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Key Points

• Bispecific CAR T cells
circumvent outgrowth
of antigen-negative
tumor cells in vivo.

• Tandem and bicistronic
CARs have reduced
sensitivity to single-
antigen tumor cells
because of
compromised antigen
binding and signaling.
Therapy with CD19-directed chimeric antigen receptor (CAR) T cells has transformed the

treatment of advanced B-cell malignancies. However, loss of or low antigen expression can

enable tumor escape and limit the duration of responses achieved with CAR T-cell therapy.

Engineering bispecific CAR T cells that target 2 tumor antigens could overcome antigen-

negative escape. We found that CD79a and b, which are heterodimeric components of the

B-cell receptor, were expressed on 84.3% of lymphoma cases using immunohistochemistry,

and 87.3% of CD79ab-positive tumors also coexpressed CD19. We generated 3 bispecific

permutations: tandem, bicistronic, and pooled products of CD79a-CD19 or CD79b-CD19 CAR

T cells and showed that bispecific CAR T cells prevented the outgrowth of antigen-negative

cells in a CD19-loss lymphoma xenograft model. However, tandem and bicistronic CAR

T cells were less effective than monospecific CD19 or CD79a CAR T cells for the treatment of

tumors that only expressed CD19 or CD79, respectively. When compared with monospecific

CAR T cells, T cells expressing a tandem CAR exhibited reduced binding of each target

antigen, and T cells expressing a bicistronic CAR vector exhibited reduced phosphorylation

of downstream CAR signaling molecules. Our study showed that despite added specificity,

tandem and bicistronic CAR T cells exhibit different defects that impair recognition of

tumor cells expressing a single antigen. Our data provide support for targeting multiple

B-cell antigens to improve efficacy and identify areas for improvement in bispecific

receptor designs.

Introduction

The adoptive transfer of genetically modified T cells expressing a CD19-specific chimeric antigen
receptor (CAR) is effective for refractory and relapsed B-cell malignancies, resulting in complete
response rates up to 93%, 54%, and 67% in acute lymphocytic leukemia (ALL),1 non-Hodgkin lym-
phoma2,3 (NHL), and mantle cell lymphoma (MCL),4 respectively. However 17% to 61% of patients with
NHL and ALL subsequently relapse,5 and the absence or low expression of CD19 on tumor cells is a
major mechanism of escape.3,6-9

Human cancers are heterogeneous, and it is unsurprising that targeting a single antigen may not always
achieve complete tumor elimination. Simultaneous targeting of multiple B-cell antigens, such as CD19
and CD22 or CD19 and CD20, prevents the outgrowth of CD19-negative variants in preclinical
models10-13 and has shown promise in clinical trials.9,14-21 However, CD20 and CD22 present
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challenges as CAR targets: CD22 is expressed at variable levels in
B-ALL and NHL,22,23 and high antigen expression is necessary for
CAR T-cell recognition.9,24-26 Moreover, incorporating CD22- and
CD19-specific single-chain variable fragments (scFvs) as a tandem
single chain has compromised the activity against each target.27

First-line treatment of NHL includes monoclonal antibody target-
ing of CD20, and this selective pressure may increase the het-
erogeneity of CD20 expression on tumor cells.28,29 Thus, it is
important to characterize additional targets in B-cell malignancies
and understand the potential limitations of multispecific targeting.

CD79a and CD79b are expressed in early B-cell lymphopoiesis as
a heterodimer associated with the surface immunoglobulin.30,31

CD79ab expression is retained on most CD19-positive B-cell
neoplasms,32-34 making these molecules candidates for multi-
specific targeting with CARs,35 bispecific T-cell engagers, or
antibody drug conjugates.36 Indeed, an antibody drug conjugate
targeting CD79b is approved for the treatment of diffuse large
B-cell lymphoma (DLBCL).37 We developed CD79a- and CD79b-
directed CARs and examined their use in tandem, bicistronic, and
pooled bispecific formats combined with a CD19 CAR. Our data
demonstrate that bispecific CAR T cells can mitigate antigen loss
and that the tandem and bicistronic CD79a-CD19 CAR designs
are more effective in tumor clearance than monospecific CAR
T cells when both antigens are present on a majority of tumor cells.
However, in scenarios where tumor cells express only a single
antigen (ie, CD19 or CD79), the function of tandem and bicistronic
CAR T cells is compromised compared with the respective
monovalent CAR T cells because of less efficient antigen binding
and decreased downstream signaling, respectively.

