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Potential cross-species transmission of highly
pathogenic avian influenza H5 subtype (HPAI H5)
viruses to humans calls for the development of
H5-specific and universal influenza vaccines
Pan Huang1, Lujia Sun2, Jinhao Li1, Qingyi Wu1, Nima Rezaei3, Shibo Jiang 2✉ and Chungen Pan 1✉

Abstract
In recent years, highly pathogenic avian influenza H5 subtype (HPAI H5) viruses have been prevalent around the world
in both avian and mammalian species, causing serious economic losses to farmers. HPAI H5 infections of zoonotic origin
also pose a threat to human health. Upon evaluating the global distribution of HPAI H5 viruses from 2019 to 2022, we
found that the dominant strain of HPAI H5 rapidly changed from H5N8 to H5N1. A comparison of HA sequences from
human- and avian-derived HPAI H5 viruses indicated high homology within the same subtype of viruses. Moreover,
amino acid residues 137A, 192I, and 193R in the receptor-binding domain of HA1 were the key mutation sites for
human infection in the current HPAI H5 subtype viruses. The recent rapid transmission of H5N1 HPAI in minks may
result in the further evolution of the virus in mammals, thereby causing cross-species transmission to humans in the
near future. This potential cross-species transmission calls for the development of an H5-specific influenza vaccine, as
well as a universal influenza vaccine able to provide protection against a broad range of influenza strains.

Introduction
Avian influenza is an infectious disease that affects poultry

and wildfowl. It is caused by highly pathogenic avian influ-
enza (HPAI) or low pathogenic avian influenza (LPAI)
viruses, which belong to the Orthomyxoviridae family and
have a single-stranded negative-sense RNA genome. Avian
influenza viruses (AIVs) are mainly classified on the basis of
their surface proteins, hemagglutinin (HA) and neur-
aminidase (NA). HA protein on the surface of the virion, the
main antigenic site in vaccine design, causes erythrocyte

agglutination in vitro and in vivo1. Over the years, outbreaks
of HPAI H5 subtype viruses in poultry have caused huge
economic losses to the farming industry. In 2022, more than
25 million poultry and wild birds were infected with HPAI
H5 worldwide, resulting in 5.28 million deaths (https://
wahis.woah.org/). Recently, HPAI H5 has caused more
sporadic cases, or even outbreaks, in mammals, including
minks, otters, foxes, and sea lions2–4. With possible further
mutations in avian and mammalian species, HPAI H5 has a
strong potential to cause human infection and trigger a
global pandemic. Therefore, it is essential to develop an H5-
specific vaccine, as well as a universal influenza vaccine, to
fully cover a broad range of influenza strains.

Global distribution of HPAI H5 viruses
H5N1 was the first strain isolated among the HPAI H5

viruses in Scotland in 1959, and it was shown to infect a
variety of avians5. In 1997, HPAI H5N1 (Gs/GD/96)
emerged in China and it was first confirmed to infect
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humans6. In 2000, H5N1 broke out among poultry in
several countries, including the Netherlands, Vietnam,
Indonesia, and Thailand7. A few years later (after 2005),
H5N1 further spread to poultry in Europe and Africa8,9.
Owing to homologous recombination among influenza
strains in poultry, other non-N1 recombinant AIVs
strains, such as H5N2, H5N6, and H5N8, have emerged in
many countries. To classify H5 subtype AIVs, the HA
gene was selected by the WHO/OIE/FAO H5N1 Evolu-
tion Working Group to divide AIVs into diffident clades
based on the similarity of HA nucleic acid sequences.
Each distinct clade was determined to have an average
distance > 1.5% from other clades10. From 2013 to 2019,
HPAI viruses of subclades 2.3.2.1 and 2.3.4.4 began to
spread around the world11–16. HPAI H5 subclade 2.3.4.4
was first detected in domestic ducks in China17,18 and was
further divided into 8 subclades, 2.3.4.4a to 2.3.4.4h19.
From 2019 to 2022, HPAI H5 viruses have been circu-

