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Abstract

Youth antisocial behavior (AB) is associated with deficits in socioemotional processing, reward and threat processing and executive 
functioning. These deficits are thought to emerge from differences in neural structure, functioning and connectivity, particularly 
within the default, salience and frontoparietal networks. However, the relationship between AB and the organization of these networks 
remains unclear. To address this gap, the current study applied unweighted, undirected graph analyses to resting-state functional mag-
netic resonance imaging data in a cohort of 161 adolescents (95 female) enriched for exposure to poverty, a risk factor for AB. As prior 
work indicates that callous-unemotional (CU) traits may moderate the neurocognitive profile of youth AB, we examined CU traits as 
a moderator. Using multi-informant latent factors, AB was found to be associated with less efficient frontoparietal network topology, 
a network associated with executive functioning. However, this effect was limited to youth at low or mean levels of CU traits, indicat-
ing that these neural differences were specific to those high on AB but not CU traits. Neither AB, CU traits nor their interaction was 
significantly related to default or salience network topologies. Results suggest that AB, specifically, may be linked with shifts in the 
architecture of the frontoparietal network.
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Youth antisocial behavior (AB) encompasses a broad spectrum 
of behaviors (e.g. aggression and violence) and imposes signifi-
cant economic, emotional and health burdens to victims and their 
families, as well as to those engaging in these behaviors, their 
families and society at large (Rivenbark et al., 2018; Roberts et al., 
2018). Moreover, youth AB is a major risk factor for substance use 
disorders, major depressive episodes, poor physical health out-
comes and continuing engagement in AB into adulthood (Laub 
and Vaillant, 2000; Simonoff et al., 2004; McGue and Iacono, 2005; 
Colman et al., 2009). Unfortunately, AB during adolescence is quite 
common (Moffitt, 1993), underscoring the public health priority to 
understanding the etiology of AB.

Youth AB and neurocognitive functioning
Youth AB has been consistently associated with deficits across 
several domains of neurocognitive functioning, including socioe-
motional processing, reward processing and executive function-
ing (see Blair et al., 2014 for review). For example, youth with 
high rates of AB have difficulties identifying others’ emotions 
(see Hawes and Dadds, 2012; Tillem et al., 2020; Chang et al., 

2021 for reviews), may view ambiguous social cues as threatening
(see Martinelli et al., 2018 for review) and show differences in 
neural activity in the medial prefrontal cortex, precuneus and 
amygdala during socioemotional processing tasks (Dalwani et al., 
2014; Zhou et al., 2016; Dotterer et al., 2017). These youth also per-
severate on previously rewarding behavioral patterns (see Estrada 
et al., 2018 for review) and show blunted neural responses in 
the anterior insula, anterior cingulate cortex and caudate dur-
ing reward processing tasks (White et al., 2013, 2014). Finally, 
youth AB is related to differences in decision-making, sustained 
attention and response inhibition, particularly when under stress 
(Fairchild et al., 2009; Hobson et al., 2011; Schoorl et al., 2018), 
with reduced neural responses in the dorsolateral prefrontal cor-
tex during executive functioning tasks (Rubia et al., 2009; Crowley 
et al., 2010). Moreover, AB (including symptoms of conduct disor-
der and oppositional defiant disorder (ODD), as well as lower-level 
rule breaking and aggression) is part of the externalizing meta-
factor, which is marked by inhibitory control deficits (Iacono et al., 
2008).

Though prior research has identified structural and func-
tional differences in several discrete brain regions related 
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to these behavioral differences, work in basic neuroscience 
has highlighted that complex behaviors are supported by the 
coordination of large-scale neural networks, rather than activity 
in single regions of interest (ROIs) (Meehan and Bressler, 2012). 
Specifically, the default, salience and frontoparietal networks are 
thought to be critical to understanding neurocognitive function-
ing and complex behaviors across mental health diagnoses, gen-
erally (Menon, 2011), and youth AB, specifically (Cohn et al., 2015). 
Furthermore, these networks may be of particular importance to 
youth AB as they are believed to primarily support socioemotional 
functioning (e.g. interpreting other agents’ affective cues; Spreng 
and Grady, 2010; Jack et al., 2013), salience processing (e.g. fixat-
ing on potentially rewarding and/or threatening stimuli; Uddin, 
2016) and executive functioning (e.g. response inhibition; Marek 
and Dosenbach, 2018). Not surprisingly, these three networks con-
tain many of the neural structures previously associated with 
youth AB, including the medial prefrontal cortex and precuneus 
(Dalwani et al., 2014; Zhou et al., 2016), the anterior insula and 
anterior cingulate cortex (White et al., 2013, 2014) and the dorso-
lateral prefrontal cortex (Rubia et al., 2009; Crowley et al., 2010). 
However, to properly capture these complex neural networks, it is 
important to understand the overall organization and functioning 
of these networks as a whole, rather than simply examining spe-
cific structures or subsets of connections within these networks 
(Reijneveld et al., 2007; Stam and Reijneveld, 2007; Bullmore and 
Sporns, 2009).

