.

Property 1. In pπ ϕ, ψ , ψ and ϕ are dependent, unless π is the null partition in which all 

subtypes constitute a single block.

Property 2. With k ∈ b, marginal means are

Eπ ϕk = αk
1

∑k′ ∈ b αk′
1

βb
∑b′ ∈ π βb′

  and  Eπ ψk = αk
2

∑k′ ∈ b αk′
2

βb
∑b′ ∈ π βb′

.

Recall from (1) the vectors t1 and t2 holding counts of cells in each subtype in each 

condition, computed from y and z. Relative to a block b ∈ π, let tb
j = ∑k ∈ b tk

j, for cell 

conditions j = 1, 2, and, let tπ
j be the vector of these counts over b ∈ π. The following 

properties refer to marginal distributions in which ϕ, ψ  have been integrated out of the joint 

distribution involving (2) and the component pπ.

Property 3. t1 and t2 are conditionally independent, given y, tπ
1 and tπ

2.
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Property 4. For j = 1, 2,

pπ tj ∣ tπ
j, y = ∏

b ∈ π
Γ tb

j + 1
∏k ∈ b Γ tk

j + 1
Γ ∑k ∈ b αk

j

∏k ∈ b Γ αk
j

∏k ∈ b Γ αk
j + tk

j

Γ tb
j + ∑k ∈ b αk

j .

Property 5.

pπ tπ
1, tπ

2 ∣ y = Γ n1 + 1 Γ n2 + 1
∏b ∈ π Γ tb

1 + 1 Γ tb
2 + 1

Γ ∑b ∈ π βb
∏b ∈ π Γ βb

∏b ∈ π Γ βb + tb
1 + tb

2

Γ n1 + n2 + ∑b ∈ π βb
.

Let’s look at some special cases to dissect this result.

Case 1. If π has a single block equal to the entire set of cell types 1, 2, …, K , then tb
j = nj for 

both j = 1, 2, and Property 5 reduces, correctly, to pπ tπ
1, tπ

2 ∣ y = 1. Further,

pπ tj ∣ tπ
j, y = Γ nj + 1

Γ nj + ∑k = 1
K αk

j
Γ ∑k = 1

K αk
j

∏k = 1
K Γ αk

j ∏
k = 1

K Γ αk
j + tk

j

Γ tk
j + 1

which is the well-known Dirichlet-multinomial predictive distribution for counts tj (Wagner 

and Taudes (1986)). For example, taking αk
j = 1 for all types k, we get the uniform 

distribution

pπ tj ∣ tπ
j, y = Γ nj + 1 Γ K

Γ nj + K .

Case 2. At the opposite extreme, π has one block b for each class k, so ϕ = ψ. Then, 

pπ tj ∣ tπ
j, y = 1, and, further, writing b = k,

pπ tπ
1, tπ

2 ∣ y = Γ n1 + 1 Γ n2 + 1
∏k = 1

K Γ tk
1 + 1 Γ tk

2 + 1
Γ ∑k = 1

K βk

∏k = 1
K Γ βk

∏k = 1
K Γ βk + tk

1 + tk
2

Γ n1 + n2 + βk
,

which corresponds to Dirichlet-multinomial predictive distribution for counts t1 + t2 since 

t1 and t2 are identical distributed given ϕ, ψ  in this case. These properties are useful in 

establishing

Theorem 3. DDM is conjugate to multinomial sampling of t1 and t2,

ϕ, ψ ∣ y, z DDM ωpost = ωπ
post , α1 + t1, α2 + t2

where

ωπ
post ∝ pπ t1 ∣ tπ

1, y pπ t2 ∣ tπ
2, y pπ tπ

1, tπ
2 ∣ y ωπ (9)
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The target probability P Aπ ∣ y, z  is an integral of the posterior distribution in Theorem 3. To 

evaluate it, we need to contend with the fact that sets Aπ:π ∈ Π  are not disjoint. Relevant 

overlaps have to do with partition refinement. Recall that a partition πr is a refinement 

of a partition πc if, for any b ∈ πc, there exists s ⊂ πr such that ∪b′ ∈ s b′ = b. We say πc

coarsens πr when πr refines πc. Any partition both refines and coarsens itself as a trivial case. 

