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Abstract 

Background:  Alcoholism is a catastrophic condition that causes brain damage as well as neurological, social, and 
behavioral difficulties.  

Limitations:  This illness is often assessed using the Cut down, Annoyed, Guilty, and Eye-opener examination tech-
nique, which assesses the intensity of an alcohol problem. This technique is protracted, arduous, error-prone, and 
errant.

Method:  As a result, the intention of this paper is to design a cutting-edge system for automatically identifying 
alcoholism utilizing electroencephalography (EEG) signals, that can alleviate these problems and aid practitioners and 
investigators. First, we investigate the feasibility of using the Fast Walsh–Hadamard transform of EEG signals to explore 
the unpredictable essence and variability of EEG indicators in the suggested framework. Second, thirty-six linear and 
nonlinear features for deciphering the dynamic pattern of healthy and alcoholic EEG signals are discovered. Subse-
quently, we suggested a strategy for selecting powerful features. Finally, nineteen machine learning algorithms and 
five neural network classifiers are used to assess the overall performance of selected attributes.

Results:  The extensive experiments show that the suggested method provides the best classification efficiency, 
with 97.5% accuracy, 96.7% sensitivity, and 98.3% specificity for the features chosen using the correlation-based FS 
approach with Recurrent Neural Networks. With recently introduced matrix determinant features, a classification 
accuracy of 93.3% is also attained. Moreover, we developed a novel index that uses clinically meaningful features to 
differentiate between healthy and alcoholic categories with a unique integer. This index can assist health care work-
ers, commercial companies, and design engineers in developing a real-time system with 100% classification results for 
the computerized framework.
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Introduction
In accordance with the World Health Organization 
(WHO), alcohol addiction is responsible for close to 
3,300,000 fatalities annually, or 5.9% about the global 
death toll [1]. Nearly 2,000,000,000 individuals are inebri-
ated, with 81,700,000 suffering from acute alcoholism 
along visible signs [2]. Excessive alcohol use can have var-
ious social, sentimental, and physiological consequences 
for the person. Cirrhosis of the liver, heart disease, 

mental illnesses, malignancies, and traffic accident deaths 
and injuries are all linked to excessive alcohol consump-
tion [3, 4].

Alcoholism can be prevented from having irreversible 
repercussions, such as disability and death if it is detected 
early [3, 5]. Traditional approaches for measuring the 
effects of alcohol on individuals include blood testing, 
interviews, and physiology examination. Regrettably, 
each of these methods has constraints. For example, a 
series of questions study findings can give rise to inac-
curate information about medical and mental health cir-
cumstances when some patients avoid revealing accurate 
information because of feeling ashamed or afraid of stig-
matization, and blood tests are the invasive method [4]. 

*Correspondence:  m.t.sadiq@brighton.ac.uk
1 Advanced Engineering Centre, School of Architecture, Technology 
and Engineering, University of Brighton, Brighton BN2 4AT, UK
Full list of author information is available at the end of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s13755-023-00227-w&domain=pdf


Page 2 of 18Sadiq et al. Health Information Science and Systems (2023) 11:27

Electroencephalography (EEG) is a medically successful 
method for examining brain rhythms with advantages of 
low cost, scalability, non-invasive nature, and superior 
resolution. EEG signals are electrical representation of 
how the brain works, and they indicate numerous patho-
physiologic behaviors such as alcoholism.

Numerous automated techniques are available in the 
literature for detecting alcoholic EEG patterns [6, 7]. 
These techniques are broadly divided into four types: 
time-domain, frequency-domain, time–frequency, and 
deep learning. Each of the aforementioned types has its 
benefits and demerits. For instance, the time-domain 
features are most superficial because they identify dif-
ferent amplitude variations. Yet, time-domain features 
are not stable because they are prone to noise and also 
restrict to discuss spectral changes in signals. Thus, fre-
quency-domain features are employed in the literature 
and help provide spectral information of EEG signals. 
Some well-known time- and frequency-domain methods 
are listed as, hidden Markov models (HMMs) [8], largest 
Lyapunov exponent (LLE), approximate entropy (ApEn), 
sample entropy (SamEn), higher-order spectra (HOS) 
[9, 10], granger causality [11] and synchronization likeli-
hood [12]. Despite the significant advantages of spectral 
information, frequency-domain methods failed to deliver 
time-domain information.

Thus, time–frequency domain approaches are assets for 
highly nonlinear and non-stationary EEG signals [13, 14]. 
Several important time–frequency methods are listed 
as, “ wavelet packet transform (WPT)” [10],  “continues 
wavelet transform (CWT) [15], tuned-Q wavelet trans-
form (TQWT) [16], dual-tree complex wavelet trans-
form (DT-CWT)” [17],  “three-band orthogonal wavelet 
filter bank (TBOWFB)” [18],  “flexible analytical wavelet 
transform (FAWT)” [19],  “empirical mode decomposi-
tion (EMD)” [20], “Fourier-Bessel series expansion based 
empirical wavelet transform (FBSE-EWT)” [21], “empiri-
cal wavelet transform (EWT)” [22] and “Fourier intrinsic 
band functions (FIBFs)” [23]. Time–frequency methods 
showed several difficulties such as, too many intrinsic-
mode function (IMF) generation, IMF mixing, wrong 
decomposition level, multi-channel and multi-frequency 
analysis.

In recent times deep learning-based approaches are 
getting popularity for alcoholism EEG classification. In 
studies [24-31] transfer learning, a multilayer perceptron 
neural network, and convolutional neural network-based 
methods are developed for alcoholism EEG identifica-
tion. These techniques deliver reasonable classification 
outcomes yet are complex, not specific, extensive weight 
initialization training, and require heavy computations 
with more resources.

Some downsides or restrictions are noted in the liter-
ature, as mentioned earlier. To begin with, the majority 
of the studies used time–frequency approaches, which 
might result in incorrect frequency orientation, mode 
mixing, end effects, noise influence, closely spaced fre-
quencies, and difficulties in picking a mother wave. To 
store decomposed coefficients, these approaches neces-
sitate complex computations and storage capacity. Sec-
ond, EEG data is acquired from several channel signals, 
resulting in a large number of attributes; nevertheless, 
very few researches have concentrated on attribute selec-
tion, notably in the classification of alcoholism EEG. 
Third, tracking the diversity of chosen attributes among 
the healthy and alcoholic classes to achieve an effec-
tive examination is exceedingly challenging; thus, an 
index or single feature is required regardless of previous 
methodologies.

In order to overcome the issues raised above, this work 
intends to develop a new layout that can intelligently dis-
tinguish healthy and alcoholic classes with greater ease 
and accuracy. The suggested design is made up of various 
components, including (i) identifying abrupt changes of 
EEG signals in the frequency domain, (ii) combining sev-
eral linear and non-linear features for decision making, 
(iii) formulating a scheme for choosing the best attribute 
set, (iv) determine a feasible categorization solution for 
the acquired attribute data, (v) develop novel alcoholism 
indicative index and single feature.

