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Abstract

Purpose of review—The development of deep learning (DL) systems requires a large amount 

of data, which may be limited by costs, protection of patient information and low prevalence 

of some conditions. Recent developments in artificial intelligence techniques have provided an 

innovative alternative to this challenge via the synthesis of biomedical images within a DL 

framework known as generative adversarial networks (GANs). This paper aims to introduce 

how GANs can be deployed for image synthesis in ophthalmology and to discuss the potential 

applications of GANs-produced images.

Recent findings—Image synthesis is the most relevant function of GANs to the medical field, 

and it has been widely used for generating ‘new’ medical images of various modalities. In 

ophthalmology, GANs have mainly been utilized for augmenting classification and predictive 

tasks, by synthesizing fundus images and optical coherence tomography images with and without 
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pathologies such as age-related macular degeneration and diabetic retinopathy. Despite their 

ability to generate high-resolution images, the development of GANs remains data intensive, and 

there is a lack of consensus on how best to evaluate the outputs produced by GANs.

Summary—Although the problem of artificial biomedical data generation is of great interest, 

image synthesis by GANs represents an innovation with yet unclear relevance for ophthalmology.

Keywords

artificial intelligence; deep learning; generative adversarial networks; medical image synthesis; 
ophthalmology

INTRODUCTION

In the field of ophthalmology over the last few years, clinically applicable deep learning 

(DL) systems have been developed to detect different eye diseases, such as diabetic 

retinopathy (DR) [1–4], glaucoma [3,5], age-related macular degeneration (AMD) [6,7], 

and retinopathy of prematurity (ROP) [8]. This has led to the real possibility that such DL 

systems may be implemented soon in appropriate clinical settings, such as in DR screening 

programs [9,10].

Despite the substantial promise of DL, the development of a robust DL algorithm or system 

is data intensive, meaning that a large amount of data exhibiting representative variability 

(i.e., disease and normal) is required for the training and validation process [11]. The 

availability of such large datasets is often limited by the lack of corresponding clinical 

cohorts, the high costs of starting a primary data collection from baseline, and the need to 

protect the privacy of patients. Personal information of patients must be protected under 

rigorously controlled conditions and in accordance with the best research practices [12,13]. 

Moreover, medical images are considered identifiable personal information and cannot be 

anonymized easily, and consent is difficult to obtain for large retrospective datasets [14–16]. 

In addition, annotated data of the more severe phenotypes of certain pathologies such as 

advanced glaucoma and neovascular or late AMD are often too uncommon in existing 

population studies to be useful for conducting DL analysis.

Recent developments in DL have provided an innovative alternative to these challenges, 

by using generative adversarial networks (GANs) to artificially create new images based 

on smaller real image datasets. There is significant potential to generate a large number of 

images required to train, develop, validate and test new DL algorithms and systems.

WHAT ARE GENERATIVE ADVERSARIAL NETWORKS?

GANs are a special type of neural network model based on a game theoretic approach, 

with the objective being to find Nash equilibrium between two networks: a generator and 

a discriminator (Fig. 1). The idea is to sample from a simple distribution, like Gaussian, 

and then learn to transform this noise to a targeted data distribution, using universal 

function approximators such as convolutional neural networks, by the adversarial training 

of generator and discriminator simultaneously. The generator model learns to capture the 
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targeted data distribution, and the discriminator model estimates the probability that a 

sample comes from the targeted data distribution rather than the distribution generated by 

the generator. In other words, the task of generator is to generate natural looking images and 

the task of discriminator is to decide whether the image is fake or real. This can be thought 

of as a minimax two-player game, i.e., generator vs discriminator, where the performance of 

both the networks ideally improves over time iteratively. Although the generator tries to fool 

the discriminator by generating images that appear as real as possible, the discriminator tries 

to not get fooled by the generator by improving its discriminative capability [17].

There are many ways to incorporate GANs in medical imaging tasks, such as segmentation 

[18], classification [19], detection [20], registration [21], image reconstruction [22] and 

image synthesis (Table 1) [23]. GANs have been used in research studies for generating 

medical images of various image modalities, including breast ultrasound [24], mammograms 

[25], computed tomography (CT) [26–29], magnetic resonance images (MRI) [30], cancer 

pathology images [31], and contrast agent-free ischemic heart disease images [32]. 