Generally, refinements increase the number of blocks. If subtype frequency vectors ϕ, ψ
satisfy the constraints in Aπr, then they also satisfy the constraints of any πc that coarsens πr; 
that is, Aπr ⊂ Aπc. Refinements reduce the dimension of allowable parameter states. For the 

double-Dirichlet component distributions Pπ, we find

Property 6. For two partitions π and π, Pπ Aπ ∣ y, z = 1[π refines π].

This supports the main finding of this section,

P Aπ ∣ y, z = ∑
π ∈ Π

ωπ
post1 π refines π (10)

2.4. P Mg, π ∣ X, z .

We leverage well-established modeling techniques for transcript analysis, including (Leng 

et al. (2013), Newton and Kendziorski (2003) and Jensen et al. (2009)) which characterize 

equivalent or differential expression in terms of shared or independently drawn mean effects. 

Let Xg, b denote the subvector of expression values at gene g over cells c with zc = k for which 

subtype k is part of block b of partition π. Conditioning on subtype labels z = zc , we assume 

that under Mg, π :

1. Between blocks: subvectors Xg, b:b ∈ π  are mutually independent;

2. Within blocks: for cells mapping to block b, observations Xg, c are i.i.d;

3. Mean effects: for each block b, there is a univariate mean, μg, b, shared by cells 

mapping to that block; a priori these means are i.i.d. between blocks.

These assumptions imply a useful factorization marginally to latent means,

P Xg ∣ Mg, π, z = ∏
b ∈ π

f Xg, b , (11)

where f is a customized density kernel. In our case we use EBseq from (Leng et al. 

(2013)): the sampling distribution of Xg, c is negative binomial, and f becomes a particular 

compound multivariate negative binomial formed from integrating uncertainty in the block-

specific means (see Supplementary Material Section 2.2, Ma et al. (2021)). Through its 

gene-level mixing model, EBseq also gives estimates of P Mg, π ∣ z  : the proportions of 

genes governed by any of the different patterns π of equivalent/differential expression among 

subtypes. With these estimates and (11) we compute by Bayes’s rule,
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P Mg, π ∣ X, z ∝ P Mg, π ∣ z ∏
b ∈ π

f Xg, b .

The proportionality is resolved by calculating over all partitions π.

3. Numerical experiments.

3.1. Synthetic data.

We used splatter (v. 1.2.0) to generate synthetic scRNA-seq data for which the DD status 

of genes is known (Zappia, Phipson and Oshlack (2017)), thereby allowing us to measure 

operating characteristics of scDDboost in a controlled setting. Splatter is a generative 

system for simulating realistic single-cell RNA-seq data. It accounts for biological and 

technical sources of variation and is calibrated from a number of published data sets. Our 

hypothetical two-condition comparison involved n = 400 cells and 17,421 genes and mixing 

over various numbers K of distinct subtypes. To reflect common variation patterns, we 

adopted default settings of the primary parameters in splatter and focused our experiments 

on four settings of splatter’s location and scale parameters θ, γ  which encode distributional 

shifts between subtypes. We entertained 12 scenarios encoding four distributional shift 

settings for each of three different values for the number K of subtypes, with composition 

parameters ϕ and ψ selected to account for various mixing possibilities. Ten replicate 

data sets were simulated on each scenario. These 12 scenarios, encoded by K /θ/γ, span 

states with rather strong signals, like 3/ −0.1/1 to quite weak signals, like 15/0.1/0.4. 

Supplementary Figures S6 and S7 provide a view of the global separation between the 

subtypes and the degree of difficulty of the inference task. We note that the mechanistic 

sampling model induced by splatter is distinct from the descriptive model underlying 

scDDboost. We choose it to reflect anticipated technical and biological sources of variation. 

Further details are in Supplementary Material Section 3.1, Ma et al. (2021).

Figures 4 and 5 summarize the true positive rate and false discovery rate of scDDboost 

compared to three other methodologies: MAST (v. 1.4.0), ScDD (v. 1.2.0) and DESeq2 (v. 