For the first time in the alcoholism EEG field, the Fast 
Walsh Hadamard Transform (FWHT) approach is imple-
mented to recognize abrupt changes in EEG signals in 
the frequency domain. Because the FWHT requires addi-
tion and subtraction operations, it is a quick method for 
complex EEG signal analysis. Second, a combination of 
linear and non-linear attributes is introduced to get a 
deeper understanding of alcoholic EEG signals, including 
novel matrix determinants and successive decomposition 
index-based features. A correlation-based robust feature 
selection strategy is developed to select suitable features. 
Another unique aspect of this research is formulating a 
new index to help physicians and patients. The proposed 
index can also act as a single feature, resulting in 100% 
classification accuracy for normal vs. alcoholic EEG 
signals.

The following are the article’s contributory factors: A 
new computerized system for detecting alcoholic EEG 
signals has been designed and tested. EEG time-series 
signals are converted to frequency-domain using the 
FWHT, which aids in capturing abrupt changes in EEG 
signal amplitudes. We introduce matrix determinants 
and successive decomposition index-based features in 
the detection of alcoholism. A powerful feature selec-
tion method is proposed to identify the best features for 
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the development of a computerized system. In addition 
to the automated framework, a new index is being devel-
oped to aid health workers and corporate goals.

The rest of the paper is structured as follows: sec-
tion  “Materials and methods” is about the mate-
rials and methods. The findings are presented in 

section  “Results”. Section  “Discussion” discusses the 
experimental results, and section “Conclusion” summa-
rizes this work.

Materials and methods
We used the freely accessible dataset available in [32, 
33]. The data contain EEG signals of 122 normal and 
122 alcoholic subjects recorded by employing 64 EEG 
electrodes according to the 10–20 system [34] at a sam-
pling rate of 256 Hz. Each subject performed 120 trials 
for various stimuli that consist of 90 images of different 
selected items. The duration and resolution of the EEG 
signals are 32 s and 12 bits, respectively. Finally, the sig-
nals were divided into four eight-second segments after 
removing the artifacts caused by blinking and unwanted 
body movements, and each segment have 2048 samples. 
The detailed information about the dataset can be found 
in [32, 33]. Figure  1 an illustration of healthy and alco-
holic subjects signals respectively.

The proposed computerized framework consists of sev-
eral modules as shown in Fig. 2. The details of all mod-
ules are given subsequently.

Fast Walsh Hadamard transform
In this research, a frequency domain-based approach 
Walsh–Hadamard Transform (FWHT) for classifying Fig. 1  Visualization of a healthy vs b alcoholic EEG signals

Fig. 2  Schematic representation of automated alcoholism identification
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normal and alcoholic EEG data is developed. The FWHT 
is an effective tool for determining the Walsh–Hadamard 
Transform, which essentially involves converting time-
domain signals into frequency-domain signals. The signal 
is decomposed by FWHT into a sequence of orthogonal, 
rectangular waveforms known as Walsh functions, which 
have values of + 1 or 1. Each Walsh function is given a 
unique sequence number. The basic arithmetic func-
tions are used to carry out the FWHT algorithm. The 
FWHT has the ability to recognize an abrupt distortion 
in the signal with high clarity. The signal samples hav-
ing a length of 2p are decomposed into 2p coefficients by 
FWHT. The coefficient of the signal’s Discrete Walsh–
Hadamard Transform (DWHT) is returned by FWHT. 
The FWHT of the data samples of y(p) with p = 1, 2, ...P 
is formulated as [35],

where P represents the number of samples and Hp is the 
walsh matrix which is mathematically given as,

For illustration, H1 and H2 are mathematically expressed 
as,

For any p value, the Walsh function can also be describe 
as,

Because the FWHT method is analogous to the fast Fou-
rier Transform (FFT) algorithm, the complicatedness of 
the FWHT method is O(m log2m) . The butterfly opera-
tions are used exclusively in the FWHT algorithm. As a 
result, FWHT can be implemented utilizing simple addi-
tion and subtraction calculations employing butterflies. 
The key benefit of this transform is that it uses less mem-
ory storage space for decomposed coefficients and leads 
to faster signal reconstruction. Typical visual represen-
tation of Hadamard coefficient for normal and alcoholic 
EEG signals are shown in Fig. 3.
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Feature extraction
EEG signals are highly dependent on the physiological 
traits of a particular subject, making it almost impossible 
to find important attributes for a general computerized sys-
tem [36, 37]. In order to gain a better knowledge of various 
physiological EEG signals, several features were extracted 
from diverse domains in this work. These attributes include 
linear, non-linear, and complexity-based characteristics. 
The simplicity of time-domain and statistical features is 
due to the fact that they just assess amplitude fluctuations 
of signals rather than any transformation. Another ben-
efit of statistical features is that they provide comprehen-
sive information or a trend for data analysis. Physiological 
signals are the result of a structured biological system’s 
various physiological complicated interactions. Such shift-
ing behaviors can provide important hidden knowledge 
about the dynamics of a system. To quantify uncertainties, 
complexity, and tiny variations in EEG signals, numer-
ous energy and entropy-based nonlinear features were 
retrieved in this study. The specifics of the retrieved fea-
tures are presented as follows:

Minima (F1): For yp , the minima represents the mini-
mum value in the data samples as described in Sadiq et al. 
[36]. The minimum value is calculated using the formula:

Fig. 3  Visual representation of Hadamard coefficient for a normal 
and b alcoholic EEG signals
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Maxima (F2): For yp , the maxima represents the maxi-
mum value in the data samples as described in Sadiq et al. 
[36]. The maximum value is calculated using the formula:

Autoregressive Model (F3): The autoregressive (AR) tech-
nique is used to measure the power spectrum by employ-
ing a linear practice called a model. The AR model is 
formulated mathematically as

as presented in Sadiq et al. [38]. Here, y(p) represents the 
prediction model, b(j) are the AR complex variables, P is 
the AR model parameter, u(p) is the noise function, and p 
is the sampling time. The AR model order in this investi-
gation was determined as 4 through experimentation.

Median (F4): The median is a statistical measure 
that represents the middle number in a list of values 
arranged in ascending or descending order. In this 
study, with 2048 DWHT coefficients for each signal, the 
median formula for even numbers is utilized. It is given 
as:

as described in Sadiq et al. [36].
Variance (F5): Variance is a statistical evaluation of 

the dispersion among samples in a dataset. It expresses 
how far each sample in the set deviates from the mean 
and other samples. The variance is calculated using the 
formula:

where Yi is the ith sample observation, µ is the mean 
of all sample observations, and P is the total number of 
samples, as described in Sadiq et al. [36].

Standard Deviation (F6): The standard deviation is a 
statistic that measures the variability or spread in a set 
of numbers. A lower value indicates that the numbers 
are closer to the mean, while a larger value indicates 
a wider spread. The standard deviation is calculated 
using the formula:
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where Yp represents the time series EEG, as described in 
Sadiq et al. [36].

