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Summary
Genetic correlations between human traits and disorders such as schizophrenia (SZ) and bipolar disorder (BD) diagnoses are well estab-

lished. Improved prediction of individual traits has been obtained by combining predictors of multiple genetically correlated traits

derived from summary statistics produced by genome-wide association studies, compared with single trait predictors. We extend this

idea to penalized regression on summary statistics in Multivariate Lassosum, expressing regression coefficients for the multiple traits

on single nucleotide polymorphisms (SNPs) as correlated random effects, similarly to multi-trait summary statistic best linear unbiased

predictors (MT-SBLUPs). We also allow the SNP contributions to genetic covariance and heritability to depend on genomic annotations.

We conducted simulations with two dichotomous traits having polygenic architecture similar to SZ and BD, using genotypes from

29,330 subjects from the CARTaGENE cohort. Multivariate Lassosum produced polygenic risk scores (PRSs) more strongly correlated

with the true genetic risk predictor and had better discrimination power between affected and non-affected subjects than previously

published sparsemulti-trait (PANPRS) and univariate (Lassosum, sparse LDpred2, and the standard clumping and thresholding)methods

in most simulation settings. Application of Multivariate Lassosum to predict SZ, BD, and related psychiatric traits in the Eastern Quebec

SZ and BD kindred study revealed associations with every trait stronger than those obtained with univariate sparse PRSs, particularly

when heritability and genetic covariance depended on genomic annotations. Multivariate Lassosum thus appears promising to improve

prediction of genetically correlated traits with summary statistics for a selected subset of SNPs.
Introduction

Most prevalent human disorders have a polygenic compo-

nent; i.e., a large number of genetic variants are involved in

their etiology, each accounting for only a small percentage

of thephenotypic variance.Apolygenic risk score (PRS), usu-

ally defined as aweighted sumof single nucleotide polymor-

phism (SNP) alleles,1 can stratify subjects with various levels

of genetic risk for a disorder.2 However, the accuracy of pre-

diction of individual risk remains limited for most traits

(see, e.g., Figure 4 of Zhang et al.1). One avenue to improve

prediction accuracy is to take advantage of pleiotropy: the

involvement of some genetic variants in multiple traits,

which gives rise to well-established genetic correlations be-

tween human traits such as schizophrenia (SZ) and bipolar

disorder (BD) diagnoses.3,4 Indeed, combining predictors of

multiple genetically correlated traits derived from summary

statistics produced by genome-wide association studies

(GWASs) under a mixedmodel framework5 or a hierarchical

Bayesianmodel6 achieved improvedpredictionof individual

traits compared with single-trait predictors.

The best linear unbiased predictors (BLUPs) derived from

linear mixed models and their summary statistics versions
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SBLUP and MT-SBLUP5 are PRSs where all SNPs contribute

to the prediction. Since only a certain number of variants

are involved in any disorder, the coefficients of a large pro-

portion of SNPs are likely to represent only noise under

this approach. Alternative approaches select SNPs to be

included in PRSs defined from summary statistics. Hu

et al.6 proposed a hierarchical Bayesian model with a

mixture distribution for the effect sizes where the effect

of non-causal SNPs is a point mass probability at 0. Their

PleioPred package is however limited to two traits, theMar-

kov chain Monte Carlo runs required to estimate the pos-

terior expectation of the SNP coefficients require long

computing times, and these expectations never shrink to

0. Shrinking the coefficients of some SNPs to 0, essentially

removing them from the PRS, is achieved via penalized

regression with a LASSO (least absolute shrinkage and

selection operator) penalty extended to summary statis-

tics.7,8 While the Lassosum package of Mak et al.7 is

restricted to single traits, the PANPRS package of Chen

et al.8 handles multiple traits by adding a second penalty

term on the log of the sum of the absolute value of coeffi-

cients for the same SNP to favor including SNPs with large

total effects. It does not however model correlation of SNP
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effects. Our first objective was to extend LASSO-penalized

regression with summary statistics to a model of correlated

effects of SNPs on multiple traits.

Zhang et al.1 noted that most PRS definitions including

the BLUP and Lassosum assume that every SNP has the

same contribution to the heritability of the trait, which im-

plies an inverse relationship between the SNP minor allele

frequency (MAF) and its expected effect on a quantitative

trait or the risk of a disorder when genotypes are standard-

ized. Speed et al.9 showed that this model is usually unre-

alistic for human traits, and models allowing heritability

contributions to depend on genomic annotations and

more flexible relationships withMAF fit summary statistics

data better. Hu et al.6 and Zhang et al.1 adapted several PRS

definitions to base the contribution of each SNP on a her-

itability model and showed that using a model fitting

GWAS data adequately improved the predictive perfor-

mance of all the PRS definitions evaluated. Our second

objective was to incorporate this idea into our multi-trait

PRS, which involves applying annotation-based models

to genetic covariances in addition to the heritabilities of

the traits. By contrast, Hu et al.6 applied annotation-based

models to heritabilities only.

Our Multivariate Lassosum approach is implemented in

the R package multivariateLassosum extending the Lasso-

sum package and retaining its convenient data handling

features. We evaluate its performance and compare it to

the performance of approaches involving SNP selection:

the multi-trait PANPRS8 (attempts to apply PleioPred

with sparse model6 failed), and the single-trait Bayesian

approach LDpred210 and standard clumping and thresh-

olding (C þ T) approach11 in an extensive simulation

study. Application of Multivariate Lassosum to predict SZ

and BD, two traits with a well-established genetic correla-

tion,4 is illustrated in the Eastern Quebec SZ and BD

kindred study.
Materials and methods

Multivariate trait model
We denote the number of phenotypes by q, the number of SNP

markers by p, and the number of subjects by n. Our starting point

is the linear mixed model of Maier et al.5:

ynq ¼ Xnq3 pqbpq þ εnq; (Equation 1)

where y is a length nq vector of centered traits defined as y ¼
ðy11; ::; y1q; y21; ::; y2q; ::; yn1;.; ynqÞu; andX is a matrix of standard-