1.18.1). scDDboost exhibits very good operating characteristics in this study, as it controls 

the FDR in all cases while also delivering a relatively high rate of true positives in all cases. 

The beneficial sampling properties are not limited to the 5% FDR threshold, as indicated by 

receiver operator characteristic curves (Supplementary Figure S9).

3.2. Empirical study.

We applied scDDboost to a collection of previously published data sets that are recorded 

at conquer (Soneson and Robinson (2018)). Though not knowing the truly DD genes, we 

can examine how scDDboost output compares to output from several standard methods. We 

selected 12 data sets from conquer representing different species and experimental settings 

and involving hundreds to thousands of cells. Appendix Table A1 provides details. Figure 

6 compares methods in terms of the size of the reported list of DD genes at the 5% FDR 

target level. We see a consistently high yield of scDDboost among the evaluated methods. 

For reference, one of these data sets (GSE64016) happens to be the data behind Figure 1, 
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where we know from other information that some of the uniquely identified genes are likely 

not to be false positives.

To check that the increased discovery rate of scDDboost is not associated with an increased 

rate of false calls, we applied it to a series of random splits of single-condition data sets 

(Appendix Table A2). Figure 7 confirms a very low call rate in cases where no changes in 

distribution are expected.

We conjecture that scDDboost gains power through its novel approach to borrowing 

strength across genes, that is, that the genomic data are providing information about 

cell subtypes and mixing proportions, leaving gene-level data to guide gene-specific 

mixture components. One way to drill into this idea is to consider how many genes 

have similar expression characteristics to a given gene. By virtue of the EBseq analysis 

inside scDDboost, we may assign each gene to a set of related genes that all have the 

same highest-probability pattern of equality/inequality of means across the subtypes. Say 

πg = argmaxπP Mg, π ∣ z, X . In Figure 8 we show that, compared to DD genes commonly 

identified by multiple methods (blue), the set sizes for genes uniquely identified by 

scDDboost (red) tend to be larger. Essentially, the proposed methodology boosts weak 

DD evidence when a gene’s pattern of differential expression among cell subtypes matches a 

large number of other genes.

3.3. Bursting.

Transcriptional bursting is a fundamental property of genes, wherein transcription is 

either negligible or attains a certain probability of activation (Raj and van Oudenaarden 

(2008)). D3E (Delmans and Hemberg (2016)) is a computationally intensive method for 

DE gene analysis rooted in modeling the bursting process. It considers transcripts as in 

the stationary distribution from an experimentally validated stochastic process of single-

cell gene expression (Peccoud and Ycart (1995)). Three mechanistic parameters (rate of 

promoter activation, rate of promoter inactivation and the conditional rate of transcription 

given an active promoter) characterize the model which allows distributional changes 

between conditions without changes in mean expression level. For genes identified as 

DD by scDDboost in dataset GSE71585, either uniquely or in common with comparison 

methods MAST, scDD and DESeq2, Figure 9 shows changes of these bursting parameters. 

Interestingly, genes uniquely identified by scDDboost are associated with more significant 

changes between estimated bursting parameters than genes that all methods identify. This 

finding and similar findings on other data sets (not shown) provide some evidence that 

scDDboost is able to detect biologically meaningful changes in the expression distribution.

3.4. Time complexity.

Run time complexity of scDDboost is dominated by the cost of clustering cells and of 

running EBSeq to measure differences between subtypes. Recall the notation that n for 

number of cells, G for number of genes and K for number of subtypes. Our distance-based 

clustering of n cells measuring G genes requires on the order of G × n2 operations (see 

Supplementary Material Section 2.2, Ma et al. (2021)). Further, EBSeq uses summed counts 

within each subtype for each gene to compute its density kernel, and there are Bell K
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differential patterns to compute, where Bell counts the partitions of K. We impose the 

computational limit K ≤ 9 in scDDboost (v. 1.0). In a typical case involving 20,000 genes 

and 200 cells, using 50 of randomized distances, scDDboost is relatively efficient for K ≤ 6
requiring less than 15 CPU minutes on, for example, a quad-core 2.2 GHz Intel Core i7 with 

16 Gb of RAM. The same data might require 20 to 40 CPU hours when K = 9. In Section 5 

we mention some opportunities to improve this speed.