Arithmetic Mean (F7): Arithmetic mean is the sum of 
a series of values divided by the total of those values. Its 
formula is presented in Sadiq et al. [36],

Renyi Entropy (F8): Renyi Entropy calculates the spec-
tral complexities of a time series using Renyi’s principle, 
which is given by [39],

where β is a non-negative number. In the present study 
β  = 1 and β is fixed as 2 empirically.

Log Energy Entropy (F9): The amplitude of the EEG 
signal varies over time. The most straightforward 
approach to acquiring all of the details from such a signal 
is to square it, leading to larger energy values, which help 
to improve discrimination among normal and alcoholic 
EEG classes. To achieve this goal, Log energy entropy 
(LEE) feature is used, which is calculated as follows [40]:

Shannon Wavelet Entropy (F10): We integrated Shannon 
entropy and wavelet decomposition to perform Shannon 
wavelet entropy (ShWE) for every signal DWHT coeffi-
cients. The key benefit of ShWE is its brevity, as it does 
not demand any parameters during the entire process 
and can readily distinguish between normal and alcoholic 
EEG classes without imposing excessive computing costs. 
The ShWE can be represented mathematically as follows 
[40]:

Tsallis Entropy (F11): Tsallis entropy is a variant of exten-
sive entropy that can be used to investigate the intricacy 
of non-additive networks. Extensive entropy cannot 
describe the aberrant experimental findings of complex 
systems. The computation of Tsallis entropy is given as 
follows [40]:

where, in the present study, β  = 1 and β is fixed as 2 
empirically.
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Log root sum of sequential variations (F12): In [41], the 
Log root sum of sequential variations (LRSSV) is presented 
as a method for measuring the successive fluctuations 
among signal samples. The LRSSV is computed by applying 
the following formula [41]:

Mean Teager Energy (F13): The mean Teager–Kaiser 
energy (MTKE) is a nonlinear feature that may detect 
even little changes in non-stationary signals. Relevant 
data might be extracted from minor variations in the 
amplitude and frequency of an EEG signal utilizing 
MTKE. The mathematical formula for MTKE is as fol-
lows [40]:

Mean Energy (F14): The mean energy of an EEG signal 
provides important information, as a high mean energy 
value aids in obtaining good judgment abilities between 
normal and alcoholic EEG signals. The numerical expres-
sion for mean energy is written as follows [40]:

Mean Curve Length (F15): In study [41], mean curve 
length is presented to obtain an approximation for the 
Katz fractal dimension. It is frequently used to detect 
activity in EEG readings. MCL is defined as follows [41]:

where y[p] is DWHT coefficients for the EEG signal, Q 
is the window length, and k is the end coefficient in the 
epoch.

First Difference (F16): First difference tells the relation-
ship among DWHT coefficients for the EEG signal and is 
presented as [41]:

Normalized First Difference (F17): The normalized first 
difference, also known as the normalized length density, 
detects similarity among DWHT coefficients for the EEG 
signal and is presented as [41]:
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Second Difference (F18): The second difference aids in 
determining whether or not a pattern exists in DWHT 
coefficients for the EEG signal and is presented as [41]:

Normalized Second Difference (F19): The normalized 
second difference reveals the type of the trend in DWHT 
coefficients for the EEG signal and is presented as [41]:

Kurtosis (F20): Kurtosis is a higher-order statistical met-
ric that measures the “peakedness” of density near the 
mean value. It is written as follows [36]:

where µ denotes the mean value.
Skewness (F21): Skewness is a measurement of the 

asymmetrical of a DWHT coefficients for EEG signal 
probability distribution around its mean. The skew-
ness is formulated as [36],

where µ denoting mean value.
Hjorth Activity (F22): The signal strength and unpre-

dictability of a time function are both represented by 
the activity variable. This may represent the frequency 
domain spectrogram area. It is mathematically pre-
sented as [41],

Hjorth Mobility (F23): The average frequency or percent-
age of variance of the frequency distribution is measured 
by the Hjorth mobility variable. It is written as [41],

Hjorth Complexity (F24): The frequency change is rep-
resented by the Hjorth complexity factor. This param-
eter evaluates the resemblance of the signal to a pure 
sine wave, with the number convergent to 1 if the signal 
seems to be more identical. It is presented as follows [41],
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Fluctuation Index (F25): The fluctuation index (FI) meas-
ures time series irregularities. The harmonic components 
produced by the spectra of EEG signals have a strong 
connection with the rhythms in EEG signals. Because the 
DWHT adaptively delivers the coefficients in the spec-
tral domain for an EEG signal, the FI of coefficients can 
help achieve good differentiation between normal and 
alcoholic groups. Consequently, in this study, the FI of 
coefficients is employed as a predictive marker to differ-
entiate between normal and alcoholic EEG data, and it is 
expressed as follows [42],

where P indicates to lengths of DHWT coefficients.
Successive Decomposition Index (F26): The successive 

decomposition index (SDI) technique depends on the 
discrete wavelet transform (DWT). In the first step of 
DWT, the DHWT coefficients with length p of an EEG 
signal are passed through a low-pass filter (LPF) and a 
high-pass filter (HPF). In the next step, the LPF output is 
passed through LPF and HPF, and this process is repeated 
for fixed decomposition levels. At last, each decompo-
sition level’s coefficients are used to extract attributes. 
Opposite to DWT, the SDI does not require a predefined 
number of decomposition levels and considers the coef-
ficient from the last level for classifier input. The formula 
for SDI feature is given as [43]

where nk is scaler quantity, y+ and y− represent the aver-
age of absolute value and average difference of DWHT 
coefficients for EEG signal. The relationship among y+ 
and y− are calculated by y++ and y−−.

The resulting SDI is a biomarker with a single number 
for an EEG signal of length P. The advantage of SDI is 
that it can capture the fluctuations of the DWHT coef-
ficient for an EEG signal and combine them into a unique 
possible result. Furthermore, there is no restriction to 
define decomposition levels. Consequently, SDI is a lin-
ear and non-complex feature, making it an excellent can-
didate for developing a computerized alcoholism EEG 
detection system [44].