Graph analytic techniques provide a way to examine the 
higher-level organization of distributed neural networks. By com-
puting the overall organization, or topology, of neural networks, 
graph analysis can provide quantifiable metrics for the ‘optimal-
ity’ (e.g. efficiency and robustness) of neural information process-
ing throughout a neural network or the brain as a whole. For 
example, graph analysis can calculate the global efficiency of a 
network, delineating the resources necessary for information to 
be communicated and integrated throughout a network. Simi-
larly, graph analysis can provide a clustering metric, which taps 
the degree to which the functioning of a neural network may be 
robust to disruptions (e.g. damage or overload; Reijneveld et al., 
2007; Stam and Reijneveld, 2007; Bullmore and Sporns, 2009). 
These neuro-topological features play critical roles in neurocogni-
tive functioning, with more efficient and/or robust neural network 
topologies supporting positive cognitive outcomes (e.g. higher IQ; 
Langer et al., 2012; Suprano et al., 2019). Similarly, less efficient or 
robust network organization has been linked to psychopathology 
(e.g. schizophrenia, autism; Itahashi et al., 2014; Yang et al., 2020). 
However, prior research applying graph analytic methods in youth 
AB has been limited.

Youth AB and neural topology
Thus far, the few existing studies using graph analysis to explore 
functional neural topology in youth AB have yielded conflicting 
results. Two case–control studies of conduct disorder, a develop-
mental disorder characterized by persistent engagement in AB 
during childhood or adolescence, found that conduct disorder 
was linked with less efficiently organized neural communication 
throughout the entire brain, but found no differences in global 
clustering (an indication of functional segregation and robust-
ness; Jiang et al., 2016, 2021). In contrast, a recent study found 
that, in a large representative cohort, conduct disorder symp-
tomatology was related to enhanced global clustering but was 
not related to differences in global efficiency (Tillem et al., 2021). 
Finally, a third case–control study found no relationship between 

conduct disorder and differences in either global efficiency or 
global clustering (Lu et al., 2017).

Though these studies suggest that AB, at least as measured 
narrowly by conduct disorder symptoms, may be related to dif-
ferences in global neural topology, they are limited in several 
ways. First, these studies targeted neural topology globally, that 
is, across all the networks in the brain, even though prior empiri-
cal and theoretical work suggest only certain networks are likely 
to be affected in youth AB. That is, no prior studies have examined 
the neural topology of the default, salience or frontoparietal net-
works despite their theoretical and empirical relevance to youth 
AB (Dalwani et al., 2011, 2014; Cohn et al., 2015; Zhou et al., 2016; 
Sethi et al., 2018; Waller et al., 2020).

Second, with one exception (Tillem et al., 2021), prior research 
has exclusively used case–control studies with small samples 
with conduct disorder. However, evidence continues to accu-
mulate that AB occurs on a continuum ranging from relatively 
normative levels of rule breaking and defiance to more extreme 
behaviors such as violence and aggression (Patrick et al., 2002; 
Krueger et al., 2007). Accordingly, research using dimensional 
methods that capture the entire spectrum of youth AB is needed, 
particularly in well-sampled cohorts that have enrichment for 
risk for AB. These types of samples provide greater generalizabil-
ity but still contain youth exhibiting a wide range of AB, including 
some who meet diagnostic criteria for conduct disorder or other 
AB diagnoses (e.g. ODD).

Finally, there is growing evidence of the importance of callous-
unemotional (CU) traits in understanding the etiology of youth 
AB. CU traits are defined by low empathy and guilt, as well as low 
or manipulative interpersonal emotions (Frick et al., 2014) and are 
a specifier for the diagnosis of conduct disorder in the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM-5) (American 
Psychiatric Association, 2013). Youth high on AB and CU traits 
engage in significantly more varied and violent AB (Enebrink et al., 
2005; Pardini and Fite, 2010), are more likely to continue engag-
ing in AB into adulthood (McMahon et al., 2010; Kahn et al., 2013) 
and are likely at increased risk to develop psychopathy in adult-
hood (Frick et al., 2014; Frogner et al., 2016; Viding and McCrory, 
2018). Critically, CU traits appear to moderate some neurocog-
nitive correlates of youth AB, including the associations among 
AB, emotion regulation and amygdala reactivity during socioe-
motional processing (Viding et al., 2012a, 2012b; Dotterer et al., 
2020b). In fact, one of the few studies linking youth conduct 
disorder to global neural topology found that associations were 
specific to youth with conduct disorder and CU traits (Jiang et al., 
2021). Thus, it is important to examine whether any AB-related 
neural effects are unique to youth AB, CU traits and/or their
interaction.