ized SNP genotypes defined as

X ¼

0BB@
X11 X12 . X1p

X21 X22 . X2p

« « «
Xn1 Xn2 / Xnp

1CCAwith Xij ¼

0BB@
xij 0 . 0
0 xij . 0
« « «
0 0 / xij

1CCA;

where xij is the standardized genotype of subject i for the SNP j

defined as xij ¼ ðwij �2pjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1 � pjÞ

p
withwij thenumberofmi-

nor alleles (0, 1, or 2) for the ith individual at the jth SNP and pj the

empiricalMAF.The standardizedgenotypexij is the samefor all traits,

since the SNP genotype does not vary by trait. The vector b of length
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pq is defined as b ¼ ðb11; ::;b1q;b21; ::;b2q; ::; bp1;.;bpqÞu, where bjk
is the genetic effect of the SNP j for the trait k. Maier et al.5 assumed a

constant variance-covariance matrix across SNPs, which implies an

inverse relationship between the expected absolute effect of a copy

of the minor allele and the MAF, a common assumption.1 Given

the evidence from Speed et al.9 that this assumption does not hold

for a vast array of common human traits, we allow marker-specific

covariance matrices, such that bj � Nð0;SbjÞ where bj ¼ ðbj1; ::;
bjqÞ. We describe below how Sbj can be derived from a heritability

model. ε represents a random error vector with EðεÞ ¼ 0 and

VarðεÞ ¼ Se whereSe ¼ In5Ss is anq3nqdiagonal residualmatrix,

Ss ¼ diagðs2
ε
Þ is a diagonal q3qmatrix, ands2

ε
¼ ðs2

ε1
;.;s2

εq
Þ. In the

initial derivation of the estimates from individual-level data, geno-

types and traits are assumed to be measured on the same subjects.

As we move later to summary statistics, genotypes and traits will be

allowed to be measured in different samples of subjects of different

sizes. When different traits are measured in different subjects, it is

impossible to estimate residual covariancesbetweentraits. Following

Maier et al.,5 we set the residual covariances to 0.

UsingC. R. Henderson’s expression for the logarithmof the joint

probability density function of y and b, (see for instance Jiang,12

Equation 2.36), we can derive the log likelihood of model (1):

c � 1

2

"
ðy � XbÞuS�1

e ðy � XbÞþ
X
j

bu
j S�1

bj bj

#
:

We follow a similar methodology as Mak et al.7 to derive esti-

mates of b using the LASSO penalty,13 further allowing the penalty

to be weighted to implement adaptive LASSO.14 We therefore

minimize the following objective function:

f ðbÞ ¼ ðy � XbÞuS�1
e ðy � XbÞ þ

X
j

bu
j S�1

bj bj þ 2l k Wbk11

¼ yuS�1
e y � 2

X
j

bu
j S

�1
s

X
i

Xijyi

þ
X
j

(X
l

" X
i

Xu
ij Xil

!
bu
j S�1

s bl

#
þ bu

j S�1
bj bj

)

þ2l k Wbk11; (Equation 2)

where the summation indices, j and l, represent the SNPs,

while the summation index i denotes the subjects, and

W ¼ diagðw11; ::;w1q;w21; ::;w2q; ::;wp1;.;wpqÞ represents the

penalty weights.

As in Maier et al.,5 we apply the proposed model to quantitative

as well as dichotomous traits, which is also generally done with

single traits because estimates of the parameters of this model

can be obtained from summary statistics: correlations between X

and y and among the genotypes of SNPs in X. Chen et al.8 started

from the quadratic approximation of a LASSO-penalized logistic

regression objective function and formally stated a series of ap-

proximations assuming small SNP effect sizes to recover the coor-

dinate descent algorithm for the LASSO-penalized linear model

based on summary statistics. When including the density of b in

the expressions resulting from Chen et al.’s8 approximations, we

do not recover the coordinate descent algorithm presented in

the next subsection. However, Speed and Balding15 provided

empirical evidence that p values from logistic and linear models

are sufficiently similar when SNP effects are small to limit the

impact of using logistic regression p values fromGWAS for conver-

sion into correlations, providing support for the application of the

present model to dichotomous traits.



Estimation method
Using a notation similar to Mak et al.,7 we denote by rk ¼ 1

nX
T
ð1Þyk,

the SNP-wise correlation between the SNPs and the trait k, and by

R ¼ 1
nX

T
ð1ÞXð1Þ, the linkage disequilibrium (LD) matrix, a matrix of

correlations between SNPs, with yk being the vector for trait k and

Xð1Þ being the genotype matrix for a single trait. The vectors rk can

be approximated from publicly available summary statistics such

as estimates of b coefficients and their standard errors or p values

and sign of association test statistics as inMak et al.7 Such statistics

may have been derived from linear regression for quantitative

traits or logistic regression for dichotomous traits. R can be ob-

tained from publicly available genotype reference databases.

Equation 2 then becomes the following:

f ðbÞ ¼ yuS�1
e y � 2

X
j

bu
j S�1

s nrj þ
X
j

X
l

bu
j nRjlS

�1
s bl

þ
X
j

bu
j S�1

bj bj þ 2l k Wbk11
:

(Equation 3)

However, since the genotype matrices X used to estimate R

and r will in general be different, it is more accurate to

write R ¼ 1
nr
XT

r Xr , where nr is the number of subjects in

the standardized genotype matrix Xr used to estimate LD.