Methods

Mouse models

The Fred Hutch Cancer Center (FHCC) institutional animal care
and use committee approved all experimental procedures. NSG
mice were purchased from Jackson Laboratory or bred in house.
Mice (6-8 weeks old) were injected intravenously with JeKo-1,
JeKo-1CD19-, or JeKo-1CD79- eGFP-ffluc cells, and cohorts
were treated with CD4 and CD8 CAR T or mock T cells mixed at a
1:1 ratio 7 days later. Tumor size was measured by biolumines-
cence imaging as described.38 Bone marrow (BM) was isolated
from hindlimbs when mice reached euthanasia requirement
because of a high tumor burden, followed by red blood cell lysis
and staining for flow cytometry.

Flow cytometry

BM suspensions were stained with LIVE/DEAD Fixable Aqua
(ThermoFisher), washed, and stained with fluorochrome-
conjugated antibodies in phosphate-buffered saline (PBS) + 2%
bovine serum albumin + 3.6 mM EDTA. Antibodies used were anti-
human CD45 (2D1), CD79b (C3B-1), CD19 (HIB19), CD20
(2H7), CD22 (HIB22), CD8 (RPA-T8), CD4 (RPA-T4), and EGFR
(AY13). Antibodies used in the phenotypic panel were PD1
(eBioJ105), Tim3 (F38-2E2), LAG3 (11C3C65), CD62L (DREG-
56), CD25 (BC96), TIGIT (A15153G), and EGFR (AY13). CD79a/
b or CD19 CAR staining was performed by incubating cells
with recombinant human CD79ab-Fc (rhCD79ab-fc) or rhCD19-
biotin, respectively, at 4◦C for 20 minutes and staining with
antigen-presenting cell–conjugated anti-human Fc (HP6017) or
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streptavidin-PE (BioLegend). Tumor cell antibody-binding capacity
for CD19 or CD79b were measured using Quantibrite Phycoery-
thrin Beads (BD Biosciences) and used according to the manu-
facturer’s instructions. Samples were acquired on Fortessa or
Celesta flow cytometer (Becton Dickinson).

CAR T-cell generation

Peripheral blood was obtained from healthy donors following the
protocols approved by the FHCC institutional review board. The
study was conducted according to the Declaration of Helsinki.
CD4 and CD8 T cells were isolated using EasySep CD4+ and
CD8+ T-cell–negative selection (STEMCELL Technologies), acti-
vated, transduced, and cultured as described.39 Lentiviral vector
encoding CD19-specific CAR with 1 STII tag was previously
described;40 CD79 CAR lentiviral vectors were constructed using
variable light (VL) and variable heavy (VH) sequences from
US20130089547A1 (CD79a) and WO2016/090210A1,
EP2641618A2, US 2007/0207142A1C14, and WO2017/
009474A1 (CD79b). Codon-optimized CAR transgenes were
synthesized by Thermo Fisher Scientific. Lentivirus was concen-
trated by mixing with one-fourth volume of 40% polyethylene gly-
col–8000 overnight at 4◦C, centrifuging it at 1800g for 20 minutes,
followed by resuspending the pellet in Dulbecco’s modified eagle
medium, and ultracentrifuging it at 24 500 RPM for 90 minutes at
4◦C. Viral pellet was resuspended in Dulbecco’s modified eagle
medium by vortexing for 2 hours, then stored at −80◦C. CAR T
cells were enriched based on truncated human epidermal growth
factor receptor (EGFRt) expression using fluorescence-activated
cell sorting (FACS) or staining with anti-EGFR-biotin, followed by
magnetic separation using antibiotin microbeads (Miltenyi Biotec).

Cell lines

K562, Raji, and JeKo-1 were obtained from the American Type
Culture Collection. MAVER-1, NU-DUL-1, RAMOS, SU-DHL-1,
OCI-LY1, and Gumbus cells were a gift from Marie Bleakley.
GRANTA-519, Daudi, RAMOS, FL-18, and Rec1 were a gift from
Brian Till. Tumor lines were cultured in RPMI with 100 U/mL
penicillin/streptomycin and 5% FBS. JeKo-1 cells were trans-
duced to express GFP and firefly luciferase. JeKo-1 CD19 or
CD79b knockout cells were generated by nucleofection with the
Alt-R CRISPR-Cas9 system (Intergrated DNA Technologies)
using predesigned crRNAs specific for the CD19 or CD79b
genes (Intergrated DNA Technologies). Briefly, crRNAs were
mixed with tracrRNA at equimolar concentrations and annealed
by heating to 95◦C for 5 minutes, followed by slow cooling to
room temperature. crRNA-tracrRNA duplexes were combined
and complexed with Cas9 nuclease and electroporation enhancer
for 15 minutes. Ribonucleotide protein complexes were mixed
with JeKo-1 cells resuspended in SF buffer (Lonza) and electro-
porated using the 4D Nucleofector (Lonza). CD19– or CD79b–

cells were FACS-sorted at least twice for purity. K562CD19,
K562CD79b, or K562CD79ab cells were generated by trans-
ducing K562 cells to overexpress CD19, CD79b, or CD79a and
b and then FACS-sorted for positivity.

