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Battery-free and AI-enabled multiplexed sensor patches 
for wound monitoring 
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Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of 
inflammation and infection remain challenging. We report a paper-like battery-free in situ AI-enabled multi-
plexed (PETAL) sensor for holistic wound assessment by leveraging deep learning algorithms. This sensor con-
sists of a wax-printed paper panel with five colorimetric sensors for temperature, pH, trimethylamine, uric acid, 
and moisture. Sensor images captured by a mobile phone were analyzed by neural network–based machine 
learning algorithms to determine healing status. For ex situ detection via exudates collected from rat perturbed 
wounds and burn wounds, the PETAL sensor can classify healing versus nonhealing status with an accuracy as 
high as 97%. With the sensor patches attached on rat burn wound models, in situ monitoring of wound pro-
gression or severity is demonstrated. This PETAL sensor allows early warning of adverse events, which could 
trigger immediate clinical intervention to facilitate wound care management. 
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INTRODUCTION 
Wound healing comprises of four stages, i.e., hemostasis, inflamma-
tion, proliferation, and remodeling (1). Impaired wound repair, 
such as chronic wounds and burn wound pathological scars, is 
often stalled in the proinflammatory phase and presents a major 
health and economic burden worldwide (2, 3). Now, wound 
healing is typically examined visually by clinicians (4). Wound in-
fections are mostly diagnosed via “swabbing” followed by a bacteria 
culture with long turnover times, which does not provide timely 
wound diagnosis (5, 6). In addition, quantitative measurements of 
biochemical markers are generally limited to laboratory testing, 
such as enzyme-linked immunosorbent assays. In general, current 
wound monitoring methods are slow and lack of holistic profiling 
and quantitative characterization for wound healing status, making 
accurate prediction of wound healing trajectory difficult in hospitals 
(7). In addition, current wound assessment typically requires 

frequent manual removal of dressing, which elevates risks of infec-
tion and may cause additional trauma. 

Thus, wearable wound sensor patches have been proposed to 
tackle the above challenges faced in wound monitoring (2). 
Current reported wound sensors have largely focused on detecting 
a single physical or biochemical marker, such as temperature (8), 
pH (9), uric acid (UA) (10), or pathogenic bacteria–related deoxy-
ribonuclease (11), mostly relying on electrochemical sensors. For 
example, Kalasin et al. (12) developed a deep artificial neural 
network to monitor pH via pH-responsive voltage output and for 
healing stage recognition with high accuracy. However, it is only for 
a single parameter, and it still required an energy source on the 
devices (13). 

The emergence of flexible electronics has enabled different 
sensors to be integrated into a single platform while providing con-
formational contact with the human skin (14–19). This has paved 
the way for wearable biosensors that can detect dual or even multi-
ple biomedical parameters of the wound environment (10, 20–22). 
For example, an array of flexible potentiometric pH sensors and a 
flexible thermometer were successfully embedded into a smart 
bandage to assess the wound status every minute for up to 20 
hours (23). A flexible electronic biosensing platform with integrated 
microfluidic wound exudate collector was reported for profiling of 
three wound inflammation mediators, microbial burden, tempera-
ture, and pH with a smartphone-based wireless data collection every 
minute for typically 1-hour duration (24). However, the abovemen-
tioned electrochemical sensors required bulky printed circuit 
boards and batteries. They were also affected by motion artefacts 
and required frequent calibrations. 

Although electrochemical/electrical sensors can offer fast and 
real-time monitoring by the sophisticated electronic sensors that 
collect and display data every second or every minute (25), such ad-
vantages are not essential for wound healing monitoring, because 
the wound healing process is much longer over many days. 
Optical detection techniques, such as wax-printed paper fluidic col-
orimetric and fluorometric sensors (26–28), are promising point- 
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of-care diagnostics devices, which could be alternatives for in situ 
wound monitoring. For wound monitoring, existing optical 
sensors, for example, a hydrogel dressing with a fluorescent 
glucose sensor and a colorimetric pH sensor embedded, have 
been demonstrated to simultaneously detect both parameters in 
the wound environment (29). However, it can measure only two an-
alytes and required specialized equipment to measure the analytes. 

Here, we report a paper-like battery-free in situ AI (artificial in-
telligence)–enabled multiplexed (denoted as PETAL) sensor patch 
for holistic wound healing monitoring. Five colorimetric sensors for 
temperature, pH, trimethylamine (TMA), UA, and moisture, ex-
ploiting different sensing principles and materials, are integrated 
into a single piece of paper sensor patch. The sensor patch allows 
quantitative characterization of each biomarker within minutes 
(for each test). The PETAL sensor patch detects carefully selected 
biomarkers related to wound inflammation, infection, and wound 
environment condition. It is flexible and thus feasible to be integrat-
ed with wound dressings for in situ analysis without needing to 
remove the wound dressing. 

Using a deep learning–based AI algorithm, our sensor patch 
simply requires a modern smartphone to provide a holistic assess-
ment of the wound healing status, enabling the classification of 
wound types/severity levels. We demonstrate the assessment of 
wound status for chronic wounds or burn wounds both ex situ 
(via the wound exudate) and on rat models (direct adhesion of 
the sensor patches). Such wearable multiplexed sensors coupled 
with AI analytics are envisioned to allow early warning of adverse 
events and thus trigger immediate clinical intervention. Providing 
earlier access of wound healing status to clinicians with less inter-
ruption to the wound has the potential to expand sophisticated 
wound care management in various health care settings including 
homes (30). 

RESULTS 
Design and fabrication of the paper fluidic–based wound 
sensor patch 
Figure 1 shows the paper fluidic wound sensor patch that can be 
applied onto a burn wound or a chronic wound for holistic assess-
ment. A double-sided wax-printed paper fluidic panel has channels 
to the sensing regions on the upper side with a circular inlet at the 
skin interface. This paper panel is then sandwiched between a top 
transparent silicone layer and a bottom adhesive wound contact 
layer, also having a circular center opening (Fig. 1A). 

The surface transparent layer allows for normal skin functions of 
oxygen and moisture exchange while allowing image display for ac-
curate image capture and analysis. The bottom wound contact layer 
protects the wound bed from direct contact with the sensor panel to 
minimize wound tissue disruptions. This bottom layer is also adhe-
sive to skin for gentle attachment of sensor patch (Fig. 1A). In 
between the paper sensor panel and the bottom adhesive contact 
layer is a blood filtration membrane, i.e., Whatman blood filtration 
membrane (LF1 grade), which shows complete removal of red 
blood cells from wound exudate (fig. S1). When the assembled 
PETAL patch is put on a wound, the wound exudate will come 
into contact with the blood filtration membrane first and pass 
through the filtration membrane to lastly reach the paper sensor 
panel. As wound exudate flows into the paper sensor panel 
through the back center port, the respective sensors at the five 

detection zones will change color according to respective analyte 
concentration. 

