Table 2.
Logistic regression to predict amyloid-beta positivity in patients with mild cognitive impairment using demographics and magnetic resonance image features.
Logistic regression | Support vector model | Random forest | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | p | Mean | SD | p | Mean | SD | p | |
Step 1 Demographic features | |||||||||
Age, sex, education | 0.52 | 0.08 | < 0.001 | 0.51 | 0.08 | < 0.001 | 0.55 | 0.08 | < 0.001 |
Age, sex, education + MMSE (total) | 0.58 | 0.09 | < 0.001 | 0.56 | 0.09 | < 0.001 | 0.64 | 0.08 | 0.059 |
Age, sex, education + SNSB (detailed) | 0.69 | 0.08 | Ref | 0.69 | 0.08 | Ref | 0.66 | 0.08 | Ref |
Step 2 T1-weighted magnetic resonance image | |||||||||
Age, sex, education + SNSB (detailed) | 0.69 | 0.08 | Ref | 0.69 | 0.08 | Ref | 0.66 | 0.08 | Ref |
Age, sex, education + SNSB (detailed) + T1b (thickness) | 0.68 | 0.09 | 0.03 | 0.67 | 0.09 | 0.008 | 0.62 | 0.09 | < 0.001 |
Age, sex, education + SNSB (detailed) + T1 (texture) | 0.71 | 0.08 | 0.06 | 0.71 | 0.08 | 0.12 | 0.70 | 0.08 | < 0.001 |
Age, sex, education + SNSB (detailed) + T1 (volume) | 0.73 | 0.08 | < 0.001 | 0.73 | 0.08 | < 0.001 | 0.73 | 0.08 | < 0.001 |
Step 3 Diffusion-tensor magnetic resonance image | |||||||||
Age, sex, education + SNSB (detailed) + T1 (volume) | 0.73 | 0.08 | Ref | 0.73 | 0.08 | Ref | 0.73 | 0.08 | Ref |
Age, sex, education + SNSB (detailed) + T1 (volume) + DTI (FA) | 0.73 | 0.08 | 0.60 | 0.73 | 0.08 | 0.42 | 0.73 | 0.08 | 0.85 |
Age, sex, education + SNSB (detailed) + T1 (volume) + DTI (MD) | 0.74 | 0.08 | 0.20 | 0.73 | 0.08 | 0.20 | 0.73 | 0.08 | 0.64 |
SD standard deviation, MMSE mini-mental state examination, SNSB Seoul neuropsychological screening battery, DTI diffusion-tensor image, FA functional anisotropy, MD mean diffusivity, Ref reference.