In vitro assays

Tumor cytotoxicity was measured by chromium release assay as
described.41 Interleukin-2 (IL-2) and interferon gamma (IFN-γ)
release was measured in supernatants after coculturing 2.5 × 104
FUNCTIONAL DEFECTS IN BISPECIFIC CAR DESIGNS 2719



CD8 CAR T cells with target cells at 1:1 ratio or with recombinant
CD19-biotin or CD79ab-Fc-coated 96-well plates via enzyme-
linked immunosorbent assay (Invitrogen). Avi-tagged rhCD19 and
rhCD79ab-Fc were produced in house (FHCC). CD19 was bio-
tinylated using the BirA biotinylation kit (Avidity). To coat bio-
tinylated rhCD19 in 96-well plates, 100 mL of avidin (Invitrogen) at
10 mg/mL was incubated overnight in 96-well high-binding plates
(Corning). Next day, avidin-coated plates were washed with PBS
and blocked with PBS + 2% bovine serum albumin for 1 hour at
4◦C. Biotinylated rhCD19 was serially diluted in PBS in low binding
plates (Corning), and 100 mL was transferred to blocked avidin
plates and incubated for 30 minutes at room temperature. Serially
diluted rhCD79ab-Fc was coated by direct adsorption onto 96-well
high-binding plates for 20 hours. Plates were washed with PBS
and ready for plate-bound stimulation.

Western blotting

T cells were stimulated by plate-bound antigen in 96 wells. For
each condition, 2 × 105 T cells were plated per well in 4 to 6
replicates. Plates were centrifuged at 400g for 1 minute and
incubated at 37◦C for 30 minutes. Plates were placed on ice to
arrest signaling, and cells were collected, washed, and lysed with
NP40 (Invitrogen) supplemented with HALT TM protease inhibitor
(Thermo Fisher Scientific) and phosphatase inhibitor (Thermo
Fisher Scientific). An equal amount of protein lysate was loaded
into 4% to 15% Mini-PROTEAN gels (Bio-Rad) and transferred
onto PVDF using the Trans-Blot Turbo transfer system (Bio-Rad).
Membranes were blocked and stained in EveryBlot Blocking Buffer
(Bio-Rad). Primary antihuman antibodies were purchased from Cell
Signaling unless specified: CD247 (8D3, BD Biosciences),
CD247 pTyr142 (K25-407.69, BD Biosciences), PLCg (D9D6E),
PLCg pTyr783 (D6M9S), SLP76 (D1R1A), SLP76 pSer376
(D9D6E), extracellular signal-regulated kinase (ERK) (137F5), and
ERK pThr202/Tyr204 (D13.14.4E).

Multiplex immunohistochemistry

Protocols for the procurement of human and animal tissues were
approved by the institutional review board of the FHCC or obtained
as tissue microarrays from US Biomax (LY401 and LY1001d).
Formalin-fixed paraffin-embedded tissues were stained on a Leica
BOND Rx autostainer using the Akoya Opal Multiplex IHC assay
(Akoya Biosciences) with the following changes: additional high-
stringency washes were performed after the secondary antibody
and Opal fluor applications using high-salt TBST (0.05M Tris, 0.3M
NaCl, and 0.1% Tween-20, pH 7.2-7.6). TCT (0.05M Tris, 0.15M
NaCl, 0.25% Casein, 0.1% Tween 20, pH 7.6 +/− 0.1) was used as
the blocking buffer. All primary antibodies were incubated for 1 hour
at room temperature. Antibodies used are listed in Table 1. Slides
were mounted with ProLong Gold and cured for 24 hours at room
temperature in the dark before image acquisition at 20× magnifi-
cation on the Akoya Polaris Automated Imaging System. Images
were spectrally unmixed using Akoya Phenoptics inForm software.
Staining positivity was scored by a board-certified hematopatholo-
gist (C.C.S.Y.).