This sensor patch is light, thin, and flexible and can stand up 
against a Pinwheel flower (Fig. 1, B and C). The fluidic pattern re-
sembles the five-petaled Pinwheel flower, so we call this sensor 
patch PETAL. Such a flexible, low-cost, and battery-free sensor 
patch is potentially suitable for integration with wound dressings. 
Figure 1D illustrates the model of the machine learning algorithm 
used in this work for wound classification. 

The key considerations of the wax-printed paper fluidic panel 
include the choice of cellulose paper, the arrangement of the five 
sensing regions in connection to sampling channel, and the wax 
pattern–related optimization (dimensions, geometry, printing pa-
rameters, etc.). 

Cellulose paper of 6 μm pore size and 390 μm thickness was se-
lected in this study because of their good molecular retention prop-
erty. The five detection zones on the upper surface of the paper 
panel for loading the sensing materials are arranged in a five 
petaled-flower like pattern, connected by five channels through a 
center opening at the bottom surface, from where wound exudate 
can flow in, resembling a five-petaled flower (Fig. 1B). Such an ar-
rangement allows equal channeling of wound exudates to the detec-
tion zones. 

The outer dimensions of the sensor panel (in centimeter scale) as 
well as its channel width and detection zone diameter can be tai-
lored to suit the actual wound size as well as the amount and viscos-
ity of wound exudate. Figure S2 shows three different sized sensor 
patches (1.8-, 2.5-, and 3.5-cm squares) that we have printed, and 
the volumes needed for a simulated wound fluid (SWF) of a low 
viscosity (~1 mPa·s) and a SWF of a high viscosity (~ 80 mPa·s) 
added with 0.5 weight % (wt %) xanthan gum. The smallest patch 
tested so far has a size of 1.8 cm. It is also possible to place multiple 
small-sized sensor patches over a large wound area to collect spatial 
information in the future. 

After the sensor panel was printed with the respective wax pat-
terns on both sides, it was heated up briefly to 90°C to melt the wax 
so that it can penetrate the cellulose matrix to form a continuous 
barrier, upon cooling down, to define the paper fluidic pattern. 
On the other hand, overheating will narrow the fluidic channel. 
As wound exudate is viscous with abundant metabolites and pro-
teins, it easily clogs up the channels if the channels become too 
narrow/shallow. Therefore, we have optimized the heating time 
(10 min) to ensure a quick and smooth flow of SWFs in the wax- 
printed channels to reach the detection zones in 2 to 3 min (fig. S3). 

Colorimetric sensor development and calibration 
Five colorimetric sensors were prepared for inflammation, infec-
tion, and wound environment indicators, including temperature, 
pH, moisture, TMA, and UA. Tables S1 and S2 show the clinical 
significance of the five selected biomarkers in chronic wounds 
and burn wounds. In particular, the increase in chronic wound tem-
perature indicates infection and delayed healing (30, 31). Similarly, 
burn wounds increase their temperature to maintain hypermetabol-
ic process leading to hyperthermia (32). Normal skin pH is slightly 
acidic, and pH is usually elevated to alkaline range in nonhealing 
wounds including both chronic wounds and more severe burn 
wounds (29, 33, 34). Wound moisture level is critical to healing, 
but it varies substantially with the type of wound dressing. There-
fore, moisture readings were only used as reference in this work to  
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indicate sufficient channeling of wound exudate to the detection 
zones and successful activation of colorimetric sensors (4, 35). 
TMA is a volatile organic compound (VOC) produced by many 
wound bacteria such as Pseudomonas aeruginosa, and a high 
TMA level [>30 parts per million (ppm)] detected at wound sites 
strongly indicates wound infection (36, 37). UA is the end 
product from the purine catabolic pathway, and an elevated UA 
level suggests prolonged inflammation and has been correlated 
with wound severity in burns. On the other hand, decreased UA 
levels are related to bacterial colonization (10, 25, 38, 39). These 
markers/parameters together provide a holistic profiling and quan-
titative characterization of wound infection status and the wound 
healing process. 

In this study, the five colorimetric sensors used different sensing 
materials [cholesteric liquid crystals (CLCs) for temperature, 
organic dyes for pH and TMA, metal ions for moisture, and 
enzymes for UA] with customized formulations, involving 
polymer matrix, stabilizer, additives, etc. To achieve the desired 
limit of detection and clinically relevant dynamic range, sensor 
preparation processes were also customized, including paper 
surface treatment, sensing material loading amount, and dying con-
ditions. For the five sensors to coexist with good sensing perfor-
mances on the same sensor panel, they were prepared sequentially 

in the five detection zones. Detailed sensor preparations are de-
scribed below in the order of sensor preparation (Fig. 2A). 

First, the temperature sensor was prepared using CLCs, whereby 
the rotation and orientation of the liquid crystal molecules change 
with the change in temperature. A typical CLC temperature sensor 
suits normal skin temperature in the range of 31° to 35°C and with 
persistent 1°C increase relative to normal baseline level indicating 
infection/nonhealing state (30, 31). In this study, a three-compo-
nent mixture of cholesterol derivatives—cholesteryl oleyl carbonate 
(COC), cholesteryl benzoate (CB), and cholesteryl nonanoate 
(CN)—was used. Varying the composition of CLC mixture gives 
a different color gradient and a different temperature range (fig. 
S4). To achieve temperature sensing range of 31° to 36°C on cellu-
lose paper substrate, the CLC mixture was optimized to 36% COC, 
10% CB, and 54% CN, which displays distinct color changes grad-
ually from red to green to blue as temperature increased from 31° to 
36°C, with a linear change in the intensity ratio (i.e., the ratio of re-
flectance at 418 nm over the sum of reflectance at 520 and 650 nm) 
in the dynamic range (Fig. 2B). A high ambient temperature (i.e., 
the temperature of the air) may possibly affect the wound surface 
temperature. However, as the thermal conductivity of a solid is 
greater than that of the air, the CLC temperature sensor would be 
more sensitive to the temperature of the solid surface, i.e., the 

Fig. 1. Schematic of a battery-free colorimetric multiplexed sensor for wound monitoring. (A) Illustration of the PETAL sensor adhered onto a burn wound for 
colorimetric analysis of wound healing status with the detailed layer-by-layer structure of the PETAL sensor. (B) The real sensor patch, resembling a five-petaled Pinwheel 
Flower (Tabernaemontana divaricata), and the sensing materials/principles for each colorimetric sensor. (C) The real sensor patch and its side view, next to a 50 cent 
Singapore coin. (D) Neural network–based machine learning algorithm for wound classification, its architecture includes multiple convolutional layers (Conv), two fully 
connected layers (FC) and a softmax layer.  
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wounded skin for this study, where the sensor is attached on. Our 
experiment confirmed this notion as shown by fig. S5. 