Matrix Determinant Feature (F27–F36): We exploited 
matrix determinant quantity as a particular feature in 
the suggested study to discriminate normal or alcoholic 
EEG tasks. For each EEG signal, the matrix was made up 
of the DWHT coefficient, and the determinant quantity 
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(30)FI =
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|y(p+ 1)− y(p)|

(31)SDI = log10

(n

k

(
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)

calculated fluctuations in peak amplitude [45]. The Gauss 
elimination method was used to convert the square 
matrix into a diagonal matrix, and the determinant was 
then determined using the product of diagonal elements. 
Because the DWHT coefficient for each EEG signal 
was non-linear and non-stationary, we did not obtain a 
periodical duplication of zeros in the signal, and conse-
quently the procured matrix was invertible with a non-
zero determinant value. In this study matrix determinant 
features 10, 13, 16, 20, 23, 26, 30, 33, 36 and 40 are deter-
mined which are notated as features F27, F28, F29, F30, 
F31, F32, F33, F34, F35 and F36 accordingly. As an illus-
tration, the algorithm for calculating the matrix determi-
nant for order 11 is demonstrated as following [45, 46] 

	 1.	 Input = DHWT coefficients of EEG signals
	 2.	 Initialization a = 1
	 3.	 Rows = 11 and columns = 11
	 4.	 For j = 1 to rows
	 5.	 For k = 1 to columns
	 6.	 A(j,k) = Input(a)
	 7.	 a = a+1
	 8.	 End
	 9.	 End
	10.	 D = log10 |A|

Feature selection
To choose the best features acquired from the DWHT 
coefficients, the Best-First strategy is being utilized 
to look over the gatherings of features by means of hill 
climbing, which is improved by a backtracking module 
[47]. Next, the correlation-based feature measures are 
utilized to decide the worth of a congregation of fea-
tures by unequivocally evaluating the proactive capability 
of each feature and its level of unwavering quality. This 
feature selection strategy gathers features firmly associ-
ated with the class but has feeble interconnections. The 
mathematical formulation of correlation feature selection 
(CFS) approach is given as [47],

where C compares two features F and G, tag represents 
the normal or alcoholic class, and “symmetric uncer-
tainty” is executed for the experimentation.

Classification
To classify the selected features by CFS, nineteen 
machine learning and five neural network classifiers 
are implemented. The reason for considering extensive 
amount of classifiers is to choose the best classifier for 

(32)

CFS =
∑

wholefeatures F C(F , tag )
√
∑

wholefeatures F

∑

wholefeatures G C(F ,G)
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our study. The details of these classifiers is given as fol-
lows [48–54],

BayesNet: A BayesNet is a predictive model for mod-
elling knowledge in an uncertainty, with every node rep-
resenting a random number and each edge representing 
the conditional distribution for the uncertain variables.

Naive Bayes: Naive Bayes (NB) is a simple and widely 
employed predictive model that uses Bayes’ theorem with 
strict (naive) independence assumptions. The existence 
(or absence) of a specific class feature is assumed to be 
unrelated to the availability (or lack) of any other feature 
by the NB classifier. The NB classifier can be trained rela-
tively efficiently in a supervised learning context based 
on the particular type of probability model. In reality, the 
maximum likelihood technique estimates parameters for 
NB classification models. In this classifier, the resultant 
class has the highest post-probability.

Logistic: Logistic regression (LR) assumes that the 
input variables are numeric and have a Gaussian dis-
tribution. The LR can still produce good results if your 
data is not Gaussian. The algorithm learns a coefficient 
for each input value, which is then linearly concatenated 
into a regression function and transformed using a logis-
tic function. LR is a quick and easy strategy that can be 
pretty successful on specific difficulties. In this study 
Ridge estimators are employed in LR to tweak the param-
eters estimates and to reduce the errors made by future 
estimations.

Simple Logistic: Simple logistic works in a similar fash-
ion as LR, however, it employed LogitBoost to improve 
the parameters estimates and to fit a model.

Sequential Minimal Optimization: The sequential min-
imal optimization (SMO) algorithm’s main characteris-
tic is that it iteratively picks only subsets of size two to 
maximize chunking and then optimizes the target func-
tion with the features provided. Since it does not need a 
quadratic optimizer, this technique can perform analyti-
cally superior than other support vector learnings. SMO 
has excelled at scaling across all datasets. This method is 
straightforward, trustworthy, and simple to implement. 
In summary, the SMO method executes substantially 
faster than any other SVM algorithm.

K-Nearest Neighbor: The K-nearest neighbor (KNN) 
is a supervised learning model that is simple to develop. 
In KNN algorithms, the distance among each input sam-
ple and the K nearest training samples is calculated. Two 
important parameters affecting the validity of the KNN 
algorithm are the distance computation method and the 
number of K. For categorization purposes, Euclidean dis-
tance with K = 3 is empirically consider.

K Star: K ∗ is an instantiation classifier, meaning implies 
that the category of a testing set is determined by the cat-
egory of training instances that are most similar to it, as 

defined by a similarity measure. It is distinguished from 
other instance-based classifiers by its use of an entropy-
based distance function.

Locally Weighted Learning: A weight function is used 
in locally weighted learning (LWL) to represent the train-
ing data and the current estimate. This function gives 
more weight to data points near together and less weight 
to data points that are further apart. It is considered 
that the indications are better at the spots closest to the 
desired ones.

Adaboost: The adaboost strategy, which stands for 
adaptive boosting, is used as an ensemble approach. 
These classifiers scores are reassigned to each sample, 
with greater scores assigned to incorrectly classified 
sampl+es. This concept is termed adaptive boosting and 
is used to minimize bias and variation. It is based on the 
notion of successive learning. Each succeeding learner, 
except the first, is developed from previously produced 
learners. In other words, weak learners are transformed 
into strong learners. The adaboost method works on the 
same idea as boosting with modification.

Bagging: Bagging, also known as “bootstrap aggre-
gating,” is a two-step process for creating highly reli-
able, resilient, and accurate models. Bagging is a robust 
ensemble learning approach used to resample the train-
ing dataset. The first stage entails bootstrapping the pri-
mary data samples comprising the multiple training data 
pairs. Numerous models are constructed from these 
training datasets. Continuous training methods for data-
sets and numerous models create predictions. The core 
concept of the bagging method is simple. Rather than 
creating estimates using a single model that is adequate 
for the actual data, numerous models are developed to 
define the correlation.

LogitBoost: Another boosting technique is the logit-
boost algorithm. This approach is developed to address 
the issue of overfitting induced by excessive noise, which 
the adaboost algorithm suffers. To tackle this challenge, 
logitboost linearly lowers training error. As a result, it 
delivers more flexibility and reduces the exponential 
loss. In summary, logitboost increases the weight of the 
data and outperforms the adaboost algorithm in terms of 
overfitting.

Decision Table: Decision Table develops a decision 
table classifier that uses best-first search and cross-vali-
dation to examine the subset of attributes. A choice uses 
the nearest-neighbor strategy, as opposed to the table’s 
global vote, to choose the class with each case that has 
not been covered by an item in a decision table, based on 
the same set of criteria.

JRip: JRip leverages sequential covering tools to develop 
organized rule sets and incorporates a propositional rule 
learner called “Repeated Incremental Pruning to Produce 
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Error Reduction (RIPPER).” This algorithm is divided into 
four stages: making rule, prune, optimize, and selection. 
We employed minimum description length to avoid over-
fitting issues

Decision Stump: A decision stump is a classification 
model made up of a single-level decision tree. Specifi-
cally, it is a decision tree with just a root node connected 
directly with its leaves. A decision stump predicts an out-
come depending on the amount of a single input feature.

Hoeffding Tree: A Hoeffding tree is an incremental 
decision tree technique that can train from large data 
sets if the distribution producing instances does not vary 
over time. Hoeffding trees take advantage of the notion 
that modest sample group can frequently be sufficient to 
select an appropriate splitting attribute. The Hoeffding 
bound, which quantifies the number of data points uti-
lized to calculate various statistics within a specified pre-
cision, lends mathematical credence to this viewpoint.