Current study
To address these gaps in the literature, we examined whether 
dimensional measures of AB, CU traits or their interaction 
significantly related to differences in the topology of neural 
communication within the default, salience and/or frontopari-
etal networks by completing three unweighted, undirected graph 
analyses, using a proportional thresholding approach. We exam-
ined these questions using resting-state functional magnetic res-
onance imaging (rs-fMRI) data collected from a birth cohort that 
was over-sampled for low-income, urban families with nonmari-
tal births. This sampling frame increased risk for poverty, which 
is, unfortunately, a robust risk factor for the development of youth 
AB (see Bradley and Corwyn, 2002 for review).



S. Tillem et al.  3

Given differences in socioemotional processing, reward and 
threat processing and executive functioning associated with 
youth AB, we expected youth AB to be associated with less optimal 
network topologies for each of the three networks. Specifically, 
given prior research linking differences in global efficiency and 
global clustering to neurocognitive functioning, in general (Langer 
et al., 2012; Suprano et al., 2019), and to youth AB, in particular 
(Jiang et al., 2016, 2021; Tillem et al., 2021), we hypothesized that 
youth AB would be associated with lower global efficiency and 
clustering in all three networks. Though our central focus of this 
study was on neural correlates of AB, given that CU traits have 
been associated with abnormal connectivity within the default 
network (Cohn et al., 2015), we hypothesized that CU traits also 
would be associated with lower global efficiency and clustering in 
the default network.

Finally, given the evidence suggesting that the presence of CU 
traits moderates the impact of youth AB on socioemotional pro-
cessing and threat detection (Blair et al., 2014), we hypothesized 
that CU traits would moderate the association between AB and 
differences in default and salience network topologies. In con-
trast, since deficits in response inhibition and decision-making 
may be associated with AB more generally, independent of levels 
of CU traits (Iacono et al., 2008; Blair et al., 2014), we hypothe-
sized that CU traits would not moderate the impact of youth AB 
on frontoparietal network topology.

Methods
Participants
The study sample was drawn from 183 adolescents from Detroit, 
Toledo or Chicago who were part of the Study of Adolescent 
Neural Development (SAND; Hein et al., 2018; Goetschius et al., 
2019; Dotterer et al., 2020b; Goetschius et al., 2020), a substudy 
of the Future of Families and Child Wellbeing Study (FFCWS; 
Reichman et al., 2001), which contains multiple measures of con-
text, psychopathology, brain function and biology. The FFCWS is 
a longitudinal cohort of 4898 (52.4% boys) children sampled from 
births in 20 large US cities from 1998 to 2000 (Reichman et al., 2001) 
with an over-sample for nonmarital births (∼3:1). Families living 
in Detroit, Toledo and Chicago were invited to take part in addi-
tional data collection at the University of Michigan as part of the 
SAND when the focused child was 15 years old. The complete list 
of measures and data for this project is publicly available from 
the National Institute of Mental Health data archive (https://nda.
nih.gov/). The University of Michigan Medical School Institutional 
Review Board approved this study (UM IRBMED: HUM00074392). 
All adolescent participants provided written informed assent, and 
their primary caregivers provided written consent for both them-
selves and their adolescent children. Of the 183 adolescents in 
the study sample, 22 participants were excluded due to issues in 
MRI data quality and/or missing behavioral or demographic data 
(see Supplementary Table S1), resulting in a final sample of 161 
adolescents with complete, available, and high-quaility rs-fMRI 
data. Of the 161 adolescents included in the final sample, 59% 
were female, 75.2% were identified as Black/African American, 
11.2% were identified as White/European American; 46.6% of fam-
ilies reported annual income below $25 000 (see Supplementary 
Table S2 for additional demographics). 