Results

CD79 and CD19 are coexpressed on MCL and DLBCL

We investigated CD19 and CD79a or CD79b expression on tumor
cell lines using a quantitative antibody-binding assay and on patient
2720 LEUNG et al
lymphoma samples using immunohistochemistry. Antibody
reagents to assess surface CD79a by flow cytometry are unavai-
lable; therefore, we used CD79b surface expression on the tumor
cell lines as a surrogate for the CD79ab heterodimer.42-44 CD79b
and CD19 were coexpressed on tumor lines derived from MCL,
Burkitt’s lymphoma, DLBCL, and follicular lymphoma, whereas
some cell lines (Granta, FL18, and Raji) had low levels of CD79b
(Figure 1A; supplemental Figure 1A). Analysis of 140 patient tumor
specimens using immunohistochemistry identified CD79a and
CD79b double-positive expression on 118 (84.3%), CD79a single-
positive on 8, and CD79b single-positive on 3 samples. Of the 140
cases, 116 (82.9%) were CD19+, and of the CD19+ cases, 103
(88.8%) were CD79a and b double-positive (Figure 1B;
supplemental Figure 1B). These data are consistent with prior
reports showing CD79ab expression in most mucosa-associated
lymphoid tissue lymphoma, DLBCL, and MCL32-34,42,45 and sup-
port cotargeting of CD19 and CD79a or CD79b by CAR T cells.

Design of CD79a and CD79b CARs

We generated CD79a and CD79b CARs using 5 different anti-
body sequences specific for CD79b and 1 for CD79a. The variable
chain sequences were positioned in variable light (VL)–variable
heavy (VH) and VH-VL orientations and linked via spacer sequences
to a CD28 transmembrane domain and 4-1BB-CD3ζ signaling
domains. A EGFRt transduction marker was included downstream
of a T2A ribosomal skip element (Figure 2A). A long immuno-
globulin G spacer with mutations to prevent Fc receptor binding38

was chosen because the short ectodomains of the CD79 mole-
cules predicted a longer spacer would provide optimal CAR T-cell
engagement with the tumor cell.46 Initial studies optimizing the
CD79b-specific A17v14b scFv showed the superiority of a CAR
with the long spacer compared with a short immunoglobulin G
hinge spacer format (supplemental Figure 2A-C).

T cells expressing similar levels of EGFRt and each of the CARs
were evaluated for binding to recombinant CD79ab-Fc protein.
Target binding of individual CARs was variable, with CD79a 9G6,
CD79b 2F2, and CD79b 4450 CARs demonstrating the highest
binding (supplemental Figure 3A). T cells expressing 9G6, 2F2,
and 4450 CARs, each constructed in the VLVH orientation,
exhibited superior cytokine production and tumor lysis compared
with those designed in the VHVL format and to other CD79b scFvs
(supplemental Figure 3B-C). Based on these data, 9G6 (CD79a)
and 2F2 (CD79b) CARs in the VLVH monospecific format were
selected for in vivo studies and for the design of bispecific formats.

CAR T-cell treatment results in antigen loss in an MCL

xenograft model

We compared the antitumor activity of CD79a, CD79b, and CD19
monospecific CAR T cells in vitro and in vivo using a xenograft
model of human MCL (JeKo-1). CD79a and CD79b CAR T cells
lysed tumor lines with comparable potency to CD19 CAR T cells
(Figure 2B). CD79b CAR T cells produced similar levels of IL-2 and
IFN-γ as CD19 CAR T cells after tumor stimulation; however,
CD79a CAR T cells produced lower levels of cytokines, and this
difference was significant for IFN-γ with 2 of the 4 tumor lines
(Figure 2C). In mice engrafted with JeKo-1 cells, monospecific
CD79a or CD79b CAR T cells controlled tumors and extended
survival compared with untreated mice but were less effective than
CD19 CAR T cells (Figure 2D-E). Analysis of the BM identified
27 JUNE 2023 • VOLUME 7, NUMBER 12