Furthermore, in practice, traits are measured in different

subjects and in different numbers. It is therefore more accurate

to consider n as a vector n ¼ ðn1;.;nk;.;nqÞ of the number

of subjects in the sample used to compute the summary

statistics for the q traits rather than a single integer. In this

context, Mak et al.7 noted that we are no longer in the

framework of a penalized least squares problem and established

that the following further regularization of the R

matrix solves this issue. Replacing R with Rs ¼ ð1 � sÞrþ sI

for some 0 < s < 1; we can then rewrite Equation 3 as follows:

f ðbÞ ¼ yuS�1
e y � 2

X
j

bu
j S�1

s diagðnÞrj þ
X
j

bu
j S�1

bj bj

þ
X
j

X
l

bu
j diagðnÞ

�
~X
u

j
~Xl þ sI

�
S�1

s bl þ 2l k Wbk11;

where ~X ¼
ffiffiffiffiffiffiffiffi
1� s
nr

q
Xr . We estimate b assuming variances and co-

variances are known. In practice, estimates of variances and co-

variances from external sources need to be provided. Although

the method allows for general genetic and residual variance terms,

it is convenient to set the total variance to 1 and use heritability

estimates hgk ¼ Pp
j¼1ðbSbjÞkk; k ¼ 1.q for the proportion of the

total variance explained by additive genetic contributions. We

then set bs2
ε

¼ ðbSsÞkk ¼ 1 � hgk; k ¼ 1.q. This only assumes

in fact that the variances of all traits are equal, as multiplicative

factors of the variances cancel in the solutions for the b coeffi-

cients below. Therefore, for SNP j and trait k, we find the bjk esti-

mate by minimizing the objective function:

f
�
bjk

�
¼ b2
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h
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�
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u
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The minimization of f ðbjkÞ is an elastic net problem16 with the

covariance terms of the b added to the linkage disequilibrium

terms of Mak et al.7 in the quadratic penalty. Following a similar

scheme as inMak et al.,7 the solution is found by iteratively updat-

ing bjk as follows:

if < 0 ,

b
ðtÞ
jk ¼

8>><>>:
0 if Aþ lwjk > 0

Aþ lwjk

nk

�
~X
u

j
~Xj þ s

�
k
bs�2
εk

þ
�bS�1

bj

�
kk

else

if > 0 ,

b
ðtÞ
jk ¼

8>><>>:
0 if A � lwjk < 0

A � lwjk

nk

�
~X

u

j
~Xj þ s

�
k
bs�2
εk

þ
�bS�1

bj

�
kk

else;

where

A ¼
 
� 1

2

X
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�bSbj
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b
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s
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� nk
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!
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For the weightswjk we considered wjk ¼ 1; i.e., constant weight,

wjk ¼ 1

jbb jkjg where bbjk are the estimates from the GWAS, and g is a

tuning parameter (the original adaptive LASSO of Zou,14 except

that here bbjk is in general inconsistent), and wjk ¼ 1

jbbmvL;jkj
, wherebbmvL;jk are the estimates from Multivariate Lassosum with

wjk ¼ 1 (the proposal by Bühlmann and Geer17).
Selection of tuning parameters
The standard approach is to select tuning parameters in a valida-

tion set independent from the training set. Summary statistics

are generally available only for the full sample on which GWASs

have been conducted for each trait. We adopted the approach of

Zhang et al.1 to simulate pseudo summary statistics for a training

and a validation sample from full-sample summary statistics,

except we let the variance of the trait differ from 1. Thus, instead

of estimating 1
nk
Vk, the covariance matrix of rk, by

1
nr
XT

r Xr as in

Zhang et al.,1 we instead use 1
nr
s2ðrkÞXT

r Xr where s2ðrkÞ is the empir-

ical variance of rk. Let nAk and nBk be the size of the training and

validation sets for trait k. In our notation, the SNP-wise correlation

between SNPs and the trait k in the training set is obtained as

rAk ¼ rk þ
ffiffiffiffiffiffi
nBk

nAk

q
sðrkÞ 1ffiffiffiffi

nr
p Xu

r g; where g is a vector of nr drawn from

the standard Gaussian distribution, and rBk ¼ 1
nBk

ðnkrk � nAkrAkÞ.
In our application, we set nBk ¼ nB, 10% of the average of n for

all traits, and nAk ¼ nk � nB.

Following Mak et al.,7 we select the value of a tuning parameter

l that maximizes the correlation between the PRS and y in a vali-

dation sample. Mak et al.7 showed that this is equivalent to the

value of l maximizing the function:

f ðlÞ ¼ bu
l rBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n0

bu
l Xu

0 X0bl

r ; (Equation 5)

where rB ¼ ðrB11; ::; rB1q; rB21; ::; rB2q; ::; rBp1;.; rBpqÞ; and X0 is a ma-

trix of the standardized genotypes in a sample of n0 subjects inde-

pendent from the training sample in the same format as X. The
man Genetics and Genomics Advances 4, 100209, July 13, 2023 3



range of values of l was set such that the proportion of SNPs with

bjks0 represented at least 5% of all SNPs for every trait k.

Mak et al.7 also proposed a pseudovalidation approach that does

not require trait values or trait-genotype correlations in the valida-

tion set. It requires a shrunken estimate of the r, which can be

calculated as

br jk ¼ rjkhjk;

where hjk is the minimum of the posterior expected loss, which for

a quantitative trait, Mak et al.18 define as a quadratic loss. Gener-

alization to a multivariate trait would require the posterior expec-

tation of products of b coefficients for the different traits, which

would involve unknown quantities. For dichotomous traits,

considering a binomial log likelihood loss requires only the poste-

rior expectation of the b coefficients and not of their products. We

derived a solution for hjk under such loss function and used it to

implement pseudovalidation in our simulations, but performance

was poor, so we do not present this solution.

In the analyses of real and simulated data with Lassosum and

Multivariate Lassosum reported in this work, a selection procedure

was applied only to the LASSO penalty l parameter. The s regula-

rization parameter was set to 0.5 following the observation of Mak

et al.7 that such a value of s tended to achieve the best perfor-

mance. In a sensitivity analysis on simulated datasets, we also tried

to set s to 0.2, 0.9, or 1.