Second, the TMA sensor was prepared using Reichardt’s dye, a 
solvatochromic dye that changes color based on molecular polarity 
(40, 41). This dye gives specific color change from dark gray to light 
white upon detection of TMA as the molecular structure and polar-
ity of TMA (a tertiary amine) are unique and different from other 
common molecules in wound exudate (e.g., proteins, UA, and salt). 
To intensify the color response to TMA on the sensor panel, the 
cellulose paper matrix in the second detection zone was treated 
with perfluorooctyltrimethoxysilane before loading the Reichardt’s 
dye, and a high contrast color change by TMA was then observed 
(fig. S6). We postulate that the TMA molecules interact better with 
the Reichardt’s dye on the hydrophobic paper or that the perfluor-
ooctyltrimethyoxysilane induces the initial polarity of the environ-
ment where the Reichardt’s dye is placed so that additional polarity 
change by TMA results in a more distinct color change. The re-
sponses of the optimized Reichardt’s dye on the silane-treated 
paper to various TMA concentrations are shown in Fig. 2C. The 
color change from gray to bright was analyzed on the basis of the 
change of brightness value that covers the wound relevant range of 
30 to 300 ppm (37). 

Third, the pH sensor was based on phenol red dye due to its bio-
compatibility and its pKa (where Ka is the acid dissociation cons-
tant) of 7.9, rendering it suitable for detecting wound pH as 

shown in table S1. When the pH is below 6.8, phenol red is 
present in the form of monovalent ions and appears yellow. 
When the pH is above 8.2, phenol red further deprotonates to a di-
valent ion and appears magenta (fig. S7). As shown in Fig. 2D, the 
blue-to-green (B/G) ratio correlated with the solution pH well with 
a dynamic range of pH 6 to 10 and a resolution of ~0.5 pH. 

Fourth, a moisture sensor is based on anhydrous cobalt chloride 
impregnated in the polyvinyl alcohol (PVA) matrix in the detection 
zone, which chelates with water molecules to form a hexahydrate 
cobalt chloride that displays a color change (42). As the moisture 
content increased, the color of the moisture sensor changed from 
deep blue to pale violet to pink, and the red-to-blue (R/B) ratio 
showed a good correlation with the moisture level (Fig. 2E). 

In the fifth detection zone, a colorimetric UA sensor was devel-
oped on the basis of a cascade enzymatic reaction using both uricase 
and peroxidase (43). In the first step, uricase catalyzes UA conver-
sion and generates H2O2 as a by-product. In the second step, horse-
radish peroxidase (HRP) converts the chromogenic substrate [such 
as the 4-aminoantipyrine (4-AAP)] to a dark pink–colored product 
in the presence of as-formed H2O2 (fig. S8). Many colorimetric 
paper strips are reported for one-time immediate use (44). In the 
case of wound monitoring, however, the wound healing process 
may take days and even weeks. Thus, for continuous in situ 
wound monitoring, the enzymatic sensor must achieve the follow-
ing criteria: (i) good color stability for tracking color change over 

Fig. 2. Characterization of the colorimetric sensors. (A) Detailed layout of the five sensors in the wax-printed sensor panel. Calibrations of (B) temperature sensor, (C) 
TMA sensor, (D) pH sensor, (E) moisture sensor, and (F) UA sensor. All error bars in (B) to (F) represent the SD from three sensors.  
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tens of hours, (ii) well-maintained enzyme activity in the wound 
environment, (iii) good retention of colorimetric sensing reagents, 
(iv) similar calibration performance in phosphate-buffered saline 
(PBS) buffer versus SWF, and (v) no false-positive signals. To 
achieve these goals, we optimized the UA sensor by carefully 
tuning the polymeric matrix pH, the enzyme dissolution medium, 
filter paper type, and the chromogenic substrate to achieve good 
color stability and well-maintained enzyme activity for wound 
status analysis (fig. S9). A linear calibration using a change in gray 
value (ΔGray value) was established for a dynamic range of 40 to 
1000 μM with a detection limit of 40 μM, which covered the clini-
cally relevant UA concentration range in wounds well (Fig. 2F). We 
then verified that the detections of the five markers do not interfere 
with each other in PBS buffer when they are assembled on a single 
patch (fig. S10). 

Quantitative analysis of SWFs with the PETAL sensor patch 
To demonstrate that our PETAL sensor patch can simultaneously 
analyze five wound biomarkers/indicators, we first composed two 
SWFs (45). SWF-A has no TMA added but high UA concentration 
(600 μM) to simulate a normal healing wound (46), while SWF-B 
contains a high TMA level (300 ppm) but a very low UA concentra-
tion (60 μM) to represent an infected nonhealing wound (37) 
without any pH adjustments. The images of the wax-printed 
sensor patches before SWF addition were used as the baseline for 
color analysis (Fig. 3A), and a time-lapse image series were captured 
upon the addition of SWF-A at 31°C and SWF-B at 32°C (Fig. 3A) 

to the back center port. It takes around 3 min for SWF to flow to the 
edge of the detection zones upon addition from the center port, and 
all sensors are fully filled with SWF at 8 min (fig. S11). We have set 
15 min upon the SWF addition as the standard time for image 
taking, which is sufficient for all sensors being fully reacted to gen-
erate stable color change. The differences between SWF-A and 
SWF-B are qualitatively compared in Fig. 3B. Through color anal-
ysis, the sensor patches clearly differentiate the two SWFs represent-
ing different wound conditions (Fig. 3, D to H). 

In the first detection zone, the temperature sensor changes color 
from red to green. The intensity ratio also increases above the 
threshold of 0.45, indicating that the increase in temperature is 
greater than 1°C, which is reflective of the higher temperature op-
erated mimicking the infection condition. In the second detection 
zone, the TMA sensor retains its original dark gray color when 
exposed to healing SWF-A, but the color almost completely 
bleached upon SWF-B addition. Meanwhile, the change in bright-
ness (ΔBrightness) increases above the dashed line (representing the 
TMA threshold level of 30 ppm for bacterial infection) confirmed 
the presence of abundant TMA in this infected SWF-B. In the third 
detection zone, the colors of the pH sensors for the two SWFs are 
similar as compared to the initial patch, all showing yellow to orange 
colors because pH values of these two SWFs are not artificially ad-
justed and stay within the neutral range (around pH 7.0 to 7.5). 