AB and CU traits
Latent factors for both AB and CU traits were previously gen-
erated for the SAND sample using a multi-informant, mul-
timethod approach, allowing us to mitigate reporter-specific 

and/or method-specific sources of error (e.g. informant bias; see 
Dotterer et al., 2020b for details). For AB, the latent factor was 
generated combining indicators from the following measures:
(a) parent-reported rule breaking and (b) aggression from the 
Child Behavior Checklist (Achenbach, 1994), (c) the total score 
(excluding substance use items) of the youth-reported Self-Report 
of Delinquency (Elliott et al., 1985) and (d) combined lifetime 
symptom count (i.e. past/lifetime and present subclinical and 
clinical threshold symptoms) of the DSM-5 for conduct disorder 
and ODD (American Psychiatric Association, 2013) on the basis 
of clinician ratings assessed via a modified version of the Kid-
die Schedule for Affective Disorders and Schizophrenia (K-SADS; 
Kaufman et al., 1997). Thus, the latent factor captured AB as a 
dimension including broad behaviors from minor rule breaking 
and defiance to more serious aggression to full clinical symp-
toms of conduct disorder and ODD. For CU traits, the latent factor 
was generated combining the following measures: total scores for 
(a) parent-reported and (b) youth-reported Inventory of Callous-
Unemotional Traits (ICU) (Frick et al., 2000; consistent with prior 
studies, two items were excluded from the total score based on 
an examination of polychoric inter-item correlations; Waller et al., 
2015) and (c) clinician ratings of total lifetime symptom counts 
(i.e. past/lifetime and present subclinical and clinical threshold 
symptoms) using the Michigan Addendum to the K-SADS (Walker 
et al., 2021), which consists of items that are meant to overlap 
with the recently developed DSM-5 ‘limited prosocial emotions’ 
specifier (American Psychiatric Association, 2013) derived from 
the Clinical Assessment of Prosocial Emotions (Frick, 2013) and 
embedded into the K-SADS interview. Both latent factors were 
calculated using Confirmatory Factor Analysis in Mplus (Version 
7.3; Muthén and Muthén, 2015), with maximum likelihood esti-
mation with robust standard errors (to account for skew and 
zero-inflation). See Tables 1 and 2 for factor loadings and model fit
statistics.

While the current study was designed to examine AB and CU 
traits dimensionally across a broad continuum of behaviors, it is 
important to note that participants reported a range of AB and 
CU traits scores from normative to clinical level. For AB, sev-
eral participants met diagnostic criteria for conduct disorder (past 
diagnosis: n = 13, 8.1%; current diagnosis: n = 5, 3.1%; any CD 

Table 1. Antisocial behavior factor loadings and model fit

Variable Loadings

Factor loadings
 CBCL aggression 0.88
 CBCL rule breaking 0.93
 SRD total score 0.39
 K-SADS ODD/CD symptoms 0.69

Model fit statistics
 Chi-square test of model fit 2.67, df = 1, P = 0.10
 CFI 0.99
 TLI 0.96
 RMSEA 0.08
 SRMR 0.01

Factor loadings and model fit statistics for the antisocial behavior factor 
previously generated by Dotterer et al. (2020b) using a confirmatory factor 
analysis with a maximum likelihood estimation approach and robust 
standard errors. CBCL = Child Behavior Checklist; SRD = Self-Report of 
Delinquency; K-SADS = Kiddie Schedule for Affective Disorders and 
Schizophrenia; ODD = oppositional defiant disorder; CD = conduct disorder; 
df = degrees of freedom; TLI = Tucker–Lewis index; CFI = comparative fit 
index; RMSEA = root mean square error of approximation; 
SRMR = standardized root mean residual.

https://nda.nih.gov/
https://nda.nih.gov/
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Table 2. Callous-unemotional traits factor loadings and model fit

Variable Loadings

Factor loadings
 ICU parent-report total score 0.40
 ICU self-report total score 0.33
 CAPE/K-SADS limited prosocial emotions symptoms 0.87

Model fit statistics
 Chi-square test of model fit 0, df = 0, P < 0.001
 CFI 1.00
 TLI 1.00
 RMSEA 0.00
 SRMR 0.00

Factor loadings for the callous-unemotional traits factor previously generated 
by Dotterer et al. (2020b) using a confirmatory factor analysis with a 
maximum likelihood estimation approach and robust standard errors. The 
model is saturated. ICU = Inventory of Callous-Unemotional Traits; 
K-SADS = Kiddie Schedule for Affective Disorders and Schizophrenia; 
CAPE = Clinical Assessment of Prosocial Emotions; df = degrees of freedom; 
TLI = Tucker–Lewis index; CFI = comparative fit index; RMSEA = root mean 
square error of approximation; SRMR = standardized root mean residual.

diagnosis: n = 13, 8.1%) and ODD [past diagnosis: n = 12, 7.5%; cur-
rent diagnosis: n = 8, 5.1%; any ODD diagnosis: n = 13, 8.1% (n = 8 
participants who met criteria for ODD also met criteria for past 
or present CD)]. For CU traits, some participants did meet diag-
nostic criteria for the ‘with limited prosocial emotion’ specifier 
(past diagnosis: n = 6, 3.7%; current diagnosis: n = 5, 3.1%; any 
diagnosis: n = 6, 3.7%). Similarly, ICU total scores for several par-
ticipants fell within the ‘clinical’ (n = 9, 5.6%) and ‘at-risk’ (n = 10, 
6.2%) score ranges for community samples (https://faculty.lsu.
edu/pfricklab/icu.php).