J48: The J48 classifier is a straightforward C4.5 deci-
sion tree for classification. It performs classification using 
decision trees or rules derived from them. Once the tree 
has been constructed, it is applied to instances in the 
database, yielding identification tasks. The J48 has a list 
of advantages, notably missing value accounting, decision 
tree pruning, continuous feature values ranges, rule deri-
vation, and so on.

Logistic Model Tree: The logistic model tree (LMT) 
technique incorporates decision tree and logistic regres-
sion (LR) techniques. The information gain method is 
implemented to subdivide the tree, and the logitboost 
procedure is used to fit the LR in the tree nodes. To dis-
cover over-fitting concerns, the classification and regres-
sion tree (CART) is used.

Random Forest: The random forest is a classification 
technique that classifies data by using a large number of 
decision trees. It utilises bagging and attribute random-
ness while building each particular tree in order to pro-
duce a statistically independent forest of trees for whom 
the aggregate estimate has been more precise compared 
to any single tree.

Random Tree: At each node, the random tree evalu-
ates a set of K randomly selected features to divide on. 
The term “random” refers to the fact that each tree in the 
collection has an equally probable of becoming sampled, 
resulting in a uniform distribution of trees. Random trees 
may be constructed quickly, and merging huge sets of 
random trees produces realistic models in most cases. It 
doesn’t prune anything.

Artificial Neural Networks with single layer: Artificial 
Neural Networks (ANN) are computing architectures 
made up of a collection of complicated, intimately cor-
related processing units called neurons that conceiv-
ably replicate the structure and function of the biological 

nervous system. ANN learning is accomplished by the 
development of specific training procedures based on 
learning laws that are intended to mimic the learning 
processes of biological systems. For linear issues, a typi-
cal ANN has two layers: input and output, however for 
non-linear issues, an another layer called a hidden layer 
is used. Depending on the task, the amount of concealed 
layers is determined experimentally. With more hidden 
layers, the training method is time-consuming–consum-
ing. To obtain the appropriate parameters, we use a back-
propagation algorithm with a scaled conjugate gradient 
method. In this case one layer with ten neurons are uti-
lized [55-58].

Artificial Neural Networks with multiple layer: In this 
ANN model three layers (MANN) each with ten neurons 
is implemented for the normal and alcoholic EEG signals 
identification.

Feed-forward neural networks: Neurons are grouped 
in numerous layers in feed-forward neural networks 
(FFNN), and information is transferred from source to 
destination. Once an error appears, neurons are sent 
back to the preceding layer, and the parameters are reset 
to lower the likelihood of an error. We employ the tan-
sigmoid transfer function, a single hidden layer with ten 
analyzed neurons, and the Levenberg–Marquardt algo-
rithm for quick learning in this investigation [59].

Cascade-Forward Neural Networks: Neurons in cas-
cade-forward neural networks (CFNN) are intercon-
nected to neurons in preceding and succeeding layers. 
A three-layer CFNN, for illustration, exhibits direct con-
nections among first three layers, meaning that neurons 
in the input and output layers are related both indirectly 
and directly. These additional interconnections aid in 
achieving a faster learning rate for the appropriate asso-
ciation. In CFNN, we employed same parameters as used 
in FFNN [59].

Recurrent Neural Networks (RNN): Neurons in RNN 
may circulate in a loop due to one or more feedback path-
ways. The RNN’s properties enable the system to process 
data temporarily and identify trends. Elman recurrent 
neural networks, the most prevalent family of RNN, 
are used in this research. The Levenberg–Marquardt 
approach and a single hidden layer with experimentally 
selected ten neurons are used to quickly train the model 
[60].

Results
Experimental setup
This study’s investigations were conducted employing 
personal computer with an Intel(R) Core i5 CPU and 8 
GB RAM, employing MATLAB 2020a and WEKA v.3.9.5. 
The FWHT was implemented in the first step to obtain 
normal and alcoholic EEG signal coefficients. Next, 
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thirty-six linear and nonlinear features were extracted. 
Except for F3 and F27–F36, all other features provide a 
single feature vector. The AR order (F3) is four, resulting 
in four feature vectors. Our newly introduced feature SDI 
(F27) yields a single feature vector. The matrix determi-
nant features (F27–F36) result in different feature vec-
tors for distinct determinant orders. For example, when 
we selected matrix determinant order ten (F27), the total 
EEG trial length was divided into twenty segments. Thus, 
we obtained twenty feature vectors for this case. Likewise, 
for matrix determinant order thirteen (F28), a single EEG 
trial results in thirteen segments, representing thirteen 
feature vectors. In total, we obtained a feature matrix of 
240× 85 dimension, where 120 trials are for normal and 
120 trials are for alcoholic. To reduce the feature matrix 
dimension, a correlation-based feature selection method 
was implemented, which results in twelve feature vectors 
only. We employed seventeen distinct machine learning 
classifiers and five different neural network classifiers for 
classification tasks. Performance evaluation parameters 
such as accuracy, sensitivity, specificity, precision, recall, 
F-measure, Matthew’s correlation coefficient, kappa sta-
tistics, and area under the receiver operating curve are 
measured in a tenfold cross-validation scheme.

Statistical analysis
The statistical analysis compares the categorization 
capabilities of healthy vs alcoholic EEG characteristics. 
Table  1 displays the mean and standard deviation (std) 
results for each feature vector. Table  1 exhibits that the 
mean values for almost all the feature sets in the healthy 
category are higher than in the alcoholism category, 
implying that the FHWT coefficients measured values of 
health EEG signals are larger compared to the alcoholic 
class, as seen in Fig. 3. Furthermore, the standard devia-
tions for the majority of the feature sets in the healthy 
category are higher than the alcoholic group, indicating 
that alcoholism signals seem to be more comparable to 
one another than other category.

Relating to the observations made thus far, it is rea-
sonable to conclude that alcoholic EEG signals resemble 
more with fewer fluctuations when compared to normal 
EEG signals. The Kruskal Wallis (KW) test is used for 
probability values (p-value) since it is a non-parametric 
test that does not require specific feature distributions. 
Table 1 further shows that the p-value for the majority of 
the features is less than 0.001, implying that the suggested 
features are statistically significant. We also discovered 
that our newly proposed features (F26–F36) in the alco-
holic EEG field provide very low p values, showing the 
relevance of those features in differentiating between 
normal and alcoholic EEG signals.

In addition, we also displayed the extracted features to 
analyze them further statistically. We used t-distributed 
stochastic neighbour embedding (t-SNE), a statisti-
cal method for displaying high-dimensional features by 
assigning a two-dimensional map to each feature [61]. 
T-SNE is a nonlinear technique. Thus, it is an excellent 
choice for our extracted linear and nonlinear features. 
Figure 4 display the distribution of the two-dimensional 
feature. The extracted features indicate significant differ-
ences among normal and alcoholic classes.