In the fourth detection zone, more than 4 μl of SWF was needed 
to activate the moisture sensor with R/B ratio starting to increase 
above the baseline fluctuation of ~0.6 (fig. S12). At above 7 μl, the 

Fig. 3. Quantitative analysis of sensor patch responses to SWFs. (A) Photos of the sensor patches before and after exposure to two types of SWFs. (B) Radial graph 
showing the different levels of the five markers in SWF-A and SWF-B. (C to G) Color analysis for the five parameters, respectively. The dashed line in each of the bar figures 
is the cutoff values differentiating condition A versus B. (C) Intensity ratio increases above the dashed line means the change in temperature is greater than 1°C, indicating 
wound infection. (D) ΔBrightness increases above the dashed line indicate sufficient TMA formation above 300 ppm and wound infection. (E) The pH sensor indicates the 
pH values of both SWFs are in the neutral range when compared to calibration line in Fig. 2. (F) The R/B ratio rises above the baseline fluctuation of 0.6 as SWF enters the 
fourth detection. A value of 0.7 is selected as the threshold to indicate that the moisture level has reached ~50% and sufficient exudate has reached the patch. (G) ΔGray 
value drops below the dashed line, meaning that the UA concentration has decreased at least 50% with respect to SWF-A, indicating possible prolonged inflammation or 
wound infection. All error bars in (C) to (G) represent the SD from three replicates.  
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moisture sensor turned totally into pink color (R/B ratio > 1), 
showing that the detection zone has been fully filled up. This mois-
ture sensor acts as a reference to assure that sufficient exudate has 
reached the detection zones. Last, in the fifth detection zone, the 
initially colorless UA sensor turns into an intense pink color for 
SWF-A, while it shows a light pink color for SWF-B. For SWF-B, 
ΔGray value drops below the dashed line, which means that the UA 
concentration has decreased at least 50% with respect to the SWF-A, 
confirming the lower UA present in this wound fluid mimicking 
prolonged wound inflammation or infection. With this benchtop 
experiment, we successfully demonstrated the prominent color re-
sponses for all five sensors in the PETAL sensor and no interference 
between the different sensors. Quantitative color analysis of the 
sensor patches reveals distinct differences for two different SWFs, 
hinting its capacity for accurate determination of wound status. 

Paper-based microfluidic devices typically experience corona 
effect (also known as coffee-ring phenomenon), which is related 
to the flow patterns, evaporation physics, and deposition structures 
after solvent evaporation (47, 48). We observed strong corona 
effects for pH sensor and mild corona effects for moisture and 
UA sensors, but not for temperature and TMA sensors. To mini-
mize the impact of corona effect on the calibration accuracy, we 
measured the intensity or RGB value of the entire circular region 
of the detection zones as defined by the black boundaries. Using 
pH sensor as an example, we have compared its calibrations from 
the sensor zones with different degrees of corona effects (fig. S13) 
and confirmed the consistency of the B/G ratios (<3% difference), 
regardless the spatial distribution of the color. 

To study the amount of liquid that the PETAL patch can take up 
and the potential impact of high fluid amount on the color retention 
in the detection zones, we tested up to ~30 μl of SWF, which exceed-
ed the volume of 8 μl needed to saturate the detection zones and the 
volume of 20 μl that the liquid will overflow. We found no color 
leaching or reagents backflowing toward the channels (fig. S14) 
with such a high volume of liquid. As for the storage stability, all 
the sensors except UA sensor are stable (i.e., the reagents remain 
active) for at least 3 months. For the enzyme-based UA sensor, it 
retains >80% activity for 1 week stored at room temperature in a 
normal plastic sealed bag (fig. S15). The series of time-lapse 
images (one frame per 15 s) showing the change of color over 15 
min were subsequently used as the training dataset to develop the 
machine learning algorithm for wound classification with SWF-A 
representing normal state and SWF-B representing the per-
turbed state. 

AI analysis of PETAL sensor patch upon exposure to animal 
wound exudates 
To demonstrate that our PETAL sensor patch can be used directly to 
analyze real wound exudates, we tested our sensor patches with two 
kinds of animal wound exudates from rat models, i.e., perturbed 
wound exudate from rats, which mimics a nonhealing chronic 
wound, and burn wound exudate from rats. To create a perturbed 
wound model, a full thickness excisional wound was first created in 
rat with a 6-mm biopsy punch. A scaffold impregnated with a sen-
escence inducing agent was then inserted into the wound and left in 
situ for 10 days to generate the perturbed wounds (Fig. 4A). Per-
turbed wounds display obvious swollen wound edges, a red ring 
of inflammation, altered biomolecular expression, and delayed 
wound closure, which nicely mimic features of human chronic 

wounds (49). We compared the perturbed wound exudate collected 
on day 10, and the elution from the scaffold that has been placed in 
the wound for 10 days. 

As shown in Fig. 4B, distinct color differences for the pH sensor 
and the UA sensor can be visually detected upon the addition of the 
10th day exudate and scaffold elution. Referring to the sensor cali-
bration curves (Fig. 2), the perturbed wound exudate shows a more 
alkaline pH of 9.2 as compared to the scaffold fluid with pH 7.8 
(Fig. 4D). Note that the UA level in the 10th day wound exudate 
is only ~300 μM, which is more than twofold lower compared to 
the fluid eluted from the scaffold (Fig. 4C). It is postulated that 
the scaffold, left in the wound for 10 days, will have absorbed 
wound exudate from days 1 to 10. The wound exudate collected 
on day 10 specifically represents the wound condition on scaffold 
removal, which is already in the nonhealing state. The pH for 
exudate following scaffold removal is more alkaline (nonhealing in-
dication), while the pH of the scaffold fluid is closer to neutral range 
but still above the normal skin pH of 5.6. This also explains why the 
accumulated scaffold fluid contains much higher UA, while the 
10th day wound exudate shows lower UA, indicating nonhealing 
perturbed wound. After feeding to our neural network #1, the 
model gives a high accuracy of 96.3% in determining the normal 
state versus the perturbed state (Fig. 4D), which suggests the feasi-
bility for identification of chronic wounds with pretrained convolu-
tional neural network (CNN) (figs. S16 to S18). 

For burn wound types, partial thickness burn extends from epi-
dermis downward deep into the reticular dermis or into the deeper 
layers of dermis. Depending on the extent of the burn, the vascula-
ture may or may not be present and could be sluggish when pressure 
is applied (50). The partial burns are simulating second degree 
burns that typically require surgery and form more scars but are 
less painful than deep burns. The deep burns represent the full 
thickness third degree burns that have a high risk of infection and 
require skin grafting. The depth of the deep burn extends through 
the epidermis and all layers of dermis and into subcutaneous layer. 
The vascular permeability in the deep burn is compromised and 
leads to tissue edema and along with hypercoagulability and 
vessel thrombosis that could further impair dermal perfusion 
(51). Moreover, burn progression often also occurs in the presence 
of increased release of cytokines, inflammatory response, and oxi-
dative stress into the extracellular space (52). As described by the 
Jackson’s burn model, the initial zone of stasis can convert into 
zone of coagulation if dermal vascular network is not restored 
and intervention is not optimal (53). A sensor that measures a spe-
cific wound biomarker is useful to identify the state of the wound 
and cater to optimal treatment. 