Moreover, GANs have been shown to be capable of cross-modality image synthesis, such 

as generating MRI based on ultrasound [33] or CT [34,35]. This paper focuses on the 

image synthesis aspect of GANs in ophthalmology via introducing different types of GANs, 

summarizing GAN models reported in the literature of ophthalmology (Table 2), discussing 

the outcome measures for GANs, and evaluating the advantages and disadvantages of 

GANs.

DIFFERENT TYPES OF GENERATIVE ADVERSARIAL NETWORKS

There are many different formulations of GANs [36], which might firstly be categorized 

according to their objectives. Although GANs have been employed to generate sequential 

data such as text, their most common usage has been in imaging tasks, including 

video. Within image processing, GANs have been employed to perform texture synthesis, 

super-resolution, object detection and image synthesis, all of which could have potential 

applications in medicine. GANs can be further defined by their features, the more prominent 

of which may be their neural architecture for generators and discriminators, their objective 

function, and their training procedure. Each of these components has undergone significant 

development since the introduction of GANs. For example, the conditioning of GANs 

referred as cGAN, on both the generator and discriminator would be demonstrated soon after 

their inception [37], through the addition of a prior as input. Various objective functions have 

been proposed to address issues such as instability in training, some of the most prominent 

amongst of which include Wasserstein GAN [38], which seeks to maintain a continuous 

distance when real and generated data distributions are disjoint, and LS-GAN [39], which 

encourages the generated data distribution to be closer to the real distribution through the 

implementation of mean squared loss instead of log loss. PatchGAN [40] is proposed to run 

discriminators on patches or on images at different scales in order to improve the quality of 

image synthesis such as angiography image synthesis. As for training procedure, individual 

learning rates for the discriminator and generator have been shown to converge to a local 

equilibrium [41].
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Improving the quality of synthesized images at higher resolutions has been of particular 

interest for medical applications, which are often especially sensitive to subtle details 

within images. This has been enabled by innovations such as the progressive growing 

of the generator and discriminator with Progressive GAN (ProGAN) [42], orthogonal 

regularization with BigGAN [43], and the extension of ProGAN with a number of 

incremental improvements such as a mapping network bilinear upsampling and block noise 

into StyleGAN [44]. It should be noted that many individual features of various GANs are 

possibly compatible, and may thus be combined into custom GAN architectures towards 

specific applications. If the desired objective is to improve the performance of existing 

classification models, the realism of the generated images may not be the top priority, since 

it is possible that the generated images may nevertheless augment the training data in a 

useful way, particularly for classes where data is sparse. Achieving the optimal mix of real 

and synthetic data in such cases remains an area of active research.

GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE SYNTHESIS IN 

OPHTHALMOLOGY

Fundus images

Using generated vessel trees as an intermediate stage, Costa et al. were among the 

first few groups to deploy adversarial learning for building an end-to-end system for 

synthesizing retinal fundus images. This system was trained on a small data set of 614 

normal fundus images and tends to generate fixed outputs that are lack of diversity and 

pathological features [45]. Following this, various methods have been attempted to improve 

the quality and diversity of the synthetic fundus photos. Guibas et al. proposed a two-stage 

GAN pipeline by first generating synthetic retinal blood vessel trees and then translating 

these masks to photorealistic images. The synthetic images were used to train a U-net 

segmentation network, achieving similar F1-score as the network trained on real images 

[46]. Using direct mapping from manual tubular structured annotation back to a raw image, 

the model developed by Zhao et al. can synthesize multiple images with diversity using 

a dataset as small as 10 training examples [47]. Yu et al. built a multiple-channels-multiple-

landmarks pipeline using a combination of vessel tree, optic disc and optic cup images to 

generate colour fundus photos, which produced superior images than single-vessel-based 

approach [48].