45000
30000
15000
15000

10000

5000

0

AB
C/

 c
ell

Je
Ko-

1

Gran
ta-

51
9

REC1

Mav
er-

1
FL

18 Raji

Dau
di

Ram
os

Gum
bu

s

NU-D
UL-

1

OCI-L
Y1

CD79b

CD19

A

cases = 96 cases = 30 cases = 14

CD19+ CD79ab+

CD19–CD79ab+ CD19–CD79a+

CD19+CD79a+

CD19–CD79b+

CD19+CD79b+

CD19–CD79–

CD19+CD79ab–

DLBCL MALT MCL
B

Figure 1. CD79ab is expressed on lymphoma cell lines and primary tumor specimens. (A) CD19 and CD79b density on each indicated tumor cell line measured

via ABC. (B) Expression of CD19, CD79a, and CD79b measured by IHC on primary lymphoma specimens. ABC, antibody-binding capacity; Burkitt’s, Burkitt’s lymphoma; FL,

follicular lymphoma; MALT, lymphoma of the mucosa-associated lymphoid tissue.
CD4+ and CD8+ CAR T cells in all treatment groups and showed
that persisting JeKo-1 tumor in mice treated with CD79a or CD79b
CAR T cells exhibited complete loss of CD79b (Figure 2F;
supplemental Figure 4A). CD19 loss was also observed in some
mice with persisting tumor after CD19 CAR T cells (Figure 2F;
supplemental Figure 4A). Thus, monospecific CD79a, CD79b, or
CD19 CAR T cells have in vivo activity, but targeting a single
antigen allowed the outgrowth of antigen-negative tumor cells at
varying rates. It is notable that CD79b loss on a small minority of
JeKo-1 cells was seen in some untreated mice and in mice treated
with CD19 CAR and coincided with lower expression of CD22 and
CD20 (supplemental Figure 4A-B). This loss of B-lineage markers
is consistent with plasmacytic differentiation of JeKo-1 in vivo,
which has been reported in other B-cell malignancies.47-49

Because plasmacytic differentiation is rare, targeting multiple
B-lineage antigens may be beneficial for most patients.

Design of bispecific CARs

We then examined dual targeting of CD19 and CD79a or CD79b
with T cells expressing a tandem CAR, bicistronic CARs, or
by pooling monospecific CAR T cells (Figure 3A). Tandem CD79a-
19 and tandem CD79b-19 encoded CD79a or b and CD19-specific
scFvs separated by a linker in a single molecule, with the CD79a or
b scFv placed in the membrane distal position. Bicistronic CD19-
79a and bicistronic CD19-79b, expressed 2 distinct CAR proteins
encoded by a single lentivirus. CAR expression and tumor recogni-
tion in vitro were identical to those of monospecific CAR T cells and
were not affected by the order in which the CAR-coding sequences
were positioned (supplemental Figure 5A-D). Constructs with the
CD19 CAR sequence positioned upstream of the CD79a or b CAR
sequences were selected for further study (Figure 3A). Finally, the
pooled product consisted of a combination of 2 monospecific CAR
T cells mixed at a 1:1 ratio.

All bispecific CAR products lysed tumor cells in vitro at comparable
efficiency to monospecific CAR T cells and produced IL-2 and IFN-
γ against both CD79ab+CD19+ JeKo-1 cells and K562 cells
expressing either CD19 or CD79ab (Figure 3B-C). We observed
no differences in activation, differentiation, or exhaustion markers in
unstimulated bispecific compared with monospecific CAR T cells,
consistent with the absence of tonic signaling (supplemental
Figure 6).
27 JUNE 2023 • VOLUME 7, NUMBER 12
Bispecific CAR T cells prevent antigen loss and

prolong survival in a CD19 antigen escape model

Because the outgrowth of CD19-negative JeKo-1 was delayed in
NSG mice, we created a CD19-loss variant of JeKo-1 using gene
editing (supplemental Figure 7) and engrafted mice with a mixture of
99% wild-type (CD19+CD79ab+) and 1% JeKo-1CD19KO cells.
Cohorts of mice were then treated with CD19 CAR T cells or with
each of the CD79a/b-CD19 bispecific CAR T-cell products. As
expected, treatment with CD19 CAR T cells alone resulted in the
outgrowth of CD19- tumor cells over 4 to 5 weeks (Figure 4A). In
contrast, mice treated with the same dose of CAR T cells expressing
tandem, bicistronic, or pooled CAR T-cell products targeting CD79a
or CD79b and CD19 exhibited improved tumor control and survival
relative to the CD19 CAR T-cell–treated group (Figure 4B-C). The
data showed a trend toward better tumor control with tandem and
bicistronic CAR T cells cotargeting CD79a and CD19, as compared
with the respective CD79b-CD19 bispecific CAR T cells (Figure 4B).
In contrast to CD19 CAR T–treated mice, where all persisting tumor
cells in the BM were CD19-negative, most of the tumor cells that
persisted after treatment with bispecific CAR T cells maintained
CD79b and CD19 expression (Figure 4D). Thus, low bispecific CAR
T-cell doses prevented relapse with a CD19– tumor.