Specification of the SNP effects covariance matrices
There is evidence that the expected heritability contributed by an

SNP varies as a function of SNP characteristics for a large collection

of traits, and several models have been proposed to explain it

based on genomic annotations.9 Recent developments in stratified

LD score regression enable to estimate such models including

continuous-valued annotations.19 Shi et al.20 applied one such

model, the Baseline-LD-X (BLD-X) model, to the trans-ethnic ge-

netic covariance of one trait in two ethnically distinct popula-

tions. Here we apply it to the genetic covariance between two traits

in the same population. That is, we express the expectation of the

product of Z scoresZj1 andZj2 for two traits in the same population

as

E
�
Zj1Zj2

	 ¼ ffiffiffiffiffiffiffiffiffiffi
n1n2

p X
C

[ðj;CÞqC þ
ffiffiffiffiffiffiffiffiffiffi
n1n2

p
b12; (Equation 6)

where [ðj;CÞ ¼ P
l

alCR
2
jl is the usual LD score of SNP j with respect

to annotation C taking value alC for SNP l instead of the trans-

ethnic score of Shi et al.,20 and qC is thus the effect of annotation

C on the genetic covariance of the two traits. We add to the

model of Shi et al.20 the intercept term b12 to account for poten-

tial sample overlap, but we fit the model with b12 ¼ 0 unless

noted otherwise. We fit the model to Zj1 and Zj2 from summary

statistics for traits 1 and 2 to estimate the qC as well as the

effects tkC; k ¼ 1;2 of the annotations on the heritabilities. The

expected heritabilities and genetic covariance contributed by

each SNP j are then predicted using the values of their

annotations:bh2

gkðjÞ ¼
X
C

ajCbtkC; k ¼ 1;2 and brgðjÞ ¼
X
C

ajCbqC;
and we set

Sbj ¼
0@ bh2

g1ðjÞ brgðjÞbrgðjÞ bh2

g2ðjÞ

1A:
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Simulation framework
We simulated summary statistics for two genetically correlated

traits to compare the predictive performance of the different op-

tions of Multivariate Lassosum against alternative PRS construc-

tion methods involving SNP selection. The parameters that were

varied in our simulations are summarized in Table 1.

We used actual genotype data on 29,330 subjects from the

CARTaGENE research platform (www.cartagene.qc.ca)21 geno-

typed with the Illumina Global Screening Array (GSA). We filtered

out variants and participants using the following criteria: geno-

type missing rate > 0:01 and MAF < 0:001. We also only consid-

ered the autosomes. We then imputed the small number of re-

maining missing genotypes using the mode. There remained

423,552 SNPs and all 29,330 individuals. The genotype data was

randomly divided into three samples: the first sample of 23,330 in-

dividuals was used to generate the summary statistics. The second

sample of 3,000 individuals was used as a reference panel for PRS

construction and as validation set for selecting penalty parame-

ters. The third sample of 3,000 individuals was used to evaluate

the predictive performance of the PRSs from all methods

compared. To evaluate the method in smaller samples, we ex-

tracted the first three genotyping batches comprising 10,139 sub-

jects. The numbers of subjects per sample are summarized for the

full cohort of 29,330 and the reduced cohort of 10,139 in Table 1.

The two genetically correlated traits in our simulation study

were inspired from SZ and BD. To obtain realistic contributions

of SNPs to heritabilities and genetic covariance, we fitted the

BLD-Xmodel to the most recent SZ22 and BD23 summary statistics

for the 250,652 SNPs with genotypes for which such statistics as

well as LD scores and MAF were available for the European

(EUR) 1000 Genomes Project sample and predicted bh2

g1ðjÞ; bh2

g2ðjÞ
and brgðjÞ for each SNP j. For this prediction, annotations were

available for 419,492 SNPs; the other 4,060 SNPs were assigned

the baseline category for dichotomous annotations and the

mean value for SNPs on the same chromosome for continuous

annotations.

SNP effects were simulated following the previously proposed

model24,6 that some proportion of SNPs have a causal effect on a

trait and the rest of the SNPs have no effect, and there is overlap

between the SNPs having a causal effect on each trait. The distribu-

tion of the effect of the causal SNPs depended on the assumed her-

itability model: either based on the predictions from the BLD-X

model annotations as described above or constant across SNPs (re-

sulting in a mixture of four genetic covariance matrices). Then,

simulation parameters were varied as follows: for heritability, we

set the variance of both traits to Varðy1Þ ¼ Varðy2Þ ¼ 1, and for

a high observed-scale SNP heritability, we set the value for trait 1

to h2
g1 ¼ 0:47 and for trait 2 to h2

g2 ¼ 0:45, the estimates reported

by Maier et al.5 for SZ and BD based on the summary statistics

available at the time (Psychiatric Genomic Consortium [PGC],

version PGC2 for SZ and PGC1 for BD). For a low heritability, we

set the observed-scale SNP heritabilities of the two traits to 0.10

and 0.09. For correlation, when we simulate a mixture of four ge-

netic-covariance-matrices, we set the genetic correlation between

the two traits to rg ¼ 0:59, the genetic correlation between SZ

and BD presented in Maier et al.,4 for a high correlation or rg ¼
0.44 for a moderate correlation (same as for the BLD-X model

below). For polygenicity, we then set the probability that an SNP

has a causal effect on both traits 1 and 2 to 0.35 for high polyge-

nicity or 0.08 for low polygenicity. We also set the variance ex-

plained by an SNP and solved for the probability that an SNP

has a causal effect on trait 1 alone and on trait 2 alone to obtain

http://www.cartagene.qc.ca


Table 1. Parameters of the simulation scenarios

Parameter Reference value Alternative value

Training, validation, and test sample sizes 23,330; 3,000; 3,000 8,139; 1,000; 1,000

Trait heritability (trait 1, trait 2) high (0.47, 0.45) low (0.10, 0.09)

Trait polygenicity (trait 1, trait 2) high (0.49, 0.47) low (0.12, 0.10)

Heritability model derived from BLD-X model four covariance matrices

Trait correlation with four covariance
matrices

0.59 0.44

Sample overlap for the two traits (sensitivity) none inducing correlation of 0.16 and 0.32
the proportions of SNPs influencing each trait reported in Table 1.

SNPs were then randomly assigned as causal for both traits, for one

of the two or for neither according to probabilities reported in the

simulation parameters section of the supplemental information.