lating among avian populations in Europe, Africa, and

Asia20–24, resulting in a significant increase in global avian
cases from 0.343 to 25.19 million (Fig. 1). Europe has
become the primary site of spread accounting for 82.7% of
avian cases and 43.9% of deaths globally in 2022 (Fig. 2a).
Notably, the main HPAI subtype virus causing global
epidemics gradually changed from H5N8 to H5N1
between 2019 and 2022 (Fig. 2b). For example, the epi-
demic of HPAI viruses in Europe was dominated by H5N8
from 2019 to 2021. However, it changed to H5N1 in 2022.
During this year, infections and mortality rates caused by
H5N1 accounted for ~99.9% among all HPAI H5 viruses
in the same period (Fig. 2c). Since 2019, the H5N1 sub-
type has been dominant in Africa and the Americas,
accounting for more than 99.9% of cases (Fig. 2d, e).
Similar to Europe, H5N8 was the main HPAI subtype in
Asia from 2019 to 2021, but it also changed to H5N1 in
2022. In 2022, the H5N1 subtype accounted for 67.4% of
infections and 76.3% of mortalities among all H5 subtypes
in Asia (Fig. 2f).

Fig. 1 Global distribution of HPAI H5 viruses is shown by avian cases and deaths from 2019 to 2022 (https://wahis.woah.org/
#/dashboards/qd-dashboard). Data up to January 2023 are included. a Distribution of HPAI H5 viruses between 2019 and 2022 based on the
number of infections. b Number of avian infections and deaths caused by HPAI H5 viruses from 2005 to 2022.
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Human infections with HPAI H5 viruses
The current global epidemic of HPAI H5 mainly involves

three subtypes: H5N1, H5N8, and H5N6. Indeed, the wide-
spread epidemic of AIVs among wild birds increases the risk
of infection for poultry and other avians. However, it is
generally believed that human infection with HPAI H5
viruses is closely related to outbreaks in poultry and wild
birds, and according to theWHO, 864 human cases of H5N1
infection have been reported worldwide, resulting in 456
deaths from 2014 to 2021(Fig. 3a). It was previously believed
that only cumulative mutations of AIVs in avians could lead
to spillover, causing mammalian (or human) infections and
deaths. Currently, no evidence of HPAI H5 transmission has
been observed among mammals. However, H5N1 was
recently detected in mink farms in the United States and
Spain, and more than 50,000 mink were killed to prevent
further spread2–4. These events provide strong evidence that
HPAI H5 viruses can spread rapidly among mammals and
that minks may serve as a potential intermediate host to
increase the possibility of the H5N1 epidemic in humans. In
fact, human infections caused by the HPAI H5 viruses have
recently been reported in Ecuador, Cambodia, and Chile

(https://www.who.int/emergencies/disease-outbreak-news/
item/2023-DON434; https://www.cdc.gov/flu/avianflu/
spotlights/2022-2023/chile-first-case-h5n1-addendum.htm).
More concerning evidence has been reported on human

infection with the H5N6 subtype virus. From 2014 to
2022, 87 human cases of H5N6 infection were reported
(86 in China and one in Laos), with most infections
reported in 2021 and 2022 (Fig. 3b). The number of H5N6
infection cases in 2021 and 2022 accounted for 67% of the
total number of infections from 2014 to 2022, suggesting
that the Chinese government should strengthen protec-
tive measures to prevent further spread of the H5N6 virus.
Additionally, the first case of H5N8 infection in humans
was reported in Russia in 202025. The significant increase
in human cases of H5N6 and the emergence of a new
human case of H5N8 are alarming signs for human safety.

Analysis of HPAI H5 HA sequences and assessment of the
risk for human infection based on the infection data from
2019 to 2022
In the process of viral infection, HA binds to sialic acid