3.5. Diagnostics.

As implemented, scDDboost uses a particular distance matrix to inform subtypes and 

computes probabilities in a model for which expression is a mixture of constant-shape 

negative binomials. To check the effect of these assumptions, we consider a variety of 

diagnostic calculations using the data sets presented in Sections 3.1 and 3.2. We first 

point out that model misspecification may have a limited impact on Type-I error rates, as 

evidenced by the permutation study (Figure 7) and also the synthetic-data study (Figure 5), 

which does not encode the same modeling assumptions as scDDboost.

To check the within-subtype negative binomial (NB) assumption, we deployed a bootstrap 

goodness-of-fit test in three data sets (Yin and Ma (2013)). Fewer than 1.5% of genes show 

evidence against a within subtype NB assumption at a 5% FDR. Further, for most of these 

non-NB genes the inference drawn by scDDboost is the same as that drawn by various 

other methods (Supplementary Table S3) and where there are differences the scDDboost 

call is plausible (Supplementary Figure S12). Among the genes identified by scDDboost at 

5% FDR in the stem-cell example (recall Figure 1), just six of them fail the NB test, and two 

of these are uniquely called by scDDboost; further, one of the two genes is cell-cycle related.

The constant-shape assumption is less well supported empirically, according to a likelihood-

ratio test that we developed (Supplementary Figure S13). More than 15% of genes show 

evidence against constant shape in the examples considered, though inference on differential 

distribution is only mildly affected (Supplementary Table S4, Figure S14). We have similar 

findings in the splatter-generated synthetic data. Even with evident model misspecification, 

Figure 10 shows that the marginal fit by scDDboost is reasonably accurate in the stem-cell 

example.

Choice of distance function.—We propose distance-based clustering to convey subtype 

information (Section 2.2), and one may ask how sensitive are findings to the choice of 

distance function. The randomization scheme mitigates variation associated with the specific 

partition of cells, but the choice of distance function does affect the computed probabilities. 

To check this, we repeated the numerical experiments in Section 3 using the SC3 distance 

in place of the default. Importantly, Type I error rates remain in control, as evidenced by the 

simulation study and the negative-control permutatation study (Supplementary Figure S15). 

There can be substantial differences in yeild at a given FDR control level (Supplementary 

Table S5).
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4. Asymptotics of the double Dirichlet mixture.

Summary statistics P Aπ ∣ y, z , from Section 2.3, are amenable to a first-order asymptotic 

analysis that provides further insight into DDM model behavior. The fact that support sets 

Aπ for component distributions pπ ϕ, ψ  are not disjoint becomes an important issue. Consider 

distinct partitions π1 and π2 of subtypes 1, 2, …, K , and recall that N π  counts the number 

of blocks in partition π. In case π2 refines π1, then N π1 < N π2 , and we also know that 

Aπ2 ⊂ Aπ1, since refinement imposes additional constraints on the pair ϕ, ψ  of probability 

vectors. If the data-generating state ϕ, ψ ∈ Aπ2, one might ask how posterior probability 

mass tends to be allocated among the other mixture components whose support sets also 

contain this state. The question is addressed by the following.

Theorem 4. Let π1 and π2 denote two partitions for which N π1 < N π2  and Aπ1 ∩ Aπ2 is 

nonempty. Let ϕ, ψ ∈ Aπ1 ∩ Aπ2 denote the data generating state for subtype labels z1, z2, …, zn

given i.i.d. Bernoulli condition labels y1, y2, …, yn, and recall the posterior mixing proportions 

ωπ
post from equation (9) with hyperparameters αi

j ≥ 1 for i = 1, …, K, j = 1, 2. Then

ωπ1
post

ωπ2
post a.s.  0  as n ∞ .