Imaging procedures and processing
MRI acquisition and preprocessing
MRI image data for the SAND were acquired on a GE Dis-
covery MR750 3 T MRI scanner with an 8-channel head coil. 
Data acquisition included a T1-weighted structural scan and 
an 8 min rs-fMRI scan obtained using functional T2*-weighted 
BOLD images with a gradient echo spiral sequence (TR = 2000 ms, 
TE = 30 ms, 40 contiguous 3 mm axial slices, flip angle = 90∘, 
FOV = 22 cm, voxel size = 3.44 mm × 3.44 mm × 3 mm) aligned with 
the AC-PC plane. Resting-state functional images were collected 
while participants were awake, passively viewing a fixation cross 
at the end of the scanning session. Slices were acquired con-
tiguously. Images were reconstructed offline using processing 
steps to remove distortions caused by magnetic field inhomo-
geneity and other sources of misalignment to the structural data. 
Standard preprocessing, slice timing, realignment and coreg-
istration to the structural scans, and normalization to MNI 
152 space, and a spatial smoothing using a Gaussian kernel 
(6 mm) was completed in SPM12 using defaults. The top five 
white matter components were regressed out as well. All brain 
activity was filtered through a bandpass filter between 0.01
and 0.1 Hz.

Motion correction and denoising
A conservative, multistep procedure was used to correct for 
motion artifacts combining multiple correction strategies (Parkes 
et al., 2018). First, 8 min scans were motion scrubbed to identify 
and remove motion artifacts from the fMRI time series, using a 
mean frame displacement cutoff value of 0.5 mm (Power et al., 
2012). Second, independent component analysis-based Automatic 
Removal of Motion Artifacts was applied to data at the subject 

level to remove motion-related artifacts (Pruim et al., 2015a, 
2015b).

Brain connectome generation
To produce a whole-brain resting functional connectome, we 
placed 264 ROIs following the Power et al. (2011) atlas. Each 
ROI consisted of a 3.2 voxel center-to-voxel center radius pseu-
dosphere. Connection strength, measured as the strength of 
BOLD signal correlation between each of the ROIs, was then cal-
culated for connectome generation. Following the connectome 
generation, connectivity matrices for each network of interest 
(i.e. default, salience and frontoparietal networks) were extracted 
from the whole-brain connectome.

Graph analysis
All graph analyses were completed in Matlab (version 2018b) 
using a combination of the Brain Connectivity Toolbox (Rubinov 
and Sporns, 2010) and the MIT graph toolbox (http://strategic.
mit.edu/downloads.php?page=matlab_networks. To ensure all 
graphs were fully connected, a minimum spanning tree analy-
sis using the Kruskal algorithm (Kruskal, 1956) was implemented 
to generate an initial fully connected subgraph for each network, 
for each participant. These subgraphs acted as an initial skeletal 
structure for the main, proportional thresholded graph analysis.

Following this initial subgraph generation, connections were 
added to each subgraph at proportional thresholds of 0.01 to 
0.35 at 0.01 step intervals to generate 35 unweighted, undirected 
graphs of differing levels of sparsity per network, per partici-
pant. Our two graph metrics of interest, efficiency and clustering, 
were then extracted from each of these thresholded graphs for 
each participant. To help ensure that our graph metrics accu-
rately reflected neural organization across different levels of spar-
sity, the area under the curve (AUC) was calculated for each 
graph metric across sparsity levels (Ginestet et al., 2011; Hos-
seini et al., 2012), producing one AUC value, per metric, per 
network, per participant. All AUC graph metrics were winsorized 
to limit the leverage of outliers on the subsequent regression
analyses.

Graph metrics
Efficiency
Efficiency was calculated as the inverse average shortest path 
length across the graphs. Accordingly, within graphs with higher 
efficiency, information theoretically travels through fewer con-
nections to get from any node to any other node in the network, 
allowing for more efficient neural communication and informa-
tion integration (i.e. communication/integration requiring less 
time or neural resources; Bullmore and Sporns, 2009).