receptors on the cell surface and mediates the fusion of the

Fig. 2 Global distribution of HPAI H5 avian infections from 2019 to 2022. a Distribution of HPAI H5 in Asia, Europe, Africa, and the Americas.
b Global distribution of each subtype of HPAI H5. c–f Continent-specific distribution of each subtype of HPAI H5. Raw data for avian cases and deaths
were taken from WAHIS (https://wahis.woah.org/#/dashboards/qd-dashboard). Data are included up to January 2023.
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viral membrane and the host endosomal membrane to
deliver viral nucleic acid into the cytoplasm of host cells,
thereby playing a key role in the process of infection. HA
protein is hydrolyzed to produce HA1 and HA2. HA1
binds to cell receptors via the receptor-binding domain
(RBD) and is prone to mutations, while HA2 mediates the
membrane fusion process and is relatively conserved. The
HA1 of AIVs binds to the α-2,3-sialic acid receptors in
avian species, while it binds to the α-2,6-sialic acid recep-
tors in humans. The difference in receptor usage partly
prevents the transmission of AIVs from birds to humans.
Therefore, we compared HA sequence, HA1 sequence, and
RBD key sites of HPAI H5 viruses isolated from avians and
humans in recent years to assess the potential risk of
human infection.
The amino acid sequences of HA proteins were derived

from GISAID (https://gisaid.org/). The major HPAI H5
HA sequences from avian and human (Fig. 4) belong to
subclades 2.3.4.4b (H5N1, H5N6, H5N8), 2.3.4.4h (H5N6)
and 2.3.2 (H5N1). Notably, human infection was closely
related to the outbreak of AIVs in avians since strains that
caused both human and avian infections showed a close
evolutionary relationship in all subclades of HPAI viruses,
except for 2.3.2.1c. In addition, subclades 2.3.4.4b and
2.3.4.4h mainly broke out in Europe, Africa, Asia, and the
Americas, while subclade 2.3.2 has only recently appeared
in Egypt, South Asia, and other countries. HA1 amino
acid sequences of HPAI H5 were highly homologous with
only individual mutations, or even no mutations, for
strains from different hosts, subtypes, and regions sepa-
rated by time (Table 1). The HA1 sequence of human-
derived H5N8 strain A/Astrakhan/3212/2020 was used as
a reference sequence for comparison with the
HA1 sequences of strains derived from humans or birds.

It was surprising to find that the HA1 sequence of A/
Astrakhan/3212/2020 from humans was identical to that
of A/chicken/Kosovo/22-2 22VIR3124-13/2022 from
avian. Moreover, only one amino acid (T192I) separated it
from another avian-derived HA1 (A/whooper swan/
Shanxi/4-1/2020), suggesting that these avian-derived
strains hold a high risk for human infection. Most of
these site differences in HA1 are located in the RBD
region (E130D, A144T, V152L R173Q, T192I, and
V214A). Previous studies have performed key amino acid
mutations in RBD to analyze the effects on α-2,3/6-sialic
acid affinities26–33. We collected these key amino acid
mutations and compared them with the recent sequences
from avian and human sources of the H5N1, H5N6, and
H5N8 subtypes (Table 2).
RBD is located in the head of HA1 and contains 190-

helix, 130-loop, 150-loop, 220-loop, and other amino acid
residues26,34,35 (Fig. 5). Yang et al.36 found that the
introduction of S137A and T192I mutations in the RBD of
A/Thailand/KAN 1/2004 endowed this Avian strain with
the ability to bind with α-2,6-sialic acid receptors present
in humans. In our selected sequences, the 137A and 192I
sites were found to be present in both human- and avian-
derived H5N8 and H5N6 strains, indicating that they are
key sites for cross-species transmission. In addition,
although 192T exists in A/Astrakhan/3212/2020 (H5N8)
and A/Fujian-Sanyuan/21099/2017 (H5N6), these strains
still retain the ability to infect humans. This indicates that
a single-site mutation (S137A/T) may also change the
receptor-binding ability of AIVs. It has been reported that
some mutation sites, such as the K193R mutation in the
A/Vietnam/1203/2004 strain37, the Q196H mutation in
the A/duck/Egypt/ D1Br12/2007 strain38, and the Q226L,
S227N, and G228S mutations in the A/Indonesia/05/

Fig. 3 Global number of human cases of H5N1 and H5N8 infection. a Global number of human cases of H5N1 infection from 2003 to 2021
(https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2023-
3-march-2023). b Global number of human cases of H5N6 infection from 2014 to 2022 (https://search.fresh.gov.hk/chp/sc/search_result.php?
q=influenza+virus&fq_yr=2023&fq_ct=&fq_ft=&sort=&page=1).
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2005 strain39, can enhance the ability of stains to utilize
the α-2,6-sialic acid receptor. In our selected sequences,
the 193R site is present in both human- and avian-derived
H5N1 strains, indicating that these H5N1 strains may
have already gained the ability to utilize α-2,6-sialic acid
receptors.