Tandem and bicistronic CAR formats are superior to

CD19 CAR T cells in controlling JeKo-1 tumors but

show compromised activity against JeKo-1 that only

expressed CD19 or CD79a

We focused on the CD79a-CD19 bispecific CARs because they
were more effective than the CD79b-CD19 bispecifics in the
CD19 escape model. We evaluated the potency of tandem
CD79a-CD19 and bicistronic CD19-CD79a CAR T cells, the
pooled CD19:CD79a T-cell product, and monospecific CD19
CAR T cells in mice engrafted with wild-type JeKo-1 tumor cells.
Mice were treated with a subcurative dose of monospecific CD19
CAR T cells or an identical dose of each of the various CD79a-
CD19 CAR T-cell products. Our results showed improved tumor
control and prolonged survival in mice treated with tandem CD79a-
19 and bicistronic CD19-79a CAR T cells compared with CD19
CAR T cells (Figure 5A-B). Tumor outgrowth and survival with the
pooled product mirrored that of monospecific CD19 CAR T-cell
FUNCTIONAL DEFECTS IN BISPECIFIC CAR DESIGNS 2721
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treatment, which is consistent with published reports that pooled
CAR T products targeting other receptors are less effective in vivo
than tandem or bicistronic CAR designs.12,50 What underlies the
superior potency of bispecific vs pooled monospecific products is
unclear but may relate to heightened avidity for tumor cells of T
cells expressing tandem or bicistronic CARs because of higher
total tumor antigen density (ie, CD79a and CD19).

Tandem and bicistronic CAR T cells had improved tumor control
compared with CD19 CAR T cells when most tumor cells coex-
pressed CD79 and CD19. However, cytokine production by mono-
and bispecific CAR T cells after stimulation with immobilized CD19 or
CD79ab recombinant proteins showed that the maximal amount of
2722 LEUNG et al
IL-2 and IFN-γ produced was lower for tandem and bicistronic
CD79a-CD19 CAR T cells compared with monospecific CAR T cells,
suggesting recognition of tumors expressing only a single antigen
where avidity gains would be abrogated might be compromised
(Figure 5C-D). To examine whether the in vitro functional defects
affected the efficacy against tumor cells expressing only a single
antigen in vivo, we compared tumor control mediated by tandem and
bicistronic CD79a-CD19 products to monospecific CD19 or CD79a
CAR T cells in mice engrafted with JeKo-1 cells that expressed only
CD19 or CD79ab (supplemental Figure 7). In mice engrafted with
JeKo-1CD19KO cells, we observed that CD79a-directed tumor control
mediated by tandem and bicistronic products was less effective
compared with monospecific CD79a CAR T cells (Figure 5E-F). In
27 JUNE 2023 • VOLUME 7, NUMBER 12



Tandem Bicistronic Pooled
Tandem

FMC63 2F2/ 9G6

2F2/ 9G6 FMC63 Spacer EGFRt41BB-

T2ATMSTII4xG4S

P2A

Spacer

Bicistronic

A

100

75

50

25

0

%
 ly

sis

JeKo-1 K562 CD19 K562 CD79ab K562

CD79a

tCD79a_19

bCD19_79a

CD19 + CD79a

CD19

Mock T cells

100

75

50

25

0

%
 ly

sis

CD79b

tCD79b_19

bCD19_CD79b

CD19 + CD79b

CD19

Mock T cells

30:1
10:1 3:1 1:1

30:1
10:1 3:1 1:1

30:1
10:1 3:1 1:1

30:1
10:1 3:1 1:1

B

15

10

5

0

IL
2 

ng
/m

l

6

3

0

IF
N

 n
g/

m
l

CD79a

tCD79a_19

bCD19_79a

CD19 + CD79a

CD19

Mock T cells

15

10

5

0

Je
Ko-1

K562 C
D79ab

K562 C
D19

K562

IL
2 

ng
/m

l

Je
Ko-1

K562 C
D79ab

K562 C
D19

K562

6

3

0

IF
N

 n
g/

m
l

CD79b

tCD79b_19

bCD19_79b

CD19 + CD79b

CD19

Mock T cells

C

Figure 3. Design and in vitro characterization of bispecific CARs. (A) Schematics of bispecific CAR T-cell formats. (B) Top panels: lysis of the indicated tumor cell lines by CD19,