Clustering
Clustering was calculated as the global fraction of nodes in a 
graph, which form triangular connections (i.e. the fraction of 
nodes in a graph whose neighbors are also interconnected with 
each other). Graphs with higher clustering tend to exhibit higher 
degrees of functional segregation and may be more robust to 
disruptions or damage (Bullmore and Sporns, 2009).

Data analysis
Separate linear regression models were run for each of the graph 
metrics of interest in each of the three network analyses. In 
each of these regression models, the latent AB factor, the latent 
CU traits factor and the AB × CU interaction were entered as 

https://faculty.lsu.edu/pfricklab/icu.php
https://faculty.lsu.edu/pfricklab/icu.php
http://strategic.mit.edu/downloads.php?page=matlab_networks
http://strategic.mit.edu/downloads.php?page=matlab_networks
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simultaneous predictors of interest. Additionally, consistent with 
prior studies examining these factors in this sample (see also 
Dotterer et al., 2020b), self-reported gender (dichotomously coded, 
female vs male), self-reported race (a social construct included to 
control for differences in exposure to discrimination and struc-
tural racism and inequality in opportunity; two simultaneous, 
dichotomously coded variables: Black vs Non-Black and White 
vs Non-White), familial income (z-scored) and pubertal develop-
ment score (z-scored; as measured by the Pubertal Development 
Scale; Petersen et al., 1988) were included as nuisance regres-
sors in the models (see Supplementary Table S3 for zero-order
correlations).

All β-values were Bonferroni corrected within each network 
analysis separately to control for multiple comparisons. P-values 
reported in the results section reflect the Bonferroni-corrected 
P-values. Any significant moderation effects were decomposed 
and graphed using the online utility by Preacher et al. (2006) to 
assess simple slopes and regions of significance. While all results 
were assessed via Bonferroni-corrected P-values, we also gener-
ated supplementary Bayes Factors (BF) for any null findings to 
provide additional information on the strength and confidence of 
any null results (see Supplementary Materials).

Supplementary analyses
Since prior work in this field has examined the relationship 
between youth AB at different levels of analysis (e.g. whole-brain 
graph theory metrics; Jiang et al., 2016, 2021; Tillem et al., 2021), we 
also ran supplementary, exploratory analyses at the whole-brain 
and node levels. These analyses can be found in the Supplemen-
tary Materials to aide future research and were not part of our 
focal analyses.

Results
AB was significantly related to lower efficiency in the frontopari-
etal network (β = −0.25, P = 0.024; Table 3). However, the effect 
of AB was qualified by a significant AB × CU traits interaction 
(β = 0.28, P = 0.028). A region of significance analysis for this 
moderation effect revealed that the association between lower 
frontoparietal efficiency and AB was only significant at low or 
average levels of CU traits (CU traits ≤0.23 s.d. above the mean; 
see Figure 1 for simple slopes). In contrast, at extremely high lev-
els of CU traits (CU traits ≥3.42 s.d. above the mean), AB was 
associated with higher efficiency in the frontoparietal network. 
However, this frontoparietal hyperefficiency should be interpreted 
with caution as, in the current sample, only three participants 
had CU trait scores within this region of significance (i.e. CU trait 
scores ≥3.42 SD above the mean).

In contrast, the main effect of CU traits on efficiency within the 
frontoparietal network was not significant (β = −0.08, P = 0.964). 
Similarly, neither the main effect of AB (β = 0.15, P = 0.222),
the main effect of CU traits (β = 0.02, P = 1.000), nor the AB × CU 
interaction (β = −0.19, P = 0.186) was significant for clustering in 
this network.

For both the default and salience networks, there were no 
significant associations between AB, CU traits, nor their interac-
tion and measures of efficiency or clustering (see Table 3 for full 
regression results). Moreover, based on the BF findings, the current 
study provided ‘strong’ evidence in favor of the null hypothesis for 
our model examining efficiency in the default network (BF = 0.07) 
and ‘substantial’ evidence for the null hypothesis for the remain-
ing models examining the default and salience networks (BFs 
range from 0.012 to 0.20).

Table 3. Regression results

β t P Pcorrected

Frontoparietal network
Efficiency
 AB −0.25* −2.53 0.012 0.024
 CU traits −0.08 −0.71 0.482 0.964
 AB × CU traits 0.28* 2.49 0.014 0.028
Clustering
 AB 0.15 1.60 0.111 0.222
 CU traits 0.02 0.20 0.840 1.000
 AB × CU traits −0.19 −1.69 0.093 0.186

Default network
Efficiency
 AB 0.04 0.39 0.701 1.000
 CU traits −0.06 −0.54 0.587 1.000
 AB × CU traits −0.03 −0.22 0.826 1.000
Clustering
 AB −0.09 −0.97 0.331 0.662
 CU traits 0.04 0.40 0.689 1.000
 AB × CU traits 0.13 1.17 0.244 0.488