Besides generating normal fundus images, GANs have been used to synthesize fundus 

photos of specific eye diseases, such as AMD, glaucoma, DR and ROP (Fig. 2). Using over 

100,000 colour fundus photographs from the Age-Related Eye Disease Study (AREDS), 

Burlina et al. built two ProGAN models to synthesize referable (intermediate and/or 

advanced AMD) and nonreferable AMD images respectively [49]. The outputs were realistic 

enough that two retinal specialists could not distinguish real images from the synthetic ones, 

with accuracy of 53.67% and 59.50%, respectively. Furthermore, the DL system trained on 

synthetic data alone showed comparable diagnostic performance to the algorithm trained 

on real images in detecting referable AMD [area under the receiver operating characteristic 

(ROC) curve (AUC) of 0.92 vs. AUC of 0.97, respectively]. The question of how best to 

incorporate synthetic data with available real data for training remains open, to the best 
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of our knowledge. Diaz-Pinto et al. built a retinal image synthesizer and semi-supervised 

classifier for glaucoma detection using GANs on over 80,000 images. Their system was 

capable of generating realistic synthetic images with features of glaucoma and labelling 

glaucomatous images automatically with an AUC of 0.902 [50]. Furthermore, Zhou et al. 
report a DR fundus photo generator that can be directly deployed to train DR classifier, 

via modification with arbitrary grading and lesion information to synthesize high-quality 

images [51■]. Beers et al. trained a ProGAN model with 5,550 posterior pole retinal 

photographs of ROP, which could produce realistic fundus images of ROP. They evaluated 

the performance of a segmentation algorithm trained on synthetic images, reporting an AUC 

of 0.97 comparing to the segmentation maps from real images [52].

Optical coherence tomography

Utilizing over 100,000 optical coherence tomography (OCT) images from eyes with 

balanced distribution of urgent referrals (choroidal neovascularization, diabetic macular 

oedema) and nonurgent referrals (drusen and normal eyes), Zheng et al. built a ProGAN 

model to synthesize OCT images that are realistic to retinal specialists. The DL framework 

trained on synthetic OCT images achieved an AUC of 0.905 in classifying urgent and 

nonurgent referrals, which was noninferior to the performance of the model trained on real 

OCT images (AUC = 0.937) [53■]. Apart from synthesizing OCT images from scratch, 

GAN has been used to enhance the image quality of OCT scans via denoising. Using noisy 

images and corresponding high-quality images from one normal eye, Ma et al. built an 

image-to-image cGAN, enabling the competition of the generator and the discriminator to 

learn the underlying structure of the retina layers and to reduce OCT speckle noise. Despite 

the small training dataset, their model was capable of generalizing to images with low 

signal-to-noise (LSTN) ratio from pathological eyes and from different OCT scanners [54]. 

Similarly, using a small set of OCT images with high signal-to-noise (HSTN) ratio and 

LSTN ratio from the same eye of 28 patients, Kande et al. equipped a GAN model with 

Siamese network to generate denoised spectra-domain OCT images that are closer to the 

ground truth images with HSTN ratio. The discriminator was designed to fool the generator 

to produce a denoised image via enabling extraction of the discriminative features from the 

HSNR patch and denoised patch by passing them through a twin network [55].

The image synthesis function of GANs could also be applied for predicting the 

posttreatment OCT images of patients receiving antivascular endothelial growth factor 

(anti-VEGF). Utilizing 476 pairs of pre and posttherapeutic OCT images of patients with 

neovascular AMD (nAMD) who received anti-VEGF treatment, Liu et al. proposed an 

image-to-image GAN model to generate predicted posttherapeutic OCT images based on 

their pretherapeutic ones. Their GAN model achieved a sensitivity of 84% and specificity 

of 86% in predicting the posttreatment macular classification (wet or dry macula) [56■]. 

Following this, Lee et al. trained a cGAN model to predict posttreatment OCT images in 

patients with nAMD receiving anti-VEGF, using a larger dataset of 15,183 paired OCT B-

scans from 241 patients [57]. This cGAN model was designed to predict the presence of four 

abnormal structures on posttreatment OCT, namely the intraretinal fluid, subretinal fluid, 

pigmented epithelial detachment, and subretinal hyperreflective material, with sensitivity 

and specificity ranging from 21.2 to 88.2% and 94.6 to 95.1%, respectively. The predictive 
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performance was enhanced after adding fluorescein angiography (FA) and indocyanine 

green angiography images to the training datasets. As a result of the low sensitivity, the 

authors concluded that this model is not suitable to be used as a screening tool and further 

work with a dataset of more variations is warranted. Although GAN synthesized retinal 

images have overall consistent appearance, generating realistic images with pathological 

retinal lesions remains as a challenge [58].