Essentially, mixing mass is transferred to components associated with the most refined 

partition consistent with a given parameter state. To be precise, let H ϕ, ψ = π: ϕ, ψ ∈  Aπ

record all the partitions associated with one state. Typically, there is a most refined partition, 

π* = π* ϕ, ψ  such that

Aπ* = ∩
π ∈ H ϕ, ψ

Aπ . (12)

This always happens when K ≤ 3. In Supplementary Material Section 4, Ma et al. (2021), we 

characterize the exceptional set of states where (12) does not hold. Notably, if (12) does hold 

for state ϕ, ψ , then, for any π ∈ H ϕ, ψ , using Theorem 4 and (10), we have

P Aπ ∣ y1, …, yn; z1, …, zn a.s.  1 as n ∞ .

This provides conditions under which we expect good performance for large numbers of 

cells.

5. Concluding remarks.

We have presented scDDboost, a tool for detecting differentially distributed genes from 

scRNA-seq data, where transcripts are modeled as a mixture of cellular subtypes. The 

methodology links established model-based techniques with novel empirical Bayesian 

modeling and computational elements to provide a powerful detection method showing 

comparatively good operating characteristics in simulation, empirical and asymptotic 

studies.
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In the software and numerical experiments we made specific choices, such as to use 

mixtures of negative binomial components per gene, and to use K-medoids clustering on 

particular cell-cell distances. These choices have evident advantages, but the model structure 

and theory developed in Section 2 carry through for other cases. Future experiments could 

study other formulations within the same schema; for example there may be cell-cell 

distances that better capture the intrinsic dimensionality of expression programs, including, 

perhaps distances based on diffusions (Haghverdi, Buettner and Theis (2015)) or the longest-

leg path distance (Little, Maggioni and Murphy (2017)). Future experiments could also 

further assess operating characteristics when the number of cells is very large and the 

number of reads is relatively small, as may arise with unique molecular identifiers (Chen et 

al. (2018)). Further, assuming a compositional structure to drive model-based computations 

may not be restrictive, since it allows great flexibility in the form of each gene/condition-

specific expression distribution (as coded, they are finite mixtures of negative binomials).

EBSeq currently presents a computational bottleneck for scDDboost, since it searches 

all partitions of K and encodes a hyperparameter estimation algorithm that scales poorly 

with K. Several approximations present themselves that may redress the problem, since, in 

the mixture model context, only patterns π corresponding to relatively probable expression-

change patterns over subtypes have a big impact on the final posterior inference Ma, 

Kendziorski and Newton (2020). Even after resolving this bottleneck, there are advantages 

to having K small compared to n. Numerical experiments show increased false discoveries 

when K is overestimated. But accurate estimation with large K would not be expected to 

provide much improved power, since that depends on accurate estimation of subtypes and 

their frequencies which relies on K being relatively small compared to n.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Proof of Theorem 1. If θ ∈ ∪π ∈ Π Aπ ∩ Mg, π , then there exists a partition π for which θ ∈ Aπ

and θ ∈ Mg, π. By construction

fg
1 x = ∑

k = 1

K
ϕkfg, k x = ∑

b ∈ π
∑

k ∈ b
ϕkfg, k x = ∑

b ∈ π
Φbfg, k* b x ,
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where k* b  indexes any component in b, since all components in that block have the same 

component distribution owing to constraint Mg, π. Continuing, using the constraint θ ∈ Aπ,

fg
1 x = ∑

b ∈ π
Ψbfg, k* b x = fg

2 x ∀x

That is, θ ∈ EDg.

If θ ∈ EDg, then fg
1 x = fg

2 x  for all x. Noting that both are mixtures over the same set of 

components fg, k , let ℎg, l: l = 1, 2, …, L  be the set of distinct components over this set, and 

so

fg
1 x = ∑

k = 1

k
ϕkfg, k x = ∑

l = 1

L
cg, l ϕ ℎg, l x = ∑

l = 1

L
cg, l ψ ℎg, l x = fg

2 x ,

where

cg, l ϕ = ∑
k = 1

K
ϕk1 fg, k = ℎg, l , cg, l ψ = ∑

k = 1

K
ψk1 fg, k = ℎg, l . (13)

Finite mixtures of distinct negative binomial components are identifiable (Proposition 5 

from Yakowitz and Spragins (1968)), and so the equality of fg
1 and fg

2 implies cg, l ϕ = cg, l ψ
for all l = 1, 2, …, L. Identifying the partition blocks bl = k:fg, k = ℎg, l  and the partition 

π = bl , we find θ ∈ Aπ ∩ Mg, π. The accumulated probabilities in (13) correspond to Φπ and Ψπ

which are equal on Aπ.