Analysis with all features and classifiers
First, we decided on normal vs. alcoholic EEG signals 
identification by employing all features and classifiers. It 
is noted in Fig. 5 that SMO obtains the highest classifica-
tion accuracy of 93.3%. The RF ranked second with 92.9% 
of classification accuracy, followed by J48 and adaboost. 
On the other hand, the lowest outcome of 81.2% is deliv-
ered by the logistic. Although all the classification results 
obtained by different classifiers provide more than 80% 
classification accuracy outcome, their practical appli-
cability is difficult due to the computational complexity 
produced by 85 feature vectors.

Analysis with all features vs. selected features
Figure  4 displays that the same class features overlap 
indicating these are redundant, and there is a need to 
implement a feature selection method to reduce redun-
dancy. We implemented a CFS-FS method and obtained 
twelve feature vectors out of a total of eighty-five. There 
is an 86% reduction in the feature matrix. The selected 
feature vectors are Fv1, Fv8, Fv9, Fv15, Fv17, Fv22, Fv29, 
Fv30, Fv34, Fv50, Fv75, and Fv79. It is observed that F29 
represents the SDI whereas, Fv30, Fv34, Fv50, Fv75, and 
Fv79 denoted the matrix determinant features. It infers 
that 50% selected feature matrix is made up with SDI and 
matrix determinant indicating that these features play a 
significant role in identifying normal and alcoholism EEG 
signals. Figure  6 shows the comparison among all fea-
tures and chosen features accuracies. It is demonstrated 
in Fig.  6 that the FS strategy significantly increases the 
classification accuracy for most of the cases. It is noted 
that logistic regression ranked at number one in classifi-
cation accuracy improvement with an 11.7% of accuracy 
rise. Hoeffding tree and Naive Bayesclassifiers ranked 
at second and third with 8.4% and 7.5% of classifica-
tion accuracy improvements. The classification accuracy 
for simple logistic, SMO, adaboost, bagging, decision 
stump, J48 and LMT remains the same, concluding that 
all other feature vectors were redundant for these classi-
fiers. The same accuracy can be achieved with relatively 
fewer feature vectors. It is summarized that the proposed 
FS strategy provides up to 13% classification accuracy 
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Table 1  Mean, standard deviation and probability values for feature vectors of normal (C1) and alcoholic (C2) EEG signals

Feature vector Mean C1 Std C1 Mean C2 Std C2 p-value

Fv1 − 3.7478 1.7119 − 1.7051 0.92203 3.54E−24

Fv2 3.5915 1.652 2.036 1.1493 4.70E−17

Fv3 0.035276 0.19694 0.029947 0.17472 0.90379

Fv4 − 0.041406 0.13285 − 0.068376 0.11319 0.066454

Fv5 0.035757 0.14851 0.061092 0.10944 0.13345

Fv6 0.026683 0.11042 0.0057301 0.1124 0.086783

Fv7 0.00015939 0.0024409 − 0.00015135 0.0022975 0.37408

Fv8 0.058123 0.016426 0.019885 0.0089974 4.19E−39

Fv9 0.23874 0.033711 0.13723 0.032591 4.19E−39

Fv10 − 7.47E−05 0.0074369 8.90E−05 0.0057533 0.48444

Fv11 4.2108 1.2401 4.9836 1.4575 3.96E−05

Fv12 − 12695 1137.8 − 14092 1312.1 6.83E−15

Fv13 6.2738 1.0753 7.1219 1.1835 3.30E−08

Fv14 0.92139 0.077459 0.94678 0.068014 3.96E−05

Fv15 1.1675 0.080738 0.9231 0.12327 1.10E−34

Fv16 0.043291 0.017025 0.014955 0.0074783 1.39E−34

Fv17 0.058149 0.016435 0.019908 0.0089856 3.99E−39

Fv18 0.14985 0.031577 0.10002 0.025934 5.18E−25

Fv19 0.14993 0.031593 0.10007 0.025947 5.18E−25

Fv20 0.63052 0.1161 0.73978 0.14266 3.24E−09

Fv21 0.14604 0.029378 0.097755 0.026258 8.39E−25

Fv22 0.61426 0.10524 0.72422 0.1509 1.77E−09

Fv23 160.82 158.46 108.91 139.22 4.13E−05

Fv24 − 0.21747 6.9411 1.1331 5.4352 0.015874

Fv25 0.058123 0.016426 0.019885 0.0089974 4.19E−39

Fv26 1.4458 0.14586 1.4433 0.14282 0.75191

Fv27 1.2246 0.088167 1.2304 0.1044 0.83067

Fv28 0.14985 0.031577 0.10002 0.025934 5.18E−25

Fv29 − 0.0061863 0.17985 − 0.36913 0.22813 1.94E−26

Fv30 − 2.4777 1.9797 − 7.6497 2.703 5.73E−33

Fv31 − 8.1599 3.3398 − 12.805 2.5057 5.50E−23

Fv32 − 12.148 2.7094 − 16.244 2.2009 5.38E−25

Fv33 − 12.174 2.8847 − 16.209 2.451 1.44E−21

Fv34 − 14.095 2.246 − 18.023 2.627 7.70E−24

Fv35 − 17.112 2.5127 − 20.088 2.9929 4.22E−13

Fv36 − 17.522 2.5942 − 20.448 2.9331 2.30E−13

Fv37 − 18.661 2.4586 − 21.719 3.1003 5.33E−14

Fv38 − 18.185 2.6493 − 21.273 3.0834 2.06E−13

Fv39 − 19.444 2.9186 − 22.058 4.0565 1.75E−06

Fv40 − 23.013 5.3179 − 24.576 5.7275 0.036609

Fv41 − 22.919 4.738 − 24.342 5.3491 0.06062

Fv42 − 23.258 4.9047 − 24.761 5.6252 0.049787

Fv43 − 23.142 3.3548 − 24.861 4.2673 0.0036995

Fv44 − 22.276 2.7708 − 24.282 3.5097 4.33E−05

Fv45 − 22.11 2.6971 − 24.457 3.213 5.47E−08

Fv46 − 22.127 2.6831 − 24.531 3.4081 4.34E−08

Fv47 − 22.274 3.1471 − 24.559 3.9719 1.85E−05

Fv48 − 22.182 3.3402 − 24.568 4.0664 1.60E−05

Fv49 − 22.686 3.3144 − 25.268 4.1291 1.35E−06
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improvement with the Hoeffding tree classifier compared 
to all other classifiers.

Analysis with neural network classifiers
We used selected features for subsequent investiga-
tion, considering feature selection improves classifi-
cation accuracy substantially. Results from different 
neural network (NN) models were used to see if NN 
improve classification accuracy compared to machine 
learning classifiers. Figure  7 shows the results of the 

performance evaluation with NN. The RNN achieves 
the highest classification accuracy of 97.5%, whilst the 
FFNN achieves the lowest classification accuracy of 
96.3%. All other NN models have a classification accu-
racy of 96.7%. Compared to machine learning classifi-
ers, the RNN improves classification accuracy by up to 
16.3%. Another noteworthy aspect of Fig.  7 is that all 
of the NN classification modes exhibited minimal vari-
ations across various performance measures. Standard 
deviation values of 1.92, 1.57, 1.6, 2.4, and 1.2 are pro-
duced using ANN, MANN, FFNN, CFNN, and RNN. 