Salience network
Efficiency
 AB −0.07 0.68 0.499 0.998
 CU traits 0.08 0.67 0.503 1.000
 AB × CU traits −0.08 −0.70 0.485 0.970
Clustering
 AB −0.01 −0.06 0.954 1.000
 CU traits −0.05 −0.41 0.684 1.000
 AB × CU traits 0.11 0.97 0.336 0.672

Results from six linear regression models examining the relationship between 
network-specific graph analysis metrics (i.e. global efficiency and global 
clustering) and youth AB, CU traits and the AB × CU traits interaction across 
three networks (the frontoparietal network, the default network and the 
salience network). Models controlled for self-reported gender (dichotomously 
coded, female vs male), self-reported race (two dichotomously coded 
variables: Black vs Non-Black and White vs Non-White), familial income 
(z-scored) and pubertal development score (z-scored). Given the correlations 
among youth AB, CU traits and pubertal status, all models were rerun 
excluding CU trait and puberty scores from the models to ensure that the 
current AB findings were not due to suppression effects. Excluding these 
variables from the models did not meaningfully change any findings..
*P < 0.05.

Supplementary results
Full results from the supplementary, exploratory analyses can 
be found in the Supplementary Materials; however, briefly, nei-
ther AB, CU nor their interaction were significantly related to 
differences in whole-brain efficiency, whole-brain clustering or 
inter-network communication. The exploratory hubness analysis, 
however, revealed that, within the default network, CU traits were 
related to increased hubness in the right-temporal pole (β = 0.491, 
P < 0.001). No other hubness effects were significant.

Discussion
By applying graph analytic techniques to rs-fMRI data collected 
from a well-sampled community cohort with increased exposure 
to poverty and thus risk for AB, we found that youth AB was 
associated with a less efficiently organized frontoparietal net-
work at rest, but this was only true for youth with average or 
low levels of CU traits. In contrast, neither youth AB nor CU 
traits were significantly related to differences in the topology of 
the default or salience networks. Collectively, these findings high-
light the specificity of neural network topology alterations to the 
frontoparietal network and to youth with AB but not high CU
traits.
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Fig. 1. Antisocial behavior × callous-unemotional traits interaction for 
frontoparietal efficiency. Simple slopes for the significant AB × CU traits 
interaction effect on frontoparietal efficiency, controlling for 
self-reported gender (dichotomously coded, female vs male), 
self-reported race (two dichotomously coded variables: Black vs
Non-Black and White vs Non-White), familial income (z-scored) and 
pubertal development score (z-scored). The significance of the simple 
slopes was evaluated via a region of significance analysis. A secondary 
region of significance analysis was run to evaluate at what levels of AB 
the main effect of the moderator, CU traits, was significant. The 
secondary analysis revealed that the main effect of CU traits was 
significant in youth with AB scores ≥1.05 s.d. above the mean. The 
shaded region of the figure represents this region of significance. 
*P < 0.05, **P < 0.01.

Youth AB and the frontoparietal network
In line with our hypotheses, youth AB was associated with less 
efficient frontoparietal topology. These network findings are con-
sistent with a prior resting-state connectivity study that linked 
youth AB to blunted connectivity in frontoparietal regions (Cohn 
et al., 2015). Based on prior graph theory work in neurotypi-
cal populations, lower efficiency in a neural network may slow 
neural communication and information integration within the 
network, impeding rapid and cost-effective information process-
ing and impairing associated neurocognitive functions (Reijneveld 
et al., 2007; Stam and Reijneveld, 2007; Bullmore and Sporns, 
2009). The frontoparietal network supports executive functioning, 
including response inhibition, sustained attention and decision-
making (Marek and Dosenbach, 2018). Thus, these findings may 
help explain why youth who engage in AB have difficulties with 
inhibitory control and other executive functioning, particularly in 
time-limited and/or stressful contexts in which resources may be 
limited or rapid information processing may be critical (Fairchild 
et al., 2009; Hobson et al., 2011; Schoorl et al., 2018).

Divergent neurocognitive profiles associated with 
youth AB at differing levels of CU traits
Contrary to our a priori hypotheses, the association between 
youth AB and lower frontoparietal efficiency was only present ‘at 
low and average’ (and not high) levels of CU traits, indicating that 
this neural profile is specific to youth engaged in AB who do not 
show relatively higher levels of CU traits. Moreover, in youth with 
extremely elevated levels of CU traits, AB actually was associated 
with greater efficiency in the frontoparietal network. Though this 
greater efficiency of the frontoparietal network should be inter-
preted with caution given the few participants in our sample at 
this level of CU traits, this finding, combined with the specificity 
of lower efficiency in the frontoparietal network for those with 
low or average levels of CU traits, is inconsistent with the idea 
that deficits in executive functioning, and the neural processes 

supporting them, are related to AB generally (i.e. regardless of the 
CU trait levels; Iacono et al., 2008; Blair et al., 2014).