We kept the same probabilities of causality and heritabilities

when we made the heritabilities and genetic covariance of the

two traits depend on predictions from the BLD-X model annota-

tions, but the assignment of trait causality status was constrained

by the predictions from the BLD-X model; i.e., SNPs with a pre-

dicted heritability %0 for either trait were set as non-causal for

the trait in question in all replicates (see the simulation parameters

section of the supplemental information for details and Table S1

on the proportions and numbers of SNPs for each combination

of trait causality statuses). We then generated the vector ðbj1; bj2Þ
of genetic effects for the SNP j for traits 1 and 2 as follows:


b1j

b2j

�
�

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

N

0@
0

0

�
;

0@a1
bh2

g1ðjÞ abrgðjÞ
abrgðjÞ a2

bh2

g2ðjÞ

1A1A if SNP j causes traits 1 and 2

0@N
�
0;a1

bh2

g1ðjÞ
�

0

1A if SNP j causes trait 1

0@ 0

N
�
0;a2

bh2

g2ðjÞ
�1A if SNP j causes trait 2



0

0

�
if SNP j causes neither trait 1 nor trait 2;

(Equation 7)
where a1 and a2 are scaling factors so that the heritability of traits

1 and 2 equal the prespecified values and a ¼ ffiffiffiffiffiffiffiffiffiffiffi
a1a2

p
. This scaling

was required because only a fraction of all SNPs actually contrib-

uting to SZ and BD heritability were included in the simulations

and because the specified heritabilities of traits 1 and 2 differ

from the values from the BLD-X model on the most recent sum-

mary statistics of SZ and BD. We did not impose a prespecified ge-

netic covariance and obtained a value of genetic correlation ¼
0.44.

For the scenario with a mixture of four genetic covariance

matrices, ðbj1;bj2Þ were generated as above with the matrix

element values described in the simulation parameters section of

the supplemental information. We then obtained the observed
Hu
correlation coefficients for each genomic region l and each trait

k using

rlk � Nð bRlblk; bRl =nkÞ; (Equation 8)

where bRl is the observed correlation matrix of the lth region from

the genotype X, and nk is the sample size assuming rl1 and rl2 were

conditionally independent given their expected value. Here we

point out that we did not generate the vector of genetic effects b

by genomic regions like in Mak et al.7 However, we generated

the observed correlation coefficients by genomic regions, as

shown in Equation 8. In a sensitivity analysis, we introduced cor-

relation between rl1 and rl2 that could result from overlap in the

samples used in the GWAS (e.g., common controls). We then

have Cov½rl1; rl2� ¼ ro
bRl=nk, where ro was set to cro ¼bb12=

ffiffiffiffiffiffiffiffiffiffiffibb1
bb2

q
, where bb12, bb1, and bb2 are the intercept term estimates
from cross-trait and trait-specific Linkage Disequilibrium Score

Regression fit of SZ and BD summary statistics, an approach

inspired by Turley et al.25 The cross-trait intercept term estimate

was bb12 ¼ 0:18 leading to a between-trait summary-statistic corre-

lationcro ¼ 0:16.We also simulated a scenario withmore substan-

tial sample overlap by doubling the between-trait summary-statis-

tic correlation tocro ¼ 0:32.

For the subjects in the test set, the two dichotomous traits were

simulated under a liability threshold model with the liability

Lik ¼ Gik þ Eik; where Gik ¼ P
jbjkXij is the true standardized

genetic predictor, the variance of the environmental component

Eik is set to 1 � hgk, and the thresholds for being affected were

set such that traits 1 and 2 had prevalence 1% and 2%,
man Genetics and Genomics Advances 4, 100209, July 13, 2023 5



respectively. The area under the receiver operating curve (AUC)

was computed in the test set for the two traits using the simulated

traits and PRS from every method included in the comparison.
Methods compared
We compared Multivariate Lassosum with a constant genetic

covariance matrix across SNPs and with genetic covariance

matrices based on the predictions from BLD-X model annotations

for each SNP, although in practice one would try both models and

select the one performing best in the validation set. The matrices

were scaled such that the total heritability and covariances

equaled the estimates for SZ and BD. Hence, the constant matrices

were set to

Sb ¼ 1

p



0:47 0:27
0:27 0:45

�
;

and for the variable matrices, appropriate scaling factors were

applied (these differed from a1 and a2 above as we do not force

SNP effects to 0 like we do when we simulate the true values).

The results from Multivariate Lassosum were compared with

those from a previously published multi-trait method, PANPRS,8

and from single-trait methods incorporating SNP selection: the

original Lassosum,7 the sparse option of LDpred2,10 and p value

thresholding, the last two implemented in the bigsnpr R package.

We attempted to apply PleioPred with sparse model6 to our simu-

lated data, but a NaN value was returned for subsets of beta coeffi-

cients despite correct matching of SNP identifiers. An exchange

with PleioPred authors did not resolve this issue.

All methods were applied to the same simulated training sam-

ples. Tuning parameters of all methods were selected in the valida-

tion set, except for LDpred2 for which we used the auto option to

automatically estimate the proportion of causal variants and the

trait heritability from summary statistics data. This was done

because LDpred2 requires individual traits in the validation set

contrary to evaluating f ðlÞ (Equation 5) as we do for Lassosum-

derived approaches and p value thresholding, noting that the pre-

dictive performance of the auto option of LDpred2 matched that

of the validation-based options.10 The burn-in and run length of

the Gibbs sampler of LDpred2 were set to their default values.

The default set of heritability values was used, but the range of

the proportion of causal variants was expanded from the default

0.0001–0.2 range to the 0.0001–0.5 range (0.0001, 0.0005,

0.001, 0.005, and 0.01, followed by a sequence of 25 equally

spaced values from 0.05 to 0.5) to encompass our high polygenic-

ity scenario. PRSs obtained from the resulting grid of hyperpara-

meter values were processed as recommended by Privé et al.10 A

sequence of eight p value thresholds was used for thresholding

and C þ T methods: 1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.001, and 1e-4.