Table 1  (continued)

Feature vector Mean C1 Std C1 Mean C2 Std C2 p-value

Fv50 − 4.0519 2.7382 − 10.719 3.0861 1.55E−33

Fv51 − 12.957 3.8711 − 18.501 2.9788 1.90E−23

Fv52 − 16.144 3.0342 − 21.441 3.2217 2.56E−24

Fv53 − 20.825 3.222 − 24.765 3.5228 2.64E−15

Fv54 − 22.45 3.2222 − 26.415 3.9156 2.01E−14

Fv55 − 23.365 3.3523 − 26.882 4.5632 6.21E−09

Fv56 − 28.471 6.9701 − 29.991 7.6696 0.18551

Fv57 − 29.699 5.2715 − 31.729 6.3249 0.020915

Fv58 − 27.732 3.5546 − 30.325 4.6442 1.80E−05

Fv59 − 27.04 3.2397 − 30.128 4.2737 2.97E−08

Fv60 − 27.753 3.6696 − 30.755 4.8113 4.10E−06

Fv61 − 26.739 4.9887 − 29.29 6.6591 0.0064096

Fv62 − 11.78 4.985 − 18.591 3.8952 1.43E−25

Fv63 − 20.615 4.0745 −26.263 3.8894 3.15E−21

Fv64 − 27.067 4.0608 − 32.231 4.3037 1.87E−17

Fv65 − 32.309 3.8302 − 38.096 3.7436 8.85E−22

Fv66 − 45.72 4.5742 − 50.476 4.3889 1.74E−13

Fv67 − 37.335 4.2057 − 41.602 4.9021 1.29E−10

Fv68 − 35.553 3.8449 − 40.087 4.4451 1.74E−14

Fv69 − 40.397 4.1345 − 45.852 4.1337 2.75E−18

Fv70 − 11.455 4.4853 − 20.434 4.2408 8.03E−30

Fv71 − 28.624 4.2088 − 35.849 5.0736 9.93E−23

Fv72 − 40.61 5.0568 − 46.662 6.0188 6.50E−14

Fv73 − 42.361 5.6241 − 47.011 6.5228 7.02E−08

Fv74 − 39.519 5.3645 − 44.655 6.6635 4.34E−09

Fv75 − 14.451 4.9447 − 24.74 4.9917 6.92E−30

Fv76 − 35.844 4.9037 − 42.824 6.4363 3.26E−16

Fv77 − 46.63 7.4271 − 51.271 9.0097 5.46E−05

Fv78 − 19.486 5.2222 − 30.443 5.5773 7.07E−30

Fv79 − 47.065 7.424 − 53.729 9.0372 8.28E−09

Fv80 − 49.028 6.5155 − 55.256 8.8471 5.03E−08

Fv81 − 26.154 6.0719 − 38.17 6.4825 3.63E−28

Fv82 − 56.522 8.4374 − 63.285 10.77 9.24E−07

Fv83 − 32.575 6.6007 − 44.912 7.5683 7.62E−26

Fv84 − 41.589 7.0482 − 54.176 8.4344 9.65E−24

Fv85 − 50.88 8.135 − 64.1 9.794 5.37E−21
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This implies that the results of NN classification are 
reasonably consistent and reliable.

Analysis with single feature
The RNN classification model is used to determine the 
importance of each feature in detecting normal and alco-
holic EEG signals. The classification accuracy results with 
single feature are shown in Fig. 8. It is worth noting that 
the very first time the matrix determinant order ten fea-
ture (F27) has been used in the alcoholism domain, it 
attained a prediction performance of 93.3%. Also, it is 
worth noting that the F28, F31, F30, F33, F29, F32, and 

F34 matrix determinant orders all obtained more than 
80% prediction performance [37]. Furthermore, the 
SDI feature, which is being offered for its first time in 
the alcoholic domain, yielded 82.1% classification per-
formance. We suggest that the individual classification 
accuracy provided by matrix determinants and SDI fea-
tures is far above the baseline accuracy needed to handle 
an automated system [37]. It is concluded that proposed 
matrix determinant order ten feature deliver up to 42.1% 
of classification accuracy improvement in comparison 
with all other individual features.

Analysis with proposed index
Another significant aspect of this work is establishing a 
new alcoholic screening index. It is harder to pinpoint 
the variety of desired traits among healthy and alcoholic 
patients to build a suitable prognosis. Although classifi-
ers are utilized for assessment, physicians prefer to pay 
attention towards a unique score showing different cate-
gories’ presence [42, 62]. With this specific goal, a unique 
alcoholic index is constructed using features specified by 
the CFS technique following a series of investigations to 
identify alcoholic EEG signals. The mathematical formu-
lation of proposed index is given as,

The alcoholic diagnostic index (ADI) findings 
(mean  ±  std) for normal and alcoholic categories are 
shown in Table 2. The readings of the ADI for the distinct 

(33)ADI =
5F8+ 0.1F9

F17− 0.2F27
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Fig. 4  Two-dimensional samples distribution of features

Fig. 5  Results (%) obtained with all features by employing several classifiers and performance measures
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types are totally distinguishable from one another, as 
shown in Table 2.

The ADI ranges for the two classes are also shown in 
Fig.  9, and it give a clear distinction among them. As 
a result, the proposed index may clearly distinguish 

Fig. 6  Classification accuracy (%) obtained with all and selected features

Fig. 7  Results (%) obtained with neural network classifiers
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between healthy and alcoholic individual with the aid of a 
unique number, assisting healthcare experts.

Employing ADI as a single feature
We utilized the proposed ADI as a single feature in a 
computerized framework. It is worth mentioning here 
the proposed ADI delivers 100% classification accuracy, 

sensitivity, and specificity measures indicate normal and 
alcoholic EEG signal identification’s perfect capability. 
The kappa and AUC measures were also 1 showing the 
correct title by the classifier. All these measures were 
obtained by employing the RNN classification model. 
Thus, we conclude that computerized framework and 
ADI are perfect choices for correctly identifying normal 
or alcoholic EEG signals.