In this study, 55° and 85°C (10 s of burn creation) were used to 
create representative partial burn and deep burn wounds, respec-
tively (Fig. 5A). As the days passed, wound exudate collection 
became more challenging for deep burns, as the deep burn turned 
necrotic and lost the blood restoration functionality. Wound 
exudate samples were collected from the partial thickness burns 
and deep burns from post-burn day (PBD) 1 to PBD 3. The day 
of burn creation was labeled as day 0, and PBD 1 refers to 24 
hours after burn creation. We were able to collect substantial 
amounts of wound exudate per rat (>100 μl for the four 6-mm 
burns per rat) overnight under the Tegaderm wrapping. This 
exudate volume agrees well with the burn wound exudate produc-
tion rate of 0.34 to 0.43 g/cm2 per 24 hours (equals to 4 to 5 μl/hour  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Zheng et al., Sci. Adv. 9, eadg6670 (2023) 16 June 2023                                                                                                                                                         6 of 14 



for the 6-mm burn wound in our experiments) (54). It was more 
than sufficient for ex situ measurements using our sensor patch 
(the 1.8-cm square), which only requires ~8 μl (fig. S2C). 

The exudate samples were kept frozen until used to test the 
PETAL sensor patches, in comparison with the initial sensor 
patch before exudate addition (Fig. 5B). For benchtop testing, the 
wound exudate temperature has been set to 32° to 33°C. The tem-
perature sensor reflects this range that displays green to blue color. 
For the TMA sensor, no change in the initial blue gray color was 
observed, indicating that TMA was not detected. This agreed with 
the fact that the rats were kept in sterile animal facilities, and there 
was no infection. On PBD 1, the pH values for both the partial and 
deep burns were around 7.5, which increased slightly to ~8 on PBD 
2 and then reduced again on PBD 3 toward near neutral value but 
were still above the pH 5.6 of normal skin (Fig. 5C). 

For UA, the trend differs substantially for the partial versus deep 
burns. In the partial thickness burns, the UA concentration re-
mained almost constant at ~40 μM over 3 days. For the deep 
burns, the UA level was similar to that of partial thickness burns 
at ~40 μM on PBD 1, but it sharply increased about fivefold to 
~180 μM on PBD 2 and then dropped to ~120 μM on PBD 3 
(Fig. 5D). The moisture sensor turned pink when the exudate was 
initially added and reverted to a blue color when the exudate dried 

up at the end of detection. When we plotted the fold change of the 
five markers/indicators on radial charts, it is obvious that only UA 
shows a sharp change over 3 days, while the other markers/indica-
tors show minimal change, which further suggests UA as the most 
critical marker to distinguish partial thickness versus deep burns in 
their biochemical profiles (Fig. 5, F to H). Our neural network 
model #2 achieves a high accuracy of 92.6% with very low training 
loss for identification of partial thickness burns versus deep burns 
(Fig. 5E and figs. S16 and S17). 

In situ burn wound severity analysis in rat models 
To demonstrate the applicability of the PETAL sensor patch for in 
situ wound monitoring, we performed longitudinal wound moni-
toring in the rat burn wound models for 4 days (Fig. 6, A and B) 
with the sensor patches attached to the wound sites. Briefly, on 
each rat, two partial thickness burns at 55°C and two deep burns 
at 85°C were induced on the back of the rats on day 0. One of the 
partial or deep burns was used as control with the other having a 
PETAL sensor patch adhered on top (Fig. 6C) to assess the biocom-
patibility of sensor patches. The sensor placements on the four burn 
wounds were systematically varied in rat 1, rat 2, and rat 3 (fig. S19). 
Subjects were allowed to move freely with the attached sensor 
patches for 6 hours, and images of the sensor patches were taken 

Fig. 4. Ex situ benchtop analysis of perturbed wound exudate. (A) The formation of perturbed wounds. (B) Sensor images before and after addition of perturbed 
wound exudate versus extracted fluid from scaffold. (C) Radial graph giving an overview scale of the five markers in the perturbed wound exudate versus the scaffold 
extract. Quantitative comparisons of (D) pH levels and (E) UA concentrations. Error bars in (D) and (E) represent the SD (n = 3). (F) Confusion matrix for perturbed 
wound model.  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Zheng et al., Sci. Adv. 9, eadg6670 (2023) 16 June 2023                                                                                                                                                         7 of 14 



at specific time intervals of 1, 3, and 6 hours. The presence of the 
sensor patches appeared to be well tolerated with no observed signs 
of discomfort or any excessive scratching of the sensor-covered 
burn wound. 

For the small-sized PETAL sensor patch (1.8 cm size), it requires 
more than 1 hour to have sufficient wound exudate channeled to the 
detection zones due to the slow wound exudate generation of 0.34 to 
0.43 g/cm2 per 24 hours (54), and the most representative images 

were taken at around 3-hour time point. The temperatures for 
both partial thickness and deep burns were around 36°C on day 0 
and gradually dropped on PBD 1 and PBD 2 and stabilized on PBD 
3 to ~32°C. No temperature differences were observed between 
partial thickness and deep burns (Fig. 6D). 

The trend of temperature change detected with our PETAL 
sensor patch agreed well with the trend of temperature profiles mea-
sured by infrared thermal camera (fig. S20). The pH values for both 

Fig. 5. Ex situ analysis of rat burn wound exudate on benchtop. (A) A schematic drawing showing the creation of partial burn versus deep burn. (B) Sensor images 
showing initial colors before burn wound exudate addition and after addition of wound exudate collected from rat partial versus deep burn from 24 hours after burn 
creation [post-burn day (PBD)] 1 to PBD 3. Quantitative analysis of (C) pH trend and (D) UA concentration changes over 3 days. Error bars in (C) and (D) represent the SD 
testing burn wound exudate from three rats. (E) Confusion matrix for burn wound severity. (F to H) The radial graphs for an overview of the five markers on (F) PBD 1, (G) 
PBD 2, and (H) PBD 3.  
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Fig. 6. In situ monitoring of burn wounds and sensor patch biocompatibility in rat burn wound models. (A) In situ wound monitoring study design. (B) Photograph 
showing the sensor patches worn on a freely moving rat. (C) Photograph showing the burn wounds and the experimental arrangement of the sensor patch attachment, 
i.e., the sensor patches are placed at the bottom row, whereas the top two burn wounds are used as controls. Quantitative comparison of (D) temperature, (E) pH, and (F) 
UA for the partial burns versus the deep burns. (G) Macroscopic images of the burn wounds from day 0 to PBD 3. (H) Hematoxylin and eosin (H&E) images of the burn 
wounds without sensor (control) versus with sensor on PBD 1. The statistical comparison of inflammatory scores for (I) partial burn and (J) deep burn for day 0, PBD 1, and 
PBD 3. (K) H&E images showing the wound edge epithelial region for control versus sensor attached burn wound. The statistical comparison of epithelial thickness for (L) 
partial burn and (M) deep burn for day 0, PBD 1, and PBD 3. Data are presented as mean values ± SEM. Statistical comparisons were made using two-way analysis of 
variance (ANOVA) with post hoc Sidak’s test (**P < 0.01, n = 3). ns, not significant.  
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partial thickness burns and deep burns were all in alkaline range 
similarly from day 0 to PBD 3 but increased from around 7.8 on 
day 0 to 8.2 on PBD 2 and then dropped back to 7.8 on PBD 3 
(Fig. 6E). The UA levels for the partial thickness and deep burns 
were both low (~30 μM) on day 0 and PBD 1. 