Antiviral therapy for influenza
Some small-molecule compounds have been developed

for the treatment of influenza viruses. These compounds
target various stages of the viral life cycle, e.g., virus
adsorption, fusion, nucleic acid release, nucleic acid
replication, and virus budding. HA protein inhibitors
block virus adsorption or fusion, which can be divided
into HA1 and HA2 inhibitors. HA1 inhibitors, such as
Dextran sulfate and DSA18140, block the binding of HA1

to receptors on the cell surface. Meanwhile, HA2 inhibi-
tors like arbidol41 and BMY-2770942 block virus entry by
preventing HA2-mediated membrane fusion. In addition,
Basu et al. identified two small-molecule compounds,
MBX2329 and MBX2546, which were able to bind to the
stem region of the HA trimer and inhibit HA-mediated
fusion43. The fusion process of the influenza virus also
depends on endosomal acidification and a series of host
enzymes, like proteases. Therefore, inhibitors of these
host enzymes have also been developed as anti-influenza
drugs, such as bafilomycin A144 and aprotinin45. After
membrane fusion, viral RNA enters the host cell through
the M2 ion channel. M2 inhibitors like amantadine and
rimantadine, which block ion channel activity, were
developed to prevent the release of the viral genome into
the cytoplasm. M2 inhibitors are effective for the influ-
enza A virus but not for the influenza B virus because of
its lack of M2 protein. It has been reported that S31N

Fig. 4 Phylogenetic tree based on HA amino acid sequences of
HPAI H5 viruses isolated between 2019 and 2022. These
sequences were obtained from GISAID. The human-derived HPAI
H5 sequences are marked in red. The phylogenetic tree was drawn
with MEGA 11 obtained from https://megasoftware.net/.

Table 1 Differences in HA1 amino acid sequences
between HPAI H5 virus derived from humans and avians.

Host Isolation Mutation

Human A/Astrakhan/3212/2020 | H5N8 Reference

sequence

Human A/England/215201407/2021 | H5N1 A144T

A/Hunan/10117/2021 | H5N6 T192I

A/Colorado/18/2022 | H5N1 L108M, V214A

Avian A/Brown-headed Gull/Tibet/XZ19/2021 | H5N8 H277N

A/chicken/Korea/H001/2021 | H5N8 Q19R

A/common teal/Ningxia/105/2020 | H5N8 V214I

A/whooper swan/Shanxi/4-1/2020 | H5N8 T192I

A/Cygnus columbianus/Hubei/49/2020 | H5N8 T192I

A/goose/Guangdong/S4751/2021 | H5N6 E130D

A/American wigeon/North Carolina/

AH0182517/2022 | H5N1

L108M, V214A

A/Phasianus colchicus/Belgium/294/

2022 | H5N1

Q19K

A/stork/Spain/442-8 22VIR2142-12/2022 | H5N1 Q19K

A/mute swan/Croatia/6/2022 | H5N1 S124N

A/Caspian gull/Netherlands/1/2022 | H5N1 V152L

A/chicken/England/002070/2022 | H5N1 V152L

A/turkey/Netherlands/21020942-001005/

2021 | H5N8

No mutation

A/chicken/Krasnodar/334-01/2021 | H5N8 No mutation

A/pheasant/Scotland/000348/2021 | H5N1 No mutation

A/chicken/Nigeria/VRD21-43 21VIR2288-4/

2021 | H5N8

R173Q
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mutation is the main culprit causing resistance to M2
inhibitors, thus accounting for 92% of drug-resistant
strains in the United States46. Consequently, M2 inhibi-
tors are currently not recommended for treatment. NA
protein is related to the maturation and release of viruses,
and it plays an important role in regulating receptor
binding and virus budding. NA inhibitors, such as osel-
tamivir, zanamivir, and peramivir, can effectively inhibit
the release of progeny viruses from infected cells47,48.
However, amino acid mutations in the NA protein, e.g.,
E119A, H274Y, and N294S, usually lead to resistance to
NA inhibitors49,50. Furthermore, viral nucleic acid repli-
cation inhibitors include PB2 inhibitors (VX78751), PA
inhibitors (flutamide52 and Baloxavir53), RNA-dependent
RNA polymerase (RdRp) inhibitors (Favipiravir54), and
NP inhibitors (nucleolin55).
In addition, some monoclonal antibodies (Mab) have