Discussion
In this research, the FWHT technique examines EEG 
signals’ intricacy and disordered behaviour in normal 
and alcoholic categories. As seen in Fig.  3, the healthy 
group’s visual depiction of FWHT of an EEG signal has 
a larger amplitude than the alcoholic group’s. This signi-
fies that the FWHT approach might be used as an alco-
holism graphical potential treatment for clinicians and 
aid neuroscientists in examining the impact of alcohol 
on the brain. Table  1 shows that the alcoholic EEG sig-
nal features have lesser average scores than the normal 
group, demonstrating that the morphologies in the alco-
holic EEG signal are significantly more obvious. We uti-
lized several linear and nonlinear features [63, 64] with 
multiple machine learning classifiers to determine the 
optimal amalgamation to the built computerized frame-
work. The neural network classification models were also 
evaluated to identify whether machine learning classifi-
ers perform best or neural network classifiers. The clas-
sification ability of a single feature with the best classifier 
was also tested. It is noted that SMO and RNN are the 
best choices in machine learning and neural network 
classification models. In addition, the matrix determi-
nant feature provides maximum classification accu-
racy when used as a single feature. Table  3 shows that 
nearly all of the available techniques are developed using 

Fig. 8  Results (%) obtained with single feature

Table 2  The mean ± std and p-value for the ADI

Index Alcoholic Normal p-value

ADI 7.20± 0.27 0.28± 0.07 7.055E−41

Fig. 9  Results with proposed index



Page 16 of 18Sadiq et al. Health Information Science and Systems (2023) 11:27

time–frequency with irregular features, that has various 
drawbacks like incompatible frequency sequence, mode 
mixing, tightly packed spectrum, and computationally 
intensive procedures. The storage demand for these tech-
niques is also high due to various signal components. On 
the contrary, the proposed FWHT is a relatively simple 
technique as it involves only arithmetic operations thus, 
require significantly less storage capacity. By looking 
in Table 3, it is noted that the proposed FS strategy and 
RNN classification model significantly increase the clas-
sification accuracy in comparison with all features tested 
with machine learning classifiers. By employing the CFS 
FS approach with the RNN classifier, the average clas-
sification accuracy of 97.5%, the sensitivity of 96.7% and 
specificity of 98.3% is achieved with a tenfold cross-val-
idation strategy. This can be inferred that the proposed 
CFS FS strategy is not only helping to raise classification 
accuracy but also significantly reduces the feature matrix 
dimension. It is also worth mentioning here that neural 
network classification models help to achieve higher and 
stable performance evaluation measures in comparison 
with machine learning models.

Another critical aspect of this research is to introduce a 
matrix determinant and alcoholic diagnostic index (ADI) 
as a single feature to develop the computerized frame-
work. Using matrix determinants and ADI, a classifica-
tion accuracy of 93.3% and 100% is obtained with RNN 
in 10-fold cross-validation. It is concluded that the pro-
posed framework is the most straightforward choice for 
the correct identification of alcoholic EEG signals.

The time complexity of our proposed experiments is 
presented in Table  4. This time is collected for all trials 
and the best classifier in each case. It is noted in Table 4 
that SMO needed 0.007 s for training while 0 s is required 
to test with all features. While CFS help to reduce the 
training and test time as obtained with Hoeffding Tree. 
RNN needed 0.57 s, 0.29 s, and 0.05 s of training time by 
employing CFS selection, matrix determinant, and ADI 
features. Also, the test time is 0, 0.0005 s and 0.0007 s. 
We conclude that the ADI is also computationally effi-
cient in identifying normal and alcoholic EEG signals.

In this work, we proposed an innovative index, the 
ADI, as a specific diagnostic marker for alcoholic dis-
eases. The suggested indicator can be used as a measure 
during alcoholism monitoring and as a benchmark for a 
specialist to determine how much brain damage an alco-
holism individual has experienced. Notwithstanding, 
our proposed index does not require a certain time–fre-
quency decomposition method prior to actually extract-
ing the features, and the features are derived straightaway 

Table 3  Comparison of the proposed computerized work with available work

References Method, feature FS CV Classifier Acc Sen Spe

[8] HMMs + Coupled HMMs, 2002 Not used Tenfold NN 82.98 – –

[9] Nonlinear + HOS Features, 2012 p-value Threefold SVM 91.7 90 93.33

[10] WPT + HOS Features, 2013 p-value Tenfold KNN 95.8 95.8 95.8

[15] CWT + Statistical Features, 2014 Not used Tenfold SVM 94.29 – –

[16] TQWT + Nonlinear Features, 2017 PCA Tenfold LS-SVM 97.02 96.53 97.5

[11] Granger Causality, 2017 Not used Fivefold SVM 90 95.3 82.4

[17] DTCWT + Nonlinear Features, 2018 p-value Tenfold SVM 97.91 – –

[18] TBOWFB + Nonlinear Features, 2018 p-value Tenfold LS-SVM 97.08 97.08 97.08

[12] Synchronization Likelihood, 2018 ROC Tenfold SVM 98 99.9 95

[20] EMD + Power Band + Fractal Dimension, 2019 ICA Tenfold KNN 98.91 99.02 99.24

[21] FBSE-EWT + Nonlinear Features, 2020 Not used Leave one out LS-SVM 98.8 98.3 99.1

[22] EWT + Statistical Features, 2020 p-value Leave one out LS-SVM 98.75 98.35 99.16

[30] NN, 2020 Not used Tenfold LSTM 93 95 92

This work FHWT + All Features, 2022 No Tenfold SMO 93.3 93.3 93.3

This work FHWT + Selected Features, 2022 CFS Tenfold Hoeffding Tree 94.2 97.5 90.8

This work FHWT + Selected Features, 2022 CFS Tenfold RNN 97.5 96.7 98.3

This work FHWT + Matrix Determinant, 2022 No Tenfold RNN 93.3 93.3 93.3

This work FHWT + ADI, 2022 No Tenfold RNN 100 100 100

Table 4  Computational time of proposed experiments

Classifier Features Training time Test time

SMO All 0.007 0

Hoeffding Tree CFS selected 0.005 0.006

RNN CFS selected 0.5748 0

RNN Matrix determinant 0.29 0.0005

RNN ADI 0.05 0.0007
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from the FWHT coefficients of EEG signals, resulting in 
simple and quick computation.

The strengths of this research included (i) the FWHT 
is used in a fairly straightforward way to distinguish 
between the nonlinear features of healthy and alcoholic 
Brain activity; (ii) a variety of features and classifiers have 
been investigated; (iii) design a robust feature selection 
strategy; (iv) introduction of matrix determinant and suc-
cessive decomposition index for computerized alcoholic 
framework; (v) offering innovative diagnostic indexes and 
new biomarkers that can be used as treatment aids by 
medical experts.

Conclusion
Alcoholism is now one of the world’s most widespread 
problems. It can increase the risk of heart illness, lone-
liness, self-harm, or homicide if left untreated. Despite 
the fact that experienced doctors can identify alcohol-
ism through medical imaging and counseling, auto-
mated procedures are required to circumvent potential 
mistakes. In this study, a new automated paradigm 
for detecting alcoholic subjects is built using the Fast 
Walsh–Hadamard transform of EEG signals. Essentially, 
the essential linear and nonlinear features of EEG signals 
are retrieved from the FWHT coefficients, then chosen 
and given to classification techniques. With the sug-
gested alcoholic screening index as a specific attribute 
in the tenfold cross-validation technique, the suggested 
scheme obtained a prediction accuracy of 100%. Further-
more, the suggested unique index can be used by medi-
cal professionals to diagnose alcoholic subjects using a 
single number signal. The suggested framework features 
extremely quick processing, making it an excellent can-
didate for practical uses. The proposed scheme could be 
used to examine various cognitive deteriorating condi-
tions in the future.
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