The average UA level for the deep burns increased more than 
fivefold to 220 μM on PBD 2, whereas it remained at 30 μM in 
the partial thickness burns (Fig. 6F). On PBD 3, the level for the 
deep burns reduced substantially to 70 μM but was still higher 
than that in the partial burns. This higher UA level detected in 
deep burns in situ agreed with the UA trend observed in the precol-
lected burn wound exudates tested on bench top, similarly showing 
a higher UA level for deep burns on PBD 2 and PBD 3. This trend 
also agreed well with literature reports that elevation of serum UA 
level is correlated with burn wound severity (38, 39). 

To study the biocompatibility of our PETAL sensor patch, 
further characterizations of the burn wounds were performed 
(Fig. 6, G to M). The macroscopic images of the wounds and the 
hematoxylin and eosin (H&E)–stained sections show that there 
are no visible changes in the appearance of the wounds with and 
without PETAL sensor patches (Fig. 6, G and H). If comparing 
between the deep and partial thickness burn wounds, the former 
appears larger than latter. Furthermore, the deep burn wounds 
appear more blanched compared to the partial burns. The red 
ring of inflammation as observed on PBD 2 and PDB 3 is consistent 
around the wounds of both the partial thickness burn and deep 
burn (Fig. 6G). The histology of PBD 1 wounds shows damage to 
the hair follicles and coagulated dermis and presence of leukocytes 
in the tissue is consistent in the sensor-free control and sensor patch 
attached wounds of partial thickness burns and deep 
burns (Fig. 6H). 

In addition, histological examination of the burn wounds dem-
onstrates significant morphological differences between the partial 
thickness and deep burns, especially in terms of the existence of hy-
perthickened epidermis in deep burns (Fig. 6K). There was no sig-
nificant difference observed in the partial thickness burn wound 
edge epidermal thickness at 6 hours and PBD 1. At PBD 3, there 
was a significant difference in epidermal thickness between 
control (no sensor covering) and sensor-covered wounds. The pres-
ence of a sensor patch could have assisted as a skin barrier protec-
tion to advance keratinocyte migration and reduce epidermal 
thickness over the burn wound bed (Fig. 6L). No significant differ-
ences were observed in the wound edge epidermal thickness in deep 
burn control and sensor patch covered wounds (Fig. 6M). These 
results and observations together suggest that there are no apparent 
signs of adverse reactions observed on the skin surface in contact 
with the PETAL sensor patches over 4 days (Fig. 6, G to M). The 
behavioral, visual, and histological data presented in this section 
proved the biocompatibility and usability of our PETAL sensor 
for in situ wound monitoring. 

DISCUSSION 
We report a PETAL sensor patch that allows simultaneous sensing 
of five wound markers and/or wound condition indicators using 
adaptable wax printing sensor layout, intricate sensor functionaliza-
tion techniques, and a deep neural network–based image analysis 
algorithm. We have demonstrated the promising outcome of the 
PETAL sensor platform for bench top analysis of perturbed 

wound exudate and detection of wound healing of burn wounds 
both on bench top (ex situ) and in animal models (in situ). 

The five markers/parameters are temperature, TMA, pH, mois-
ture, and UA, which together give a holistic profiling of wound in-
fection and inflammation status within minutes of sufficient 
exudate accumulation. Such holistic collection of five markers/pa-
rameters of different clinical implications, i.e., inflammation, infec-
tion, and wound physical conditions, is demonstrated using a panel 
of colorimetric sensors. The biocompatible PETAL sensor can 
perform in situ multiplexed wound sensing, making it possible 
for its integration into active wound dressing in future. 

Manual interpretation of image values from multiple markers is 
not practical as a time-efficient wound care routine and real-time 
monitoring. To enhance the usability of PETAL for on-site assess-
ment, we thus directly analyzed the images or videos of the PETAL 
sensor patches by deep learning neural networks, which enable a 
highly accurate wound classification (in our case, identifying 
delayed healing and burn severity). Such classifications can 
provide an early warning for adverse events, such as infection or 
prolonged inflammation, to trigger timely clinical intervention. 

We foresee two limitations for our PETAL sensor patch: (i) 
because the sensor is paper-based and mainly relies on passive cap-
illary action (without active pumping) to draw wound exudates to 
its detection zones, when the exudate production rate is low or when 
the exudate is extremely viscous, a longer time is needed (up to 
hours) to accumulate sufficient exudate on the sensor patches to 
generate color response. However, because wound healing is a mul-
tiple-stage event, usually taking days or weeks (22), wound exudate 
accumulation within hours is still practical. If one needs to get the 
readout faster, then the pattern design can be optimized, e.g., reduc-
ing the channel length. (ii) We have added a blood filtration layer to 
prevent the red blood cells from interfering with colorimetric 
readout, which should be applicable to most types of wound exu-
dates, such as serous or serosanguineous exudate (55–57). 
However, in case of high blood containing wound exudate (i.e., san-
guineous wound), the interference may still exist. In such incident, 
additional blood filtration via a thicker filtration layer or higher fil-
tration capacity layer (58) may be applied. Meanwhile additional 
augmentation in algorithm (e.g., hue/saturation jitter) can be imple-
mented to ensure the sensor accuracy. In addition to wound classi-
fication with the current algorithm, further development of the 
algorithm could combine regression and classification in the 
CNN to produce multiple outputs for wound labels and individual 
marker values. Training with more data from wound models could 
further enhance the algorithm’s performance and enable rapid 
quantification of individual markers, which is valuable for quanti-
tative assessment of internal status of the wound. 

As for the cost, our PETAL sensor is definitely a cost-effective 
solution. Not to mention the fact of five makers being detected in 
one patch, the infection detection itself via the metabolite (e.g., 
TMA in this example) eliminated the need for costly bacteria 
culture process. With a proper selection of various bacteria 
VOCs, our sensor can offer fast identification of bacterial infection. 

Note that the AI-enabled PETAL technology can be adaptable 
and customizable for other wound types, by incorporation of differ-
ent colorimetric sensors, for example, glucose, lactate, or interleu-
kin-6 for diabetic ulcers. The sensor patch is easily reconfigured for 
different numbers of detection zones to detect desired number of  
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biomarkers at the same time so as to broaden its applications for 
different wound types. 

MATERIALS AND METHODS 
Chemicals and materials 
Glucose, UA, TMA, HRP, uricase, phenol red, 3,3′,5,5′-tetramethyl-
benzidine, 4-AAP, Stabilicoat Immunoassay Stabilizer solution, 
sodium 3,5-dichloro-2-hydroxybenzenesulfonate (DHBS), cobalt 
chloride, PVA, perfluorooctyl-trimethoxysilane, Reichardt’s dye, 
COC, CB, and CN were obtained from Merck. LF1, MF1 grade 
blood filtration membranes, and grade 3 filter papers were pur-
chased from Whatman. 