been developed and are highly anticipated for post-
exposure prophylaxis and clinical treatment. For example,
a novel humanized Mab 8A56 neutralized H5N1 by
binding to two types of epitopes on HA. Li et al. described
a chimeric Mab, termed C12H5, which could neutralize
representative strains of H1N1 circulating from 1991 to
the present; it could even cross-neutralize H5N157. It has
been reported that neutralizing antibodies against HA,
isolated from volunteers vaccinated with seasonal influ-
enza vaccines, could protect mice from H1N1 and H3N2
viruses in vivo58. Recently, the FDA confirmed that
humanized polyclonal antibody SAB-176 could recognize
multiple epitopes and provide protection against multiple
influenza virus strains (https://ir.sab.bio/static-files/
b332c893-5795-4d05-af96-a9ebcd917f24). A phase 2b
clinical trial is about to be launched in patients with high-
risk severe diseases. Some polypeptide drugs, such as EB-
peptide59, iHA60, FluPep61, NDFRSKT62, P163, and P9R64,
have also been developed against influenza viruses.
However, the accumulation of mutations in AIVs still
increases the probability of immune evasion65,66. There-
fore, updating existing antiviral drugs cannot keep pace
with the continuous variation of AIVs. This calls for new
antiviral strategies, such as drugs and therapeutic Mabs
targeting more conserved viral epitopes or cytokines, or
immunomodulatory drugs, in response to emerging
strains with epidemic potential43,67.

Development of H5-specific influenza vaccines
Currently, the main types of avian influenza vaccines

include inactivated recombinant vaccines, subunit vac-
cines, viral vector vaccines, and DNA vaccines. Inactivated
vaccines were previously the primary means of preventing
influenza and were mainly prepared from low patho-
genicity strains isolated from farms68. However, tradi-
tional inactivated vaccines are not conducive to vaccine
production owing to such defects as dependence onTa
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embryo culture and low virus titer. At present, the vaccines
used for H5 and H7 avian influenza in China are mainly
recombinant inactivated vaccines. These vaccines are pre-
pared by co-transfecting Vero cells with the viral RNA
expression plasmid of HA and NA genes of the current
epidemic strains and six internal genes (PB2, PB1, PA, NP,
M, and NS) of PR8 (A/Puerto Rico/8/1934), together with
four PR8 protein expression plasmids (PB2, PB1, PA, and
NP)69. The basic terminal sequence R/KRRKR of HA from
the HPAI virus was modified to RETR, endowing the
recombinant virus with both the epitope of the pandemic
strain and the high-titer characteristics of PR8 chicken
embryo adaptation. The team led by Dr. Hualan Chen in
China has developed a series of recombinant vaccines for
the prevention of HPAI H5, among which Re-13 (A/duck/
Fujian/S1424/2020 H5N6 2.3.4.4h) and Re-14 (A/whoo-
per_ swan/Shanxi/4-1/2020 H5N8 2.3.4.4b) were devel-
oped in 202270. According to Chen et al.71, the H5N1 AIV
strain bearing the subclade 2.3.4.4b HA gene was isolated
from China in 2021–2022 and exhibited antigenic sites
similar to those of H5-Re14. Since this type of recombinant
vaccine is widely used in China, it plays a crucial role in the
prevention and control of AIVs. WHO updated its AIV
strain recommendations in 2022 and selected A/Astra-
khan/3212/2020 H5N8 2.3.4.4b, A/Guangdong/18SF020/
2018-like H5N6 2.3.4.4h and A/Fujian-Sanyuan /21099/
2017-like H5N6 2.3.4.4b as candidate vaccine strains
(https://www.who.int/teams/global-influenza-programme/
vaccines/who-recommendations).