For the latter method, seven correlation thresholds were tested:

0.01, 0.05, 0.1, 0.2, 0.5, 0.8, and 0.95. For PANPRS, vectors of

tuning parameter values were generated by applying the initial

configuration steps to all autosomal SNPs, and then the generated

vectors were passed to chromosome-specific analysis runs as rec-

ommended (personal communication with Dr. T.H. Chen). The

methods compared, their parameters, and other features are sum-

marized in Table S2.
Application to schizophrenia and bipolar disorder
Genetic correlation between SZ and BD has been established

through familial coaggregation studies,26 mixed model analysis

on individual data,4 as well as LD score regression on summary sta-
6 Human Genetics and Genomics Advances 4, 100209, July 13, 2023
tistics.3,5 We illustrate the gain in predictive power of Multivariate

Lassosum over single-trait methods on these two traits using trait

and genotype data from the SZ and BD Eastern Quebec kindred

study.27,28 The best-estimate lifetime DSM-IV diagnosis was

made as outlined in previous reports.29,30 Due to the presence of

SZ, BD, and related diagnoses in the same sample, the risk of

bias in favor of a particular diagnosis was minimized. Signed con-

sent was obtained from all participants or from the parents for par-

ticipants under 18, as reviewed by our University Ethics Commit-

tee. SNP array genotyping was performed in two waves using DNA

extracted from immortalized lymphocytes or fresh blood by affin-

ity column (Midi prep Qiagen). The same quality control criteria

were applied to both waves (see genotyping quality control pro-

cedures in the supplemental information), leaving 1,120 geno-

typed subjects: 507 subjects genotyped at 622,184 autosomal

SNPs with the Illumina Infinium Human OmniExpress array in

the first wave31 and 613 subjects genotyped at 502,425 SNPs

with the Illumina GSA in the second wave. Before imputation,

the phasing of our familial sample genotypes was done by

Shapeit2 software, which allowed us to use the family information

in the phasing process via the duoHMM algorithm.32 Imputation

of all common SNPs and indels was then made on the Michigan

Imputation Server using the Haplotype reference consortium

panel.33 The large number of SNPs led us to select the SNPs with

an MAF > 0:1, as was done before,34 leaving 3,639,921 SNPs.

Since LDpred2 auto option does not require a validation set,

LDpred2 auto was applied to the original univariate coefficients

released by the PGC in their summary statistics (n ¼ 161,405

for SZ, 413,466 for BD). For all other methods, we generated

pseudo summary statistics for SZ and BD to mimic a validation

set of size 28,744 and training sets of size 132,661 for SZ and

384,722 for BD by applying the approach described in materials

and methods to the 6,398,847 SNPs with summary statistics for

SZ22 and BD23 on the autosomal genome and with genotypes

imputed in both the subjects genotyped using the OmniExpress

array and using the GSA array. We used the genotypes of the

EUR 1000 Genomes sample as Xr to generate the pseudo sum-

mary statistics. After selection of the tuning parameter values,

the PRS coefficients of each method were re-estimated on the

original summary statistics. We adapted the application of C þ
T and LDpred2 with a grid of hyperparameter values (including

for LDpred2 the proportion of causal SNPs: LDpred2 grid-sp) to

compute the selection criterion (Equation 5) on validation set

pseudo summary statistics, instead of the usual approach of

measuring predictive performance on the trait in the validation

set. The large number of SNPs led us to perform an initial clump-

ing to speed up PANPRS computations as recommended (per-

sonal communication with Dr. T.H. Chen). In order to obtain a

common set of SNPs for SZ and BD, we assigned to each SNP

the minimum of the association p value for SZ and BD. A clump-

ing r2 ¼ 0:5 and a window size of 250 kb using Plink 1.935 led to

the selection of 365,527 SNPs.

Among the 1,120 genotyped subjects, diagnoses were distrib-

uted as follows: 205 BD, 124 SZ, 35 schizoaffective disorder

(SAD), 442 non-affected adult relatives (NAARs), and 314 relatives

whose diagnosis was considered unknown (e.g., parents of

affected subjects who were not themselves affected). BD subjects

were evaluated for the presence of symptoms of psychosis, which

were detected in 93 genotyped BD subjects. PRSs were standard-

ized to have mean 0 and variance 1 in the NAARs group separately

for the two genotyping arrays. Association between diagnosis and

PRSs was evaluated under a logistic model estimated by



Figure 1. Comparison of PRS predictive performance formultiple variations of the simulation scenario where heritability and genetic
covariance of two traits depend on genomic annotations
Top panel: Pearson correlation of the PRS with the true predictor. Bottom panel: area under the receiver operating curve (AUC) for the
prediction of simulated traits by PRS. Mean and 95% confidence interval based on 20 replicates. The penalty parameter l (for the penal-
ized regression methods) and the threshold for thresholding were set to the values maximizing the correlation between the PRS and the
trait y in a validation set. Methods compared: mvL: Multivariate Lassosum with constant penalty, mvL-adapt: Multivariate Lassosum
with adaptive penalty based on the initial estimates frommvL. Models for heritability and covariance used in analysis : BLD-X: Baseline
linkage disequilibrium model-cross trait; Standard: constant contribution of standardized genotypes of all SNPs.
generalized estimating equation with a variance estimator robust

to familial dependence.

SNP-specific contributions to heritabilities and covariances were

predicted from the BLD-X heritability model fitted to pseudo sum-

mary statistics for the 3,324,089 SNPs with LD scores and MAF

available for the EUR sample using the approach described above.

Annotations were available for 3,611,681 SNPs; values were

imputed for the other 28,240 SNPs as for the simulations above.

In this model fit, after setting negative SNP predicted heritabilities

to 0, some predicted covariances led to non-semi-positive definite

genetic covariance matrices, and these covariances were replaced

by maxð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibh2

g1ðjÞbh2

g2ðjÞ � 0:001

q
Þ, where bh2

g1ðjÞ is the predicted

contribution of SNP j to SZ and bh2

g2ðjÞ to BD. The sum of the cor-

rected contributions of the 3,639,921 SNPs were 0.85 for SZ,

0.17 for BD, and 0.12 for the covariance between SZ and BD (ge-

netic correlation¼ 0.31). These values were used to define the con-

stant covariancematrixSb for the analysis with equal contribution

of all SNPs. The sample of subjects genotyped with the

OmniExpress array were used as reference panel for all PRS

methods.
Hu
Results

Simulation study

The version of Multivariate Lassosum with the heritability

model best fitting the simulated data (e.g., BLD-X for the

simulation scenarios where heritability and genetic

covariance depended on genomic annotations) applied

to the two simulated traits generally achieved higher pre-

dictive performance than competing methods analyzing

either both traits jointly or each trait separately in terms

of estimated PRS vs. true predictor correlation and AUC

(Figures 1 and S2) in the reference scenario and when

reducing the sample size, correlation, or heritability. In

the scenario with low polygenicity, the original Lassosum

performed about as well as Multivariate Lassosum for trait

1. In this instance, the original Lassosum and LDpred2

achieved better performance than the version of Multivar-

iate Lassosum with the less adapted heritability model.