Wax printing of paper fluidic patterns 
The desired two-dimensional (2D) paper fluidic pattern was first 
drawn using a computer-aided design software with varied dimen-
sions of 1.8-, 2.5-, and 3.5-cm squares and varied size of the sensing 
regions and channel width to suit different wound size and level of 
wound fluid (fig. S2). Next, the 2D patterns were printed onto grade 
3 Whatman filter paper using a wax printer (Xerox ColorQube 8580 
Color Printer) similar to previous reports (26–28). The wax-printed 
paper was then heated at 90°C for 10 min to ensure sufficient pen-
etration of wax barriers into the filter paper and, at the same time, to 
maintain smooth fluid flow in the channels. 

PETAL colorimetric sensor development and calibration 
According to the sensing materials involved, the five colorimetric 
sensors in the petal arrangement were prepared at the five detection 
zones in a sequence of TMA sensor (zone 2), temperature sensor 
(zone 1), pH sensor (zone 3), moisture sensor (zone 4), and UA 
sensor (zone 5) (Fig. 2A), and details of preparing each sensor are 
described in the same order below. 

The TMA sensor was prepared by first treating the cellulose 
paper with 1% perfluorooctyl-trimethoxysilane at 90°C, followed 
by the deposition of Reichardt’s dye (5 mg/ml in ethanol). It was 
calibrated by adding increasing concentrations of TMA in the 
wound relevant range of 0 to 300 ppm and incubated for 30 min. 
Temperature sensor made of CLC mixture containing 36% COC, 
10% CB, and 54% CN was sandwiched between two pieces of trans-
parent films with a black background. This sandwiched temperature 
sensor was then adhered onto the first detection zone of the wax- 
printed sensor panel. The temperature sensor was calibrated on a 
high-precision hot plate (Thermo Scientific RT2 Advanced Hot-
plate Stirrer with 0.1°C resolution) with temperature tuned from 
31° to 36°C. A thermal camera (Fluke Ti480 PRO Infrared 
Camera) was used to confirm the temperature measured by 
sensor patch. The temperature sensor was placed at the exact 
same spot during calibration to ensure temperature consistency. 

The pH sensor was fabricated by dropping 1 μl of phenol red 
solution (0.04 wt % in H2O) twice onto the detection zone. pH cal-
ibration was performed by adding 5 μl of standard pH buffers pre-
pared according to a reported protocol (59). The actual pH was also 
verified using a pH meter (HORIBA compact pH meter). The mois-
ture sensor was fabricated by drop-casting 2 μl of CoCl2 (100 mg/ 
ml) dissolved in 2 wt % PVA solution into the fourth detection zone. 
It was calibrated in a humidity chamber with an inbuilt electronic 
humidity sensor (Espec, SH-262) with the moisture level adjusted 
from 30 to 80%. 

In the last detection zone, the colorimetric UA sensor was based 
on a well-developed enzyme cascade reaction (43), which requires 
five steps: (i) addition of 1 wt % low–molecular weight chitosan at 
pH 6.5 as sensor matrix and dry at room temperature for 5 min; (ii) 
addition of 16 mM 4-AAP in 8 mM DHBS and dry for 5 min; (iii) 
addition of HRP (0.15 mg/ml) in a StabilCoat Immunoassay Stabil-
izer solution and dry for 5 min; (iv) addition of uricase (40 mg/ml) 
in stabilizer solution and dry for 5 min; and (v) readdition of AAP 
solution and dry for 5 min. The sequence of these steps has been 
optimized to make sure that the color gradient is most prominent. 
The volume of the solution is depending on the area of the well, ap-
proximately 14 μl/cm2. UA sensor was calibrated by adding pre-
pared UA solutions to the sensor and incubating for 15 min. 
Calibration experiments were performed in triplicates. 

Assembly of silicone-embedded PETAL sensor patch 
The top transparent layer is a 3M Tegaderm Transparent Film, and 
the bottom adhesive layer is a Mepitel gentle two-sided wound 
contact layer if the sensor will be in direct contact with wound. 
The top Tegaderm layer, wax-printed sensor patch, circular blood 
filtration membrane (Whatman LF1 grade, 6 mm in diameter), and 
the bottom adhesive layer were stacked in order and then assembled 
by sticking together with the sides trimmed to form a complete 
sensor patch. 3M 2477P medical silicone tape can also be used as 
the bottom adhesive layer. 

Preparation of SWFs 
SWF was prepared according to a reported formulation (45), which 
consists of 2% human serum albumin, 0.36% NaCl, 0.05% 
NaHCO3, 0.02% sodium citrate, 0.1% sodium lactate, 0.1% 
glucose, 0.01% CaCl2.2H2O, 0.02% MgCl2, and 0.01% urea. The in-
tended analyte target, i.e., UA and TMA, was spiked in this basic 
formulation to form healthy healing SWF-A containing 600 μM 
UA and 0-ppm TMA and nonhealing SWF-B containing 60 μM 
UA and 300-ppm TMA. 

Color analysis and PETAL sensor calibration 
Images of the colorimetric sensors before SWF addition were cap-
tured as the background, with a mobile phone (SAMSUNG Galaxy 
Note 20) under a room light condition. JPEG images were used 
instead of RAW images, considering that JPEG is the most 
common and user-friendly file format for digital image acquisition 
devices, but RAW requires extensive tuning of processing parame-
ters. Otherwise, the image quality is deteriorated (fig. S21). Images 
were captured under ambient light sources with color temperatures 
ranging from 4000 to 7500 K with auto white balance function ON 
in the mobile device. Under such conditions, the color features are 
consistent (or all within a reasonable range) (fig. S22). 

After the color change stabilizes at typically 15 min upon analyte 
addition, images of the sensor patches (regardless of the wet/dry 
state) were captured again. The timing is set at 15 min to ensure 
that the sensor patch is fully reacted, so that they will give similar 
readings regardless of wet or dry condition at four nodes (except 
moisture) using the analysis method used for sensor calibration 
(fig. S23). There are slight shifts across feature values due to the dif-
ferent image sensors and image signal processor algorithms applied 
in different mobile devices (fig. S24). The images were then ana-
lyzed by ImageJ software to obtain the intensity or RGB values of 
the detection zones. These intensity values or RGB values were then  
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background-subtracted and compared with calibration values to de-
termine the corresponding analyte concentrations. Temperature 
sensor reflectance value from the image was analyzed by AttoView 
software (Attonics). 