Other image modalities

Recently, Tavakkoli et al. proposed a GAN model capable of producing FA from retinal 

fundus photographs, which was the first DL application to generate images from distinct 

modalities in ophthalmology [59■■]. Using pairs of FA and fundus images from 59 

patients (30 with DR, 29 normal) as the training dataset, they designed a multiscale cGAN 

comprised of two generators and four discriminators. Their framework was able to produce 

FA images that are indistinguishable from real ones by three experts and are more accurate 

than the images produced by another two state-of-the-art cGAN models, as evidenced by 

significantly lower Fréchet Inception Distance and higher structural similarity measures. 

This cGAN technique may be a novel alternative to the invasive FA and the expensive OCT 

angiography with limited field of view. Furthermore, the ability to generate FA based on 

fundus photographs may improve the efficiency of tele-medicine, in particular during the 

COVID-19 pandemic when in-clinic examinations becomes challenging [59■■].

OUTCOME MEASURES FOR GENERATIVE ADVERSARIAL NETWORKS

Since GANs are generative models, the evaluation of their outputs – usually images – is 

not as straightforward as for discriminative models like classifiers, where the predicted label 

can simply be compared against the ground truth, in a supervised context. For GANs, the 

evaluation of their outputs may intuitively be based on human judgment of their ‘realness’, 

which in turn can be broadly considered in two aspects. Firstly, fidelity, in the sense that 

the generated samples are visually indistinguishable from real samples of the intended class. 

Fidelity in turn generally depends on various characteristics of the generated images, such 

as overall quality (being in-focus, etc.), demonstrating plausible object texture and structure, 

and so forth. Secondly, diversity, where the full range of variation of the intended class is 

generated. For example, if a GAN had been trained for cars, it would exhibit poor diversity if 

all images that it generated were of a particular car manufacturer or colour, despite the cars 

being otherwise realistic. When this happens, possibly due to the GAN’s generator fixating 

on some particularly plausible output, the GAN is said to undergo mode collapse. It may be 

possibly to influence the output class distribution of a GAN, by appropriately weighing its 

training data by class.

Many techniques have been proposed to evaluate GANs outputs, for both qualitative and 

quantitative measurements [60]. Qualitative methods may involve humans in inspecting 

and curating the generated images based on graders’ subjective decisions. This may be 

particularly appropriate in the biomedical domain, since it may not be easily articulated as 

to why some generated samples are not physiologically plausible. Quantitative methods on 

the other hand tend not to involve direct human intervention, and the most natural test would 
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perhaps be through classifying the generated samples with a discriminative model trained 

on real samples. A popular generalization of this basic idea is the Inception Score (IS) [61], 

which uses an Inception v3 model pretrained on ImageNet, to classify a set of generated 

images. The IS was claimed by its developers to be highly correlated with human judgment. 

However, due to its reliance on the ImageNet dataset, it has been noted to be possibly 

inappropriate when applied to GANs trained on other datasets, being overly sensitive to 

network weights, and insensitive to prior distribution over labels [62,63].

The Fréchet Inception Distance [41] is perhaps among the most commonly used outcome 

metrics for GANs, and involves embedding generated images into a feature space expressed 

by an embedding layer of the Inception v3 model, estimating the mean and covariance 

for the embeddings of the generated and real data, and computing the Fréchet distance 

between these two Gaussians. This improves upon IS by being able to quantify mode 

dropping/collapse, but is still unable to recognize overfitting, as when the GANs reproduce 

samples from the training data [62]. To address this, qualitative measures such as comparing 

generated samples to their nearest neighbours in the training data, might be considered [60].

Additionally, generated synthetic images may be evaluated against the GAN training dataset 

of real images, to ensure that the synthetic images are not merely minimally adapted from 

the real data. Metrics such as the structural similarity index measure may be used to 

efficiently compare a sample of the generated data against the real images, in a pairwise 

manner [64].