Under the other scenarios where the data were generated
man Genetics and Genomics Advances 4, 100209, July 13, 2023 7



Figure 2. Difference in PRS predictive performance under the reference simulation scenario where heritability and genetic covari-
ance of two traits depend on genomic annotations
Top panel: difference in Pearson correlation of the PRS with the true predictor between methods. Bottom panel: difference in area under
the receiver operating curve (AUC) for the prediction of simulated traits by PRS. See legend of Figure 1 for the definitions of acronyms for
the methods. Statistical significance of the difference was evaluated by paired t tests using 20 replicates, and p values were corrected for
multiple testing using the Bonferroni method. *p < 0:05, **p < 53 10�4, ***p < 53 10�8.

8 Human Genetics and Genomics Advances 4, 100209, July 13, 2023



Table 2. Mean run time (SD) in minutes per replicate for every method across the 20 replicates of the simulations using 29,330 subjects
and 10,139 subjects

Methods Cores used n ¼ 29,330; p ¼ 423,552 n ¼ 10,139; p ¼ 479,158

mvL 80 11.86 (0.33) 7.32 (0.42)

mvL (BLD-X) 80 13.25 (0.31) 7.78 (0.11)

mvL-adap 80 11.94 (0.09) 7.41 (0.43)

mvL-adap (BLD-X) 80 12.24 (0.12) 7.47 (0.41)

Lassosuma 80 15.72 (0.04) 7.71 (0.91)

LDpred2a 40 23.25 (0.29) 22.01 (4.29)

PANPRS 1 2,992 (68) 3,834 (80)

aCumulative time of two runs, one on each of the two traits.
with a mixture of four genetic covariance matrices, the

original Lassosum and LDpred2 also outperformed Multi-

variate Lassosum with the BLD-X model. Although many

of the above reported performance differences were small,

Figures 2 and S2–S5 show that they were statistically

significant.

The performances of Multivariate Lassosum and the

other PRS methods were insensitive to the variation of

most simulation parameters, except heritability. Correla-

tion of summary statistics due to overlap of the samples

for the two traits had also little impact on performance

even when summary-statistic correlation was doubled

compared with the estimate for SZ and BD (Figures S6

and S7). The fixed value 0.5 for the regularization param-

eter s led to optimal or near optimal performance of

Multivariate Lassosum under the reference simulation sce-

nario (Figure S8). Using an adaptive LASSO penalty did

not improve the predictive performance over the initial

analysis with a constant penalty for all coefficients. We

show the results when adaptive weights were defined us-

ing the coefficient estimates from the Multivariate Lasso-

sum analysis with constant penalty; results using the

weight definition inspired by Zou14 were nearly identical

(not shown). Computing times on a multi-threaded com-

puter cluster for a Multivariate Lassosum run were a little

shorter than two runs of Lassosum for the two traits, with

the BLD-X model requiring slightly more time than the

constant genetic covariance matrix (Table 2). LDpred2 be-

ing limited to a single node, we could only request half

the number of cores as the Lassosum-derived methods,

while we were restricted to a single core for PANPRS.

This led to consequently larger computing times. The re-

quested random access memory of 10 Gb per core (20

Gb for PANPRS) is an upper bound on the actual memory

used.
Analysis of schizophrenia and bipolar disorder

The selection criterion (Equation 5) evaluated on pseudo

summary statistics of SZ and BD validation sets reached a

higher value for Multivariate Lassosum PRSs under the

BLD-X model than under a constant genetic covariance
Hu
matrix. Although this implies selection of the BLD-X

model, we report results from the application of both

models to the test set in Figure 3 and Tables S3 and S4 to

be able to compare them. Multivariate Lassosum PRSs ex-

plained a greater proportion of the variance of SZ, BD,

and SAD and had better discrimination power between

affected and non-affected subjects as measured by the

AUC, and the odds ratios of these disorders for an increase

of 1 SD in Multivariate Lassosum PRSs were larger than for

competing methods in the Eastern Quebec SZ and BD

kindred sample (Figure 3 and Table S3) when the PRS was

defined based on GWAS of the same disorder (SZ with SZ

and BD with BD) and in some cases when the PRS was

defined based on other disorders (SZ and SAD with BD

summary statistics and BD with SZ summary statistics).

Odds ratios between quartiles of risk defined from Multi-

variate Lassosum PRSs tended to also be larger than for

PRSs of other methods in the same instances, with more

variability than the odds ratios for an increase of 1 SD

(Figure S9). For SAD with SZ summary statistics, C þ T per-

formed best instead.

The BLD-X model slightly improved the proportion of

explained variance, AUC, and odds ratio over the constant

genetic covariance matrix for BD when predicting from SZ

pseudo summary statistics and for SZ and BD when pre-

dicting from BD pseudo summary statistics, and the two

models performed similarly for the other analyses where

mvL performed best among the evaluated methods. The

largest odds ratio, liability-scale R2, and AUCwere achieved

for SAD and the largest observed-scale R2 for BD, both with

PRSs derived from BD pseudo summary statistics. Distin-

guishing BD with and without psychosis did not impact

substantially the variance explained and odds ratios for

PRSs derived from BD pseudo summary statistics, as well

as for PRSs derived from SZ pseudo summary statistics

(Table S4). The BLD-X model generally led to better perfor-

mance than the constant genetic covariance matrix for BD

with and without psychosis, irrespective of whether SZ or

BD pseudo summary statistics were used. We repeated

the analysis after fitting the BLD-X model with an inter-

cept term in Equation 6 and the results remained almost

identical (not shown).
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Figure 3. Predictive performance ofMultivariate Lassosum for psychiatric traits in the Eastern Quebec schizophrenia and bipolar dis-
order study compared with clumping and thresholding, thresholding alone, Lassosum, PANPRS, and LDpred2
Top panel: odds ratio and 95% confidence interval of trait for an increase of 1 standard deviation in PRS; Bottom panel: area under
the receiver operating curve (AUC) and 95% confidence interval for the prediction of the traits by PRS. mvL, Multivariate Lassosum
with constant penalty and constant contribution of standardized genotypes of all SNPs; mvl(BLD-X), Multivariate Lassosum with
constant penalty and baseline linkage disequilibrium model cross-trait; SZ, schizophrenia; BD, bipolar disorder; SAD, schizoaffective
disorder.