CD79a, and bispecific CD79a-CD19 CAR T cells. tCD79a-CD19 refers to tandem CAR; bCD19-CD79a refers to bicistronic CAR. Bottom panel: lysis of the indicated tumor cell

lines by CD19, CD79b, and bispecific CD79b-CD19 CAR T cells. tCD79b-CD19 refers to tandem CAR; bCD19-CD7b refers to bicistronic CAR. (C) CAR T-cell IL-2 and IFN-γ
production measured by ELISA. Data given in (A-B) are means ± SEM from 3 independent experiments. ELISA, enzyme-linked immunosorbent assay; SEM, standard error of the mean.
addition, mice engrafted with CD79_ tumors (JeKo-1CD79KO) and
treated with tandem CAR T cells showed reduced survival compared
with mice treated with bicistronic CD19-CD79a and monospecific
CD19 CAR T cells (Figure 5G-H). Although bicistronic CAR T cells
had reduced cytokine production in response to CD19 antigen in vitro
(Figure 5D), tumor control and survival were comparable to CD19
CAR T cells (Figure 5G-H), perhaps because of the contributions of
other tumor cell-surface molecules that facilitate recognition by CAR T
cells.
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Tandem CD79a-19 CAR has reduced binding for CD19

and CD79ab than the monospecific or bicistronic

CARs

To determine if CAR expression was comparable in T cells
expressing monospecific and bispecific CARs, we stained the
Strep-tag II incorporated upstream of the hinge in the mono-
specific, tandem, and bicistronic CD19 CAR (Figures 2A and 3A).
STII staining showed that the tandem CAR and the bicistronic
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***P ≤ .001 was calculated with log-rank (Mantel-Cox) test. Data shown were pooled from 2 independent experiments with a total of 5 (mock) or 7 mice per group.
CD19 CAR were expressed at levels comparable with the CD19
CAR (Figure 6A). Despite equivalent CAR expression, binding of
recombinant CD19 and CD79ab proteins by the tandem CD79a-
CD19 CAR T cells was reduced relative to CD19 monospecific
or bicistronic CD19-CD79a CAR T cells (Figure 6A). It is not
surprising that antigen binding was unaffected in the bicistronic
design because the CD19 CAR and the CD79a CAR on both
monospecific and bicistronic CAR T cells have identical CAR
structures and expression. In contrast, recombinant CD79ab pro-
tein binding was reduced for tandem CD79a-CD19 CAR T cells
compared with monospecific CD79a CAR T cells (Figure 6A). We
expressed an N-terminal MYC tag on both the monospecific
CD79a CAR and the tandem CAR to address whether differences
in CAR expression might explain the lower level of CD79ab
2724 LEUNG et al
binding. The tandem CD79a-CD19 CAR was expressed at a
slightly lower level than the CD79a CAR; however, when CAR
expression was normalized by gating on CAR T cells with equiva-
lent levels of MYC, CD79ab binding was still reduced significantly
(Figure 6B). The reduction in CD19 and CD79ab binding in the
tandem format could be due to steric hindrance or destabilization
of the scFv structure by linkage of the scFvs, as has been observed
in bispecific antibody formats.51,52

Bicistronic CAR format compromises downstream

signaling

We next sought an explanation for the reduced activation of T cells
expressing the bicistronic CAR and the less effective control of
27 JUNE 2023 • VOLUME 7, NUMBER 12
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CD19-CD79ab+ tumor cells in vivo (Figure 5C-D). Because bicis-
tronic CAR T cells have a higher total number of surface CARs
compared with monospecific CAR T cells, we hypothesized that
competition for intracellular signaling molecules might limit the quality
of signaling through each receptor, particularly against tumor cells
expressing a single antigen where only 1 of the 2 receptors is
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engaged. Indeed, phosphorylation of key signaling molecules,
including CAR CD3ζ, SLP76, PLCγ, and ERK was reduced after
stimulation with plate-bound CD19 or CD79ab compared with
monospecific CARs (Figure 7A-B). Thus, despite equivalent expres-
sion, signaling through 1 CAR in a bicistronic CAR T cell is
compromised compared with a monospecific CAR T cell.
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Table 1. Antibodies used in multiplexed immunohistochemistry