Collection of rat wound exudate and PETAL sensor 
patch testing 
A perturbed wound model in rats was induced by first placing an 
oversized electrospun scaffold made of polycaprolactone with 20% 
collagen type 1, presoaked in senescence-inducing drug, FK866, 
into a full-thickness 6-mm wound on the back of male Sprague- 
Dawley rats (6 to 8 weeks old, 250 to 300 g). These scaffolds were 
left in situ for 10 days before scaffold removal. Perturbed wounds 
were observed to have features mimicking human chronic 
wounds such as stalled reepithelization with hyperthickening at 
the wound edge and hindered wound closure and chronic inflam-
mation (49). The animal procedures for perturbed wound were per-
formed under protocol number A19055, approved by the 
Institutional Animal Care and Use Committee (IACUC) of 
Nanyang Technological University. Exudates from the perturbed 
wounds were collected upon the removal of the scaffolds. For rat 
perturbed wound model, the wound fluid amount is low; therefore, 
we pooled wound fluids from four to six rats together for ex situ 
measurements. To elute the wound exudate from the scaffolds 
removed, scaffolds were first cut into fragments before ribonucle-
ase-free distilled water was added, vortex for 2 min at maximum 
speed, and then centrifuged at 5000g for 5 min to obtain the scaf-
fold-eluted fluids. The perturbed wound exudate was further ultra-
filtered at 3000 rpm for 10 min before it was added to the sensor 
patch. The images of the sensor patch before and after 15 min of 
exudate addition were captured for color analysis. 

Two types of burns were created on the shaved back of rats at 55° 
and 85°C for 10 s, respectively. A handheld soldering iron was used 
to create consistent burns. The burn wounds were then gently de-
brided with gauze and bandaged with Tegaderm and Opsite for 
wound fluid collection. The burn wound fluids from three rats 
(>100 μl from the four 6-mm burns per rat overnight) were collected 
by pipetting the exudate accumulated under Tegaderm into sam-
pling tubes on PBD 1 to PBD 3. The burn wound exudate was di-
rectly added onto the center port of the PETAL sensor patch 
without any pretreatment. The images of the sensor patch before 
and after 15 min of exudate addition were taken for color analysis. 

Evaluation of PETAL sensor patch in rat burn wound model 
Animal procedures 
The animal procedures for burn wound model were performed 
under protocol number A19039, approved by the IACUC of the 
Animal Research Facility of Nanyang Technological University. 
Sprague-Dawley male rats aged 6 to 8 weeks old, weighing 200 to 
250 g were purchased from InVivos Pte Ltd. (Singapore) and accli-
matized before conducting burn experiments. The burn wounds 
were created and debrided as described above. Both sides of 
sensor patches were first sterilized by ultraviolet for 20 min to 
ensure sterility. The sterilized patches were then applied onto the 
debrided burn wounds and were secured in place with a Tegaderm 
film and wrapped with Opsite. The rats were then monitored for 6 
hours. The rats were euthanized on 6 hours after burn, PBD 1 and 
PBD 3, to examine the histology of the burn wound. 

Tissue processing, microtome sectioning, and H&E staining 
Harvested tissues were fixed in 4% paraformaldehyde for 48 hours. 
Fixed tissues were bisected and processed in a HistoCore PEARL 
tissue processor (Leica, Germany). Briefly, the samples undergo in-
creasing changes of ethanol and into xylene. Samples were then 
transferred into a warm bath of paraffin at 65°C and embedded 
into a paraffin block. The embedded blocks were sectioned at 5 
μm using Leica Microtome RM2245 (Leica, Germany) and 
mounted onto polysine microscope slides. Sectioned slides were 
baked, and H&E was performed in Leica Autostainer XL (Leica, 
Germany). Briefly, slides were dewaxed in Clearene and hydrated 
in decreasing concentrations of ethanol. Slides were then dipped 
into hematoxylin and washed in water before staining in eosin. Sub-
sequently, the slides were dehydrated in increasing concentrations 
of ethanol and cleared into Clearene. Slides were cover-slipped 
using limonene mounting medium (Sigma-Aldrich, USA). 
Bright-field microscopy and image analysis 
H&E-stained slides were scanned on an Axioscan.Z1 slide scanner 
(Zeiss, Germany) using 20× objective with numerical aperture of 
0.8. Scanned images were visualized on Zen 3.3 software (Zeiss, 
Germany), and regions of interest (ROIs) were drawn for analysis 
of epidermal thickness and inflammatory score. For epidermal 
thickness measurement, the line function was used to draw seven- 
line ROIs from the thickest spinosus layer to the basal cell layer. The 
measured ROIs were averaged, and analysis were performed. Two- 
way analysis of variance (ANOVA) with Sidak’s multiple compari-
sons was performed on GraphPad Prism 8.4.3 to confer statistical 
significance. A P value of 0.05 was considered statistically 
significant. 

Development of machine learning algorithm 
JPEG (standard RGB color space) images of sensors were taken 
from a mobile phone (SAMSUNG Galaxy Note 20) or a digital 
camera (Sony A7RIII, Panasonic DC-G9). A total of 1765 images 
from perturbed wound model and 1193 images from burn wound 
model were obtained. Images are generally taken 8 to 15 min after 
fluid addition. During image collection, we also varied the shooting 
angle and lighting. 

After acquiring all sensor images, the rectangular shape of the 
sensor is extracted and cropped out on the basis of size using 
MATLAB Image processing toolbox. After cropping, sensor 
images were resized to 227 × 227, which then denoised with a pre-
train denoising neural network (DnCNN) (60) to remove excessive 
noise in certain dark region. Images from the training set are aug-
mented with rotation/pixel translation, shear, and color jitter to 
mimic the actual use of this framework. 

CNN is constructed following Fig. 1E using deep network de-
signer (Deep Learning Toolbox, MATLAB R2021b) (61, 62). Paral-
lel computing toolbox is used to speed up the training process. 
Because our sample size is small, here, we chose to restrict our 
network size by only including three convolutional layers and two 
fully connected layers. An ablation experiment indicates that there 
is a limited performance enhancement if the convolution layers are 
further increased and that the performance drops if the convolution 
layers are reduced (fig. S25). Because there were two separate wound 
models, the definitions of normal/healable condition were different 
for pH and UA marker. Two binary image classifiers were trained 
for two types of wound models (normal versus perturb, and partial 
thickness burn versus full thickness burn) with the same structure  
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but different weights. Models were trained on a workstation (AMD 
Ryzen Threadripper 3990X, NVIDIA GeForce RTX3090) for 100 
epochs, with a learning rate of 0.005. 

Training accuracy and loss for both models are shown in figs. S16 
to S18. Fivefold cross-validation was used to minimize the error of 
the training process. Twenty percent of images in the dataset was 
allocated as validation sets. 

Traditional regression analysis techniques, such as linear regres-
sion (63, 64), were also used to construct our calibration and inter-
pret individual marker levels to understand the classification results. 
Compared to standard linear regression models, CNN offers fully 
connected layer architecture, with multiple layers of linear opera-
tions and nonlinear activation functions. This architecture allows 
CNN to learn nonobvious patterns from a large set of variables, 
making them a powerful tool for multiplexed sensor interpretation 
and quantification. 
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This PDF file includes: 
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Tables S1 and S2 
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