Development of universal influenza vaccines
As AIV is a single-stranded RNA virus, its nucleic acid

sequence is prone to mutation, thereby reducing the
protective efficacy of the vaccine over time. Although it is
possible to predict the next dominant strain for vaccine
strain selection, production, and distribution, the circu-
lating strain may further mutate, resulting in a decrease in
vaccine protection efficiency. Therefore, it is necessary to
develop universal influenza vaccines that target more
conservative epitopes to counter potential antigenic drift
or shift in AIVs. Accordingly, scientists have focused on
several common targets for the development of universal
influenza vaccines, including the conserved stalk domain
of HA protein, the conserved regions of NA protein, the
ectodomain of M2 ion channel (M2e), and the internal
proteins, nucleoprotein (NP) and matrix protein 1 (M1).
The aim is to expand existing immune memory response
by multiple immunizations in order to produce the widest
range of protective antibodies against different subtypes of
influenza virus72.
Effective humoral heterosubtypic immunity is rare,

mainly based on antibodies targeting the HA stalk
domain73,74. As mentioned, the RBD region in the head of
HA protein is prone to mutations leading to viral immune
evasion, while the HA stalk domain is rarely exposed to
neutralizing antibodies, thus facing less selection pressure
from the host immune system. As a result, the HA stalk
domain is highly conserved in AIVs, making it an
attractive target for universal vaccine design. A strategy

Fig. 5 Structure of HA protein derived from HPAI H5 virus. a Trimeric HA is shown in cartoon representation with HA1 displayed in blue and HA2
in green. b Critical domains, including three loops and one helix, in RBD are shown in red in a single HA molecule. c Red domains in RBD (130-loop,
150-loop, 190-helix, and 220-loop) from b were enlarged and displayed with a sialic acid molecule (light green) in the groove. HA sequence of
A/Astrakhan/3212/2020 was modeled by SWISS-MODEL and drawn by PyMOL software obtained from https://pymol.org/2/. The PDB number for the
α-2,6-sialic acid molecule is 5E35.
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for inducing high levels of stalk-reactive antibodies is
based on chimeric HAs (cHAs), which combine exogen-
ous head domains with conserved stalk domains. The
cHAs with different head domains have been used in
sequential vaccination programs to break the immuno-
dominance of the head domain of HA and induce high
titers of stalk-reactive antibodies75. However, the vaccine
targeting the conserved stalk domain of HA can only
produce cross-protection that occurs between strains
within the same subtype or multiple subtypes of the same
group, making it difficult to induce broadly reactive
antibodies against influenza viruses across different
groups. However, the construction of chimeric HA stalk
domain with other conserved antigens, such as M2e,
could improve cross-protection against multiple AIVs
from different groups and improve the broad protection
of universal influenza vaccines76. Chen et al. 77 have
reported that influenza virus infection induces high titers
of NA-reactive antibodies, which effectively inhibit the
enzymatic activity of NA and provide robust prophylactic
protection against avian H5N1 viruses in vivo. This
observation suggests that some conserved regions in NA
recognized by NA-reactive antibodies could be incorpo-
rated into influenza vaccines to elicit durable and broad
protection against divergent influenza strains.
Emerging vaccine platforms can help trigger a better

immune response than that induced by traditional influ-
enza vaccines. For example, virus-like particles (VLPs) can
present natural conformational antigens, stimulate the
immune system through a virus-like pathway, and effi-
ciently induce immune protection. An H5N1 VLP-based
vaccine, designed with computationally optimized broadly
cross-reactive antigen (COBRA), elicits broadly reactive
antibodies in mice and ferrets. Therefore, this strategy is
potentially paradigm-shifting for H5 universal influenza
vaccines78. A candidate universal influenza vaccine, which
uses M2e-based VLP to present M2e, has been shown to
protect mice from homosubtypic and heterosubtypic
AIVs79. In addition, nanoparticle platforms have been
used to develop universal influenza vaccines owing to
their dominance in expressing antigens at high densities
and providing adjuvant-like functions. For example, the
OVX836 vaccine is based on oligomerized nanoparticles
(NPs) that can induce humoral and cellular immunity in
mice and ferrets, thereby providing protection against
influenza A and B80,81. A ‘mosaic’ quadrivalent influenza
vaccine based on two-component nanoparticle immuno-
gens not only showed better protective antibody response
than the 2017–2018 quadrivalent influenza vaccine (QIV)
but also triggered heterosubtypic antibody response and
protective immunity in several animal models82. Viral
vector-based vaccines can be delivered through both
systemic or mucosal routes to trigger strong humoral and
cellular immunity. An adenovirus vector-based H5N1