ADVANTAGES AND DISADVANTAGES OF GENERATIVE ADVERSARIAL 

NETWORKS

GANs have gained recognition due to their various advantages over previous generative 

models. Although other unsupervised generative models share the advantage of not requiring 

initial human annotation, GANs differ from deep graphical models in that they do not 

require careful architectural design, and further do not rely on Markov chains for sampling, 

unlike generative autoencoders [17]. This simplifies and generalizes the modelling process, 

which may be convenient for researchers primarily interested in medical applications. 

Empirically, recent GAN architectures have been favoured over alternative generative 

models for the fidelity of their generated high-resolution images of at least 1024 × 

1024 pixels, with higher resolutions likely achievable given advances in hardware and 

algorithms. Moreover, while GANs do not promise inference capabilities, techniques have 

been developed to explore their encoded latent space [65]. In the medical domain, GANs 

have been proposed to augment existing datasets and help preserve patient confidentiality 

through the generation of additional samples, especially of rarer conditions [66,67].

Nevertheless, GANs do still possess certain disadvantages. Other than the abovementioned 

possibility of mode collapse, GANs do not explicitly represent the generator’s distribution 

over the data, which is detrimental to model interpretability. However, this is also the case 

for other popular generative models. Also, GANs tend to be data intensive, in that the 

training data needs to sufficiently represent the desired underlying class. To give a concrete 

example, consider a GAN that is trained to generate ‘abnormal fundus images’, but its 
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training data are almost entirely composed of DR samples, with a few maculopathy samples, 

and next to no glaucoma examples. In this case, it is very unlikely that the GAN will be able 

to generate an acceptable diversity of glaucomatous images. This might be addressed to an 

extent through human-in-the-loop training (Fig. 3), where human guidance is introduced to 

select acceptable synthetic data generated by the GAN, during the GAN training process. 

These selected synthetic images can then be used to augment both the training of the 

discriminator model, and the further fine-tuning of the GAN generator model itself.

CONCLUSION AND FUTURE DIRECTION

In conclusion, GANs offer a potential innovative solution to address a key challenge in 

the DL field for ophthalmology, and computational medicine in general: that of limited 

access to large datasets. Of all the functions of GANs, image synthesis is the most relevant 

and explored by biomedical research. In ophthalmology, GANs are mainly utilized for 

synthesizing fundus images and OCT images with and without pathology such as AMD and 

DR. Although the unmet need of artificial biomedical data generation is of great interest, 

DL solutions such as GANs still face many challenges in the retinal image synthesis field. 

First, the development of GANs is data intensive, but how much data is considered sufficient 

to train GANs remains unknown, and the amount is likely to be task dependent. Second, 

although Inception Score and Fréchet Inception Distance have been commonly used for 

quantitative measurement of GANs outputs, current qualitative measurement for the outputs 

of GANs mainly relies on the subjective judgement of human. Therefore, an objective 

scale to evaluate the quality of synthetic images such as the realness may be proposed for 

comparison among different GAN models. Lastly, to test whether GANs could really be 

the solution to limited access to datasets, future research is warranted to evaluate if GANs 

generated images could augment the development of DL systems and to test the performance 

of synthetic image trained DL systems using independent datasets.
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KEY POINTS

• There is significant potential to generate a large number of images using 

GAN, for the training, development, validation and testing of new DL 

algorithms and systems.

• In ophthalmology, GAN has mainly been used to synthesize fundus images 

and OCT images with and without pathology for the purpose of research.

• The development of GAN models is data intensive and there is a lack of 

consensus on the evaluation of outputs produced by GAN.
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FIGURE 1. 
General architecture of a GAN. The generator model and discriminator model are in 

competition with each other, with the generator model’s objective being to produce 

increasingly realistic synthetic images, and the discriminator model’s objective being to 

distinguish these synthetic images from real images. GAN, generative adversarial network.
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FIGURE 2. 
Examples of GAN synthesized images for DR and AMD. a. GAN synthesized images 

(left) compared to real images (right) of DR, b. GAN synthesized images (left) compared 

to real images (right) of and AMD. The AMD images were preprocessed with macular 

segmentation. AMD, age-related macular degeneration; DR, diabetic retinopathy; GAN, 

generative adversarial network.
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FIGURE 3. 
Human-in-the-loop training with a GAN. Human grader(s) arbitrate the generated synthetic 

data for realism, and the acceptable synthetic data is sampled together with real data to train 

an improved discriminator model. GAN, generative adversarial network.
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