This pattern of results, however, may not be overly surpris-
ing. Recent studies have reported similar interactions between 
youth AB, CU traits and executive functioning. For example, con-
sistent with the current findings, Dotterer et al. (2021) reported 
that, at low levels of CU traits, youth AB was associated with sus-
tained attention deficits, whereas at higher levels of CU traits, 
youth AB was associated with improved sustained attention. Simi-
larly, Graziano et al. (2019) found that youth with elevated AB and 
CU traits performed better on standardized measures of execu-
tive functioning than youth with AB without CU traits. Although 
not conclusive, these prior studies, combined with the current 
findings, suggest that the presence of CU traits may moder-
ate both behavioral and neural executive functioning deficits in
youth AB.

Youth AB, the default network and the salience 
network
Counter to our a priori hypotheses, we did not find any evi-
dence that youth AB was related to altered network topology in 
either the default or salience networks. Though some studies 
have linked youth AB to differences in functioning or connectiv-
ity in regions within these networks (Dalwani et al., 2014; Zhou 
et al., 2016; Sethi et al., 2018), it may be that AB-related differ-
ences are related to activation in or connectivity between very 
specific regions, and not to the broader pattern of connectivity 
within these networks. Alternatively, the current null findings 
may be due to the study’s sample size; however, the BF findings 
suggest that we have relatively substantial evidence supporting 
our null results. Similarly, it is possible that the specific level of 
analysis we examined (i.e. the network-level) simply may not cap-
ture the types of disruptions that are present in these networks 
(e.g. differences in node-level hubness, Jiang et al., 2016; or inter-
network communication, Dotterer et al., 2020a); however, our 
exploratory node-level and whole-brain analyses found no evi-
dence that youth AB was linked with differences at these different 
levels of analysis (see Supplementary Materials).

Limitations
While the current findings provide evidence that youth AB is 
associated with altered frontoparietal topology dimensionally in 
a unique, enriched community sample, they must be consid-
ered in light of limitations. First, the current study was limited 
to examining resting-state data and AB; therefore, any theorized 
links between frontoparietal efficiency and executive functioning 
remain speculative. Although there is increasing evidence that 
neural topology at rest relates to various aspects of psychopathol-
ogy, neurocognitive functioning and behavior (Kong et al., 2018; 
Tillem et al., 2021; Chan et al., 2022), additional research is needed 
to link frontoparietal network topology at rest to behavioral mea-
sures of executive functioning in youth AB directly. Second, while 
the cohort who engaged in this study were at higher risk for AB 
based on their families SES at birth and associated increased risk 
for exposure to adversity, and we did have several cases that met 
diagnosable levels of AB (n = 14) and CU traits (n = 6), most of the 
sample did not meet diagnostic criteria, making it impossible to 
do a case–control comparison. Thus, our findings may not gen-
eralize to the more extreme levels of AB and CU traits found in 
clinical or forensic samples. Third, while the sample size of the 
current study is larger than previous case–control studies exam-
ining youth AB and neural topology, it is currently underpowered 
to explore more complex models with additional moderators (e.g. 



S. Tillem et al.  7

examining three-way interactions between AB × CU traits × gen-
der). Fourth, the current study is cross-sectional, limiting our 
ability to examine whether these neural correlates are causes 
or consequences of AB. Finally, future directions in this dataset 
and others are needed to identify the complex etiology of indi-
vidual differences in network topology that may give rise to AB 
(e.g. examining experiences that may impact these circuits during 
development).

Conclusions
Youth AB was associated with alterations in the topology of the 
frontoparietal network; however, those alterations are dependent 
upon an individual’s level of CU traits. Specifically, in youth with 
low or average levels of CU traits, youth AB was associated with 
reduced efficiency in the topology of the frontoparietal, but not 
the salience or default, network at rest. The specificity of these 
findings (1) suggest that differences in the frontoparietal network 
are related to AB but not CU traits, (2) indicate that network 
topology differences in youth AB may be specific to the fron-
toparietal network, which supports executive functioning and 
(3) add to a growing body of literature showing that the pres-
ence of CU traits may moderate executive functioning deficits in
youth AB.

Supplementary data
Supplementary data is available at SCAN online.
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