conserved multi-epitope influenza vaccine showed broad
immune protection against H5, H7, and H9 influenza
viruses in mice83. The nucleic acid platform includes
DNA- and mRNA-based vaccines, which can respond
quickly to emerging outbreaks. Based on their novel
contribution to the coronavirus disease 2019 (COVID-19)
pandemic, mRNA-based vaccines have become the focus
of new vaccine technologies. Freyn et al. 84 demonstrated
the broad protective effect of nucleoside-modified
mRNA-LNP vaccines based on conserved antigens (HA,
NA, NP, and M2) against influenza virus challenge in
mice. Koen et al. 85 evaluated heterosubtypic protection
from a nucleoside-modified mRNA vaccine that encodes
the conserved NP, M1, and PB1 (polymerase basic protein
1) of one H1N1 strain. This vaccine induced a broadly
reactive T-cell response in ferrets. Recently, Arevalo
et al.86 developed an mRNA-LNP vaccine encoding HA
from 20 known influenza A and B virus subtypes, and it
triggered high levels of cross-reactivity and subtype-
specific antibodies in mice and ferrets. This is a new
antigen design concept for developing a universal influ-
enza vaccine.
In addition, new vaccine adjuvants support ideas for

universal vaccine design. Appropriate vaccine adjuvants
can improve immunogenicity, regulate immune response
types, and even enhance the universality of vaccine pro-
tection87,88. Only 6 new adjuvants have been approved by
the FDA in the past century, including MF59, AS04,
AS03, AS01, CpG1018, and Matrix-M adjuvants for
emergency use in COVID-19. MF59 and AS03 have
improved the protective efficiency of influenza vac-
cines73,89. More prominently, the quadrivalent influenza
nanoparticle vaccine (qNIV) with Matrix-M has been
shown to enhance antigen presentation, expand the
antibody epitope library, boost cross-neutralizing anti-
body responses, and improve the induction of potent
CD4+ and CD8+ T cell responses in a variety of cells90. It
has now successfully completed key phase III trials.
Compared with adjuvant-free vaccines, influenza vaccines
with adjuvants have shown higher immunogenicity and
effects on heterologous strains. The 2′,3′-cyclic guanosine
monophosphate-adenosine monophosphate (cGAMP) is
an effective natural agonist of stimulator of interferon
genes (STING), which induces type I interferon (IFN-I)
response and proinflammatory cytokine production by
activating STING91,92. Wang et al.93 demonstrated intra-
nasal immunization with the PS-cGAMP-adjuvanted
inactivated H1N1 vaccine, which triggered a strong pro-
tective effect against different subtypes of influenza
(H3N2, H5N1, and H7N9) in mice. During the COVID-19
pandemic, the emerging non-nucleotide small-molecule
STING agonist CF501 showed higher protective efficacy
compared to the cGAMP-adjuvanted vaccine, suggesting
that CF501 can also be used as an adjuvant to boost the
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original vaccine for effective, extensive and long-term
immune protection94.
In this article, we have analyzed the global epidemic of

HPAI H5 and revealed that the number of infections has
risen significantly in recent years. Furthermore, it has
been observed that the dominant HPAI virus worldwide
rapidly changed from H5N8 to H5N1 in 2022. According
to the sequence alignment analysis of HA1, we found that
the HA1 sequences of strains isolated from avians and
humans were highly homologous or even identical, sug-
gesting that the existing AIVs strains circulating in birds
may infect humans. Amino acids 137A, 192I, and 193R in
the RBD of HA are key sites that exist in both avian and
human source sequences. These sites enable the current
HPAI H5 strains to bind α-2,6-sialic acid receptors in
humans, indicating that the mutated HPAI H5 viruses
may have jumped from birds to mammals and that such
spillover may cause human infection.
It should be mentioned that receptor affinity is not the

