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Epigenetically modified AP-2a by DNA methyltransferase
facilitates glioma immune evasion by upregulating PD-L1

expression
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Programmed death-ligand 1 (PD-L1) ensures that tumor cells escape T-cell-mediated tumor immune surveillance. However, gliomas
are characteristic of the low immune response and high-resistance therapy, it is necessary to understand molecular regulatory
mechanisms in glioblastoma, especially the limited regulation of PD-L1 expression. Herein, we show that low expression of AP-2a is
correlated with high expression of PD-L1 in high-grade glioma tissues. AP-2a binds directly to the promoter of the CD274 gene, not
only inhibits the transcriptional activity of PD-L1 but enhances endocytosis and degradation of PD-L1 proteins. Overexpression of
AP-2a in gliomas enhances CD8" T cell-mediated proliferation, effector cytokine secretion, and cytotoxicity in vitro. Tfap2a could
increase the cytotoxic effect of Cd8™ T cells in CT26, B16F10, and GL261 tumor-immune models, improve anti-tumor immunity, and
promote the efficacy of anti-PD-1 therapy. Finally, the EZH2/H3K27Me3/DNMT1 complex mediates the methylation modification of
AP-2a gene and maintains low expression of AP-2a in gliomas. 5-Aza-dC (Decitabine) treatment combines with anti-PD-1
immunotherapy to efficiently suppress the progression of GL261 gliomas. Overall, these data support a mechanism of epigenetic
modification of AP-2a that contributes to tumor immune evasion, and reactivation of AP-2a synergizes with anti-PD-1 antibodies to

increase antitumor efficacy, which may be a broadly applicable strategy in solid tumors.
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INTRODUCTION

Blockade of the immune checkpoint has been a critical break-
through in clinical cancer therapy [1, 2]. The interaction of PD-L1
and programmed death-1 (PD-1) inhibits T lymphocyte prolifera-
tion, suppresses CD8% T cytotoxicity, and evades immune
surveillance, leading to tumor progression [3]. Blocking the
interaction between PD-1 and PD-L1 activates T cell responses
to target tumor cells expressing PD-L1. Anti-PD-1 immunotherapy
functions as an FDA-approved drug for lung cancer, bladder
cancer, and melanoma [4]. The expression of PD-L1 proteins in
cancer cells has been found as a biomarker predicting the clinical
response of patients [5]. However, PD-L1 expression alone is not
necessarily associated with the efficacy of immune checkpoint
blockade [6]. Therefore, it is urgent to elucidate the complex
mechanisms of PD-L1 regulation to improve PD-1/PD-L1-based
immunotherapies.

Gliomas originating from primary brain tumors display the most
aggressive behavior and show a dismal prognosis. Temozolomide
(TMZ), a first-line clinical drug for glioblastoma, could prolong
overall survival in MGMT-negative patients [7]. Treatment options

are limited, and the relapse rate is high in gliomas [8]. Several
isolated reports showed that the PD-1 inhibitor, in combination
with surgical therapy, enhances cytotoxic T cells in recurrent
glioblastoma [9]. PD-1 antibody improved the immune response
and prolonged the survival in recurrent gliomas [10]. Although
immune checkpoint inhibitor trials in glioblastoma have been
disappointing [11], blocking the PD-L1/PD-1 interaction may
represent a potential treatment for gliomas.

The transcription factor AP-2a was downregulated in solid
tumors and suppressed the malignant behaviors of tumor cells
[12-17]. However, the detailed function of AP-2a in anti-tumor
immunity has not been reported. AP-2a could induce the
expression of the TLR2 gene, which mediates innate and adaptive
immune responses [18, 19]. AP-2a suppressed IFNGR1 expression
and impaired IFN-y signaling [20], suggesting that AP-2a might
influence immune responses in cancer cells. And INF-y upregu-
lates the JAK-2/STAT1/IRF-1 signaling pathway and stimulates PD-
L1 expression [21]. We speculated that AP-2a might correlate with
the PD-L1/PD-1 pathway in tumor cells. Herein, we demonstrated
the binding and negative regulatory correlation between AP-2a
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and the PD-L1 promoter. Moreover, Tfap2a can enhance anti-
tumor immunity and the efficacy of anti-PD-1 therapy. Finally, the
sensitivity to the anti-PD-1 antibody is augmented by Decitabine
via suppressing AP-2a methylation. Therefore, our results suggest
a novel function of AP-2a in anti-tumor immunity in gliomas.