10 Human Genetics and Genomics Advances 4, 100209, July 13, 2023



Discussion

Wehave combinedmultivariate linear mixedmodels and a

LASSO penalty to propose Multivariate Lassosum, a new

summary-statistics-basedmultivariate penalized regression

approach to the definition of PRS for genetically correlated

traits. This multivariate analysis improved the prediction

of each trait compared with analyzing either two traits

jointly or each trait separately using alternative methods

involving the selection of SNPs (PANPRS, thresholding

with and without clumping, LDpred2, and the original

Lassosum) on both summary statistics simulated under a

variety of scenarios and actual SZ and BD summary

statistics. LDpred2 and the original Lassosum were

competitive with Multivariate Lassosum only with low

trait polygenicity. There are other PRS definitions

involving some form of shrinkage of the SNP coefficients

without forcing them to 0, but none of

them consistently beat LDpred2 in a thorough evaluation

on actual data for psychiatric traits,34 and we consider

LDpred2 as representative of single-trait methods

achieving top predictive performance.

We also adapted the S-LDXR method initially proposed

to estimate the trans-ethnic genetic covariance of one trait

to estimate the genetic covariance between two traits as a

function of SNP annotations, and we found that using

such amodel (BLD-X) to predict SNP-specific contributions

to the heritabilities and genetic covariance of two traits

improved the predictive performance when simulated

SNP effects actually depended on the included SNP anno-

tations, even though the simulation model did not coin-

cide with the analysis model (Figure 1). However, when

the simulation model was very different from the BLD-X

model, such as a mixture of four genetic covariance

matrices, the predictive performance degraded, and then

a constant genetic covariance matrix performed better

than the BLD-X model (Figure S1). Thus, proximity of

the analysis model to the true underlying model is impor-

tant to maximize predictive performance, and the herita-

bility model maximizing correlation between PRS and

traits in a validation sample should be selected. When

predicting SZ and BD in an actual sample of patients and

non-affected relatives, the BLD-X model slightly improved

predictive performance for a majority of the tested traits

over the constant genetic covariance model, and otherwise

the two models performed similarly. This is slightly more

favorable to the BLD-X model than the results of Ni

et al.,34 who reported no advantage with a similar heritabil-

ity model implemented in MegaPRS1 for predicting SZ and

major depressive disorder analyzed separately. Tissue-spe-

cific annotations can be added to the BLD-X model.20

Whether adding brain-specific annotations improves

the prediction of SZ and BD could be investigated in future

work.
We focused our evaluation of the methods on a pair of

traits, although the methodology and software code are

general for qR2 traits. This is essentially to limit
Hum
computing time, which grows faster than linearly with

the number of traits. Also, we set the total variance of

each trait to 1. For quantitative traits, equal variance can

be obtained by scaling the traits. For dichotomous traits,

this equal variance assumption may not hold, and further

investigation of the impact of different variances for the

traits analyzed remains an important avenue of further

research.

The covariance terms of the b added to the quadratic

penalty in Equation 2 leads to BLUPs under a linear mixed

model.5 In the elastic net context of Multivariate Lasso-

sum, a different penalty strength may be optimal, which

could be implemented by an additional penalty parameter

l1 to the term buj S�1
bj bj. Additional tuning parameters add

to the computational burden but may not improve predic-

tive performance significantly, as PANPRS exemplifies.

The improvements in prediction performance achieved

by considering genetically correlated traits in the construc-

tion of PRS could bemeaningful in conjunction with other

factors. As with other complex traits, non-genetic factors

play an important role in the etiology of SZ and BD, such

as childhood trauma36,37 and socio-economic factors.38,39

Given the moderate proportions of variance of these psy-

chiatric traits explained by PRSs, these other factors need

to be considered together with PRS to further improve pre-

diction, whether in help-seeking individuals40 or in chil-

dren at familial risk.41 Genetic correlation among traits

also complexifies the prediction of the specific disorder

that an at-risk subject will express, as the same subject

may exhibit high PRSs for multiple correlated traits. This

may not be a serious impediment to implementing preven-

tive interventions, as such interventions may be indicated

to prevent several genetically correlated disorders, e.g.,

cognitive remediation therapy in the case of prevention

of SZ and BD.

In conclusion, the availability of summary statistics for

a multitude of genetically correlated traits offers an op-

portunity to improve risk prediction of complex disor-

ders through PRS in conjunction with non-genetic fac-

tors. We have made available Multivariate Lassosum as

a software package to implement prediction of geneti-

cally correlated traits under a penalized regression

framework.
Data and code availability

Scripts in R code for the simulation study and analysis of schizo-

phrenia and bipolar disorder are available on Github (https://

github.com/abureau/multitrait_PRS_comparison). Simulated data

to reproduce certain steps of the simulation study are available as

Bahda, Meriem; Ricard, Jasmin; Bureau, Alexandre (2023), ‘‘multi-

variateLassosum_Simulations,’’ Mendeley Data, v2: https://doi.

org/10.17632/jxz9jwssf6.2. The data of the Eastern Quebec SZ

andBDkindred study are available on request fromthe correspond-

ing author. The data from the CARTaGENE project are available af-

ter approval of an access request submitted at https://www.

cartagene.qc.ca/en/researchers/access-request.html. The data are

not publicly available due to privacy and ethical restrictions.
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