only factor affecting the transmission of AIVs in humans.
In the process of viral infection, HA mediates membrane
fusion between the virus and host cells95. Next, nucleic
acid is released with the assistance of the M protein and
enters the nucleus to complete viral replication in the
presence of viral polymerases PA, PB1, and PB2. Finally,
the progeny virus is released from infected cells with the
assistance of the NA protein. Many HPAI H5 viruses can
enter host cells, but they cannot replicate successfully
owing to the difference in amino acids at position 627 of
PB2 protein, namely glutamic acid in AIVs and lysine in
human influenza virus96. Hence, mutations in the RBD
domain may only affect receptor binding and cell entry of
AIVs, while replication efficiency of the virus in cells must
be assisted by other viral proteins, such as PA, PB1, PB2,
and NA, to gain successful cross-species transmission97.
Therefore, mutations in these proteins and homologous
recombination between strains deserve more attention.
Nowadays, the HPAI H5 virus belonging to the 2.3.4.4b

subclade is widespread among wild birds and poultry
worldwide, resulting in significant economic losses. The
prevention and control strategy for the HPAI H5 virus in
Europe and North America mainly relies on culling, while
the strategy in China is “vaccine and culling”. The latter
strategy did reduce HPAI H5 virus infections in avians in
China (Fig. 1a)25. In addition, after vaccination of the H5/
H7 vaccine in poultry, the isolation of H7N9 strains in
China decreased by 93.3%, which largely prevented the
prevalence of H7N9 among poultry98. The transmission
modes of HPAI H5 among wild birds, poultry, and
mammals also deserve more attention. Wildfowl is the
natural host of the HPAI H5 virus, and the virus usually
replicates in their intestines and respiratory tract. Nine
major routes have been identified for migration across the
world, increasing the likelihood of AIV infection in

poultry and mammals99,100. Therefore, understanding the
temporospatial characteristics and as well as environ-
mental factors of HPAI H5 outbreaks is helpful for
establishing an effective prevention and control system101.
It is widely accepted that AIVs only infect mammals
through avian transmission and that no reports have so
far indicated its spread among mammals. Nonetheless, the
recent spread of the H5N1 virus in mink has sounded the
alarm for human safety2–4. Prevention should be
emphasized in virus-susceptible areas, and measures
should be taken to reduce human exposure to birds and
mammals in order to minimize the risk of zoonotic
infections. Protective measures and preventive vaccina-
tion should be taken seriously for populations susceptible
to occupational hazards. Finally, real-time virus mon-
itoring and rapid data sharing are crucial for assessing the
risk of cross-species transmission of HPAI H5 and
implementing effective prevention and control measures.
The antigenic drift of the current epidemic strains should
be monitored, and it should be determined whether the
existing vaccines still have protective effects. Furthermore,
H5-specific vaccines need to be developed, and the team
led by Hualan Chen in China, whose work was noted
above, serves as a model in this regard71,102,103.
While small-molecule compounds, peptides, and anti-

bodies have been developed for influenza antiviral ther-
apy, the constant mutation of the virus and its ability to
evade immune response confound these efforts. There-
fore, drugs and vaccines must be regularly updated to
address the emergence of new strains. In response, sci-
entists are trying different methods to develop universal
vaccines against multiple subtypes of influenza viruses.
HA is the main immunogen for vaccine design and mainly
induces antibodies against the RBD region at the spherical
head of HA, which is also highly prone to mutation.
However, some cross-protective antibodies against highly
conserved HA stalk may also be induced104. Emerging
vaccine platforms and new vaccine adjuvants also provide
pathways toward improving vaccine efficacy. Although
not emphasized in this review, the potential of cross-
reactive T cell-based responses for influenza vaccine
design cannot be ignored. Currently, avian influenza
vaccines are mandatory for poultry immunization. How-
ever, they are not included in routine human immuniza-
tion but are only used as a preventive vaccination strategy
during emergencies. HPAI H5 viruses are circulating in
birds and have even caused outbreaks in mammals in
recent years, thus raising concerns about HPAI H5
infections in humans. Heterologous prime–boost immu-
nization strategies against H5N1 could induce broader
cross-clade antibody responses. It is also worth con-
sidering priming with a universal vaccine and boosting
with a specific vaccine against the current pandemic
strain.
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