RESULTS

In gliomas, low expression of AP-2a correlates with high
expression of PD-L1

We analyzed the expression of AP-2a and PD-L1 in gliomas by IHC
staining. AP-2a was lowly expressed [14], while PD-L1 is highly
expressed in high-grade gliomas (Fig. 1A, B and Fig. STA), but the
relationship between AP-2a and PD-L1 expression in gliomas is
unclear. We showed the inverse correlation of AP-2a and PD-L1
expression in high-grade gliomas (Fig. 1D), which is consistent
with the TCGA database (Fig. S1B). The expression of CD8 was
decreased in glioma grade IV tissues compared with control
tissues (Fig. 1C). The positive correlation was found between AP-
2a and CD8 expression in glioma grade lll/IV tissues (Fig. 1E).
Moreover, AP-2a'°*PD-L1"9" was found in wild-type IDH1 gliomas
and glioma subtypes (classical, mesenchymal and neural) (Fig.
S1C, D). Next, AP-2a expression was decreased while PD-L1
expression was upregulated in glioma tissues by qRT-PCR analysis
(Fig. 1F). In addition, AP-2a'*"PD-L1"9" expression was detected in
glioblastoma and glioma cell lines U87 and U251 (Fig. 1G, H). Thus,
PD-L1 expression is negatively associated with AP-2a expression in
gliomas.

AP-2a binds to the CD274 promoter and inhibits PD-L1
transcription

To investigate molecular mechanisms underlying AP-2a and PD-
L1, we found three consensus AP-2-binding sites in the PD-L1
promoter by JASPAR software (Fig. 2A). Luciferase assays revealed
that AP-2a dose-dependently repressed reporter activities
(Fig. 2B). A strong binding appeared between three labeled 23-
bp probes containing AP-2-binding site and purified AP-2a
proteins by EMSA (Fig. 2C, D). Competition binding assays
revealed that the AP-2a/DNA complexes were reduced by the
excess of the unlabeled probes. In contrast, mutant probes failed
to bind with AP-2a proteins. Moreover, chromatin immunopreci-
pitation showed that PD-L7 promoter with AP-2 sites could be
immunoprecipitated in U251 cells (Fig. 2E). AP-2a decreased PD-L1
mMRNA levels in U251 cells (Fig. 2F). These data suggest that AP-2a
binds to the PD-L1 promoter and represses its transcription.

AP-2a enhances the lysosome-dependent degradation of PD-
L1
PD-L1 was localized in the plasma membrane, and AP-2a
decreased the abundance of PD-L1 proteins (Fig. 3A). A decrease
in PD-L1 proteins was induced in AP-2a-overexpressing U251 cells
treated with cycloheximide (CHX) at indicated timepoints than in
control cells (Fig. 3B, C). Since IFN-y induces PD-L1 expression [22],
AP-2a could downregulate induced PD-L1 expression (Fig. 3D). AP-
2a promoted the degradation of PD-L1 proteins, which was
alleviated by the lysosome inhibitor NH,Cl not by the proteasome
inhibitor MG132 (Fig. 3E). Similar results that AP-2a enhanced PD-
L1 degradation were observed in U87 cells (Fig. S2A, B). We further
investigated whether AP-2a mediated cell surface PD-L1 expres-
sion [23]. Surface PD-L1 degradation was increased while surface
PD-L1 remained decreased in AP-2a-overexpressing cells by FACS
analysis (Fig. 3F), suggesting that surface PD-L1 is increasingly
internalized and degraded. And immunoprecipitation assays
revealed that AP-2a decreases the amount of surface proteins
PD-L1 endocytosed into U251 cells for 4 h (Fig. 3G). These studies
suggested that AP-2a mediates PD-L1 stability in gliomas.

We then wondered whether the influence of AP-2a on PD-L1
expression is unique to glioblastoma, we evaluated AP-20-
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regulated PD-L1 expression in hepatocellular cancer, breast
cancer, and cervical cancer. AP-2a enhanced the degradation of
PD-L1 proteins in MHCC97H cells, which was alleviated by the
lysosome inhibitor NH4Cl (Fig. S2C-E). Consistently, a negative
regulation between AP-2a and PD-L1 proteins exists in MDA-MB-
231 cells and Hela cells (Fig. S2F). These results indicated that AP-
2a plays a ubiquitous role in mediating PD-L1 expression in certain
malignant cancers.

AP-2a enhances the ability of human CD8" T cells to kill
glioma cells in vitro

Immune cell profiling revealed that AP-2a is correlated with the
low score of M2 macrophages and the high score of CD8™ T cells
in gliomas (Fig. S3A). AP