Randomizing distances for approximate posterior inference.

One way to frame the subtype problem is to suppose that subtype labels z = zi  satisfy 

z = f Δ , where Δ = δi, j  is a n × n matrix holding true, unobservable distances, such 

as δi, j between cells i and j and that f is some assignment function, like the one 

induced by the K-medoids algorithm. Then, posterior uncertainty in z would follow 

directly from posterior uncertainty in Δ. On one hand, we could proceed via formal 

Bayesian analysis, say under a simple conjugate prior in which 1/δi, j Gamma a0, d0 , for 

hyperparameters a0 and d0 and in which the observed distance di, j ∣ δi, j Gamma a1, a1/δi, j . This 

would assure that δi, j is the expectation of di, j, with shape parameter a1 affecting variation 

of measured distances about their expected values. Not accounting for any constraints 

imposed by both D and Δ being distance matrices, we would have the posterior distribution 

1/δi, j ∣ D Gamma a0 + a1, d0 + a1di, j . For any threshold c > 0, we would find

P δi, j ≤ c ∣ D = P U ≥ d0 + a1di, j

c a0 + a1
(14)

where U Gamma a0 + a1, a0 + a1 .
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Alternatively, we could form randomized distances di, j
* = di, j/wi, j, where wi, j is the analyst-

supplied random weight distributed as Gamma a, a , as in Section 2.2. Notice that

P di, j
* ≤ c ∣ D = P wi, j > di, j/c ∣ D

which is also an upper tail probability for a unit-mean Gamma deviate with shape and rate 

equal to a. Comparing to (14), by setting a to equal a0 + a1, and if a0 and d0 are relatively 

small, we find

P di, j
* ≤ c ∣ D ≈ P δi, j ≤ c ∣ D .

In other words, the randomized distance procedure is providing approximate posterior 

draws of the underlying distance matrix. In spite of limitations of this procedure for full 

Bayesian inference, it provides an elementary scheme to account for uncertainty in subtype 

allocations. Numerical experiments in the Supplementary Material make comparisons to a 

full, Dirichlet-process-based, posterior analysis.

Pseudo-code.

Empirical datasets.

Appendix Table A1

Data sets used for the empirical study of scDDboost

Conditions # cells Organism Ref

GSE94383 0 min unstim vs 75 min stim 186, 145 human Lane et al. (2017)

GSE48968-
GPL13112

BMDC (2h LPS stimulation) vs 6h LPS 96, 96 mouse Shalek et al. (2014)

GSE52529 T0 vs T72 69, 74 human Trapnell et al. (2014)

GSE74596 NKT1 vs NTK2 46, 68 mouse Engel et al. (2016)

EMTAB2805 G1 vs G2M 96, 96 mouse Buettner et al. (2015)

GSE71585-
GPL13112

Gad2tdTpositive vs Cux2tdTnegative 80, 140 mouse Tasic et al. (2016)

GSE64016 G1 vs G2 91,76 human Leng et al. (2015)

GSE79102 patient1 vs patient2 51, 89 human Kiselev et al. (2017)
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Conditions # cells Organism Ref

GSE45719 16-cell stage blastomere vs mid blastocyst 
cell

50, 60 mouse Deng et al. (2014)

GSE63818 Primordial Germ Cells, developmental 
stage: 7 week gestation vs Somatic Cells, 
developmental stage: 7 week gestation

40, 26 mouse Guo et al. (2015)

GSE75748 DEC vs EC 64, 64 human Chu et al. (2016)

GSE84465 neoplastic cells vs non-neoplastic cells 1000, 1000 human Darmanis et al. (2017)