Position Antibody Clone/host Company/item Concentration μg/mL OPAL fluor

1 CD3 SP7 / rabbit Thermo Fisher Scientific / RM-9107 0.06 (1:400) 520

2 CD19 UMAB103 / mouse Origene / UM500071 0.5 (1:2000) 690

3 CD33 RBT-CD33 / rabbit Bio SB Inc / BSB3451 1 (1:100) 570

4 CD79A JCB117 / mouse Bio SB Inc / BSB5305 0.166 (1:600) 540

5 CD79B EPR6861 / rabbit Abcam / ab134147 0.065 (1:1600) 620

6 Cyclin-D SP4 / rabbit Sigma / SAB5500090 0.625 (1:400) 650

Secondary Opal polymer HRP Ms+Rb Akoya Biosciences / ARH1001EA Ready to use
Discussion

Targeting multiple antigens is presently viewed as an attractive
strategy to prevent the outgrowth of antigen-low or antigen-
negative tumor cells, which has been widely documented in clin-
ical trials of monospecific CAR T cells.1,23,53-59 However, the
potential limitations of various strategies for multiantigen targeting
have not been elucidated.9,14,17,60-62 To fill these knowledge gaps,
we examined the strengths and limitations of targeting CD19 and
CD79a in tandem, bispecific, and pooled CAR T-cell formats.
CD79a-CD19 tandem and bicistronic designs were effective in
preventing the outgrowth of antigen-negative tumor cells and
performed better than a monospecific CD19 CAR in a lymphoma
model. However, deficiencies in current bispecific CAR designs
were identified that affected their ability to control tumor cells that
were positive for only 1 of the target antigens.

Our tandem construct targeting CD79a and CD19 exhibited reduced
avidity for binding each of the targeted antigens, which was likely due
to steric hindrance or protein instability caused by fusion of 2 inde-
pendent scFvs. This reduction in antigen sensitivity coincided with
compromised function against tumor cells expressing only CD19 or
CD79a in vivo. A recent clinical trial showed that a fraction of relapsed
patients treated with a tandem CD19-CD22 CAR had persistence of
tumor cells that were CD19-negative or -low but had preserved CD22
expression, suggesting that the CD22 targeting was compromised in
their tandem design.9 Another clinical study using a different tandem
CD19-CD22 CAR structure reported 1 of 3 patient relapses had
CD19-negative tumor cells with diminished CD22 expression.15

These clinical studies suggest that the current iterations of bispe-
cific CAR designs might not be equipped to fully address antigen loss.
In addition, a tandem multitargeting CAR comprising designed ankyrin
repeat proteins rather than scFvs also showed that the tandem CAR
was not as effective as monospecific CARs against tumor cells
expressing only 1 antigen.63 Thus, loss in antigen sensitivity could be
prevalent in tandem CAR designs and should be investigated in future
designs and for different cancer targets. It is conceivable that using
alternative linkers connecting the antigen-binding domains guided by
structural predictions,64 or scFvs with higher affinity, may improve the
antigen sensitivity of tandem constructs.

An alternative to tandem CARs is to express each receptor in a
bicistronic format to preserve the monospecific CAR architecture.
Although CD19 and CD79a bicistronic CARs were expressed and
bound CD19 and CD79 equivalently to monospecific CARs, our
data show that these receptors are impaired in downstream
signaling. Although the exact mechanism for reduced CAR
signaling is unknown, it has been previously shown that CARs
exhibit basal signaling and assemble an interactome of signaling
27 JUNE 2023 • VOLUME 7, NUMBER 12
molecules.65 Thus, 1 possible explanation is that the higher total
number of CAR molecules in the bicistronic design could result in
competition for signaling proteins that associate with the CAR and
compromise the quality of signaling when the CAR engages an
antigen. Further studies using quantitative techniques such as mass
spectrometry to analyze the proteins that are complexed to mono-
specific and bicistronic CARs might identify signaling proteins that are
reduced because of competition, as a study showed that CAR/TCR
signaling proteins may be limited and shared among the 2 complexes
in a T cell.66 These issues reveal that our molecular understanding of
CAR function, particularly in bispecific formats, remains incomplete,
and further understanding may help address clinical shortcomings
where antigen escape continues to be observed in tandem9,15 and
bicistronic60 CAR T-cell therapy trials.

Our preclinical study identified that tandem and bicistronic
designs were better than monospecific CARs in MCL antigen loss
or MCL xenograft models but were less effective than mono-
specific CARs at treating tumors that were either CD19- or
CD79-positive. Thus, the added benefit of dual specificity
occurred at the expense of less sensitivity toward each target
antigen. This raises the question of how effective these formats
will be at treating cancers that are highly heterogenous, where a
significant fraction of tumor cells are positive for only 1 of the
targeted antigens. Clinical trials using tandem and bicistronic
CAR T cells may shed light on this issue.
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