Appendix Table A2

Single-condition data sets used in the random-splitting experiment

Data set Condition # cells

GSE63818null 7 week gestation 40

GSE75748null DEC 64

GSE94383null T0 186

GSE48968-GPL13112null BMDC (2h LPS stimulation) 96

GSE74596null NKT1 46

EMTAB2805null G1 96

GSE71585-GPL13112null Gad2tdTpositive 80

GSE64016null G1 91

GSE79102null patient1 51
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Fig. 1. 
Genes involved in cell cycle that are identified by scDDboost, but not standard approaches, 

as differentially distributed between cell-cycle phases G1 and G2/M in human embryonic 

stem cells (GSE64016). Density estimates on the left show expression data (log2 scale) 

of three genes identified by scDDboost at 5% FDR but not similarly identified by MAST, 

scDD or DESeq2. Prior studies have shown that the expression of BIRC5, CKAP2 and 

HMMR is dependent on the phase of cell cycle, suggesting that these subtle shifts are not 

false positives. Heatmap (right) shows these three genes among 137 other cell-cycle genes 

(GO:0007049) identified exclusively by scDDboost, with expression from low (blue) to high 

(red). Cells (columns) are clustered by their genome-wide expression profiles into distinct 

cellular subtypes, as indicated by the color panel.
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Fig. 2. 
Proportions of K = 7 cellular subtypes in two different conditions. Aggregated proportions 

of subtypes 3 and 4, subtypes 2, 5 and 6 and subtypes 1 and 7 remain same across 

conditions, while individual subtype frequencies change. Depending on the changes in 

average expression among subtypes, these frequency changes may or may not induce 

changes between two conditions in the marginal distribution of some gene’s expression.
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Fig. 3. 
Directed acyclic graph structure of the compositional model and partition-reliant prior. The 

plate on the right side indicates i.i.d. copies over cells c, conditionally on mixing proportions 

and mixing components. Observed data are indicated in rectangles/squares, and unobserved 

variables are in circles/ovals.
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Fig. 4. 
True positive rate (vertical) of four DD detection methods in 12 synthetic-data settings 

(horizontal). Settings are labeled for K /θ/γ and ranked by scDDboost values. Each method 

is targeting a 5% false discovery rate (FDR). The plot shows average rates over replicate 

simulated data in each setting.
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Fig. 5. 
False discovery rate (vertical) of methods in the synthetic-data settings (horizontal, same 

order) from Figure 4. FDR is approximated from the 12 replicate data sets in each scenario 

using the known generative hypothesis states.
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Fig. 6. 
Proportion of DD genes at 5% FDR threshold with respect to total number of genes 

identified by each method. Data sets are ordered by scDDboost list size.
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Fig. 7. 
False positive counts at 5% FDR threshold by several methods on five random splits of nine 

single-condition data sets from Appendix Table A2.
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Fig. 8. 
Genes are grouped by their pattern of differential expression across subtypes as inferred 

by the EBseq computation within scDDboost for three example datasets. Cumulative 

distribution functions of the log-scale size statistic for all genes identified by scDDboost 

are plotted; red is the subset uniquely identified by scDDboost; blue are those also identified 

by the comparison methods (MAST, scDD, or DESeq2). Sets of similarly-patterned genes 

tend to be larger (horizontal axis, log size) for genes uniquely identified by scDDboost (red) 

compared to other DD genes (blue), at 5% FDR.
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Fig. 9. 
Absolute values of log fold changes of bursting parameters tend to be larger for 1758 genes 

uniquely identified by scDDboost (red) compared to 2983 genes (blue) that are identified at 

5% FDR by scDDboost and other methods: MAST, scDD, and DESeq2.
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Fig. 10. 
Empirical CDF for observed data (green) compared to expression levels simulated from the 

fitted NB mixture (pink) for data set GSE64016. The top six panels are genes randomly 

selected from those genes being identified as DD by scDDboost and not violating constant 

shape assumption; the last three genes are randomly sampled from genes that fail the test 

of constant NB shape parameter. Each thin pink curve is from one of the randomized 

distances; the thicker pink curve represents pointwise averaging over 10 randomized 

distance matrices. Note, horizontal scales differ among the panels, and cells are pooled 

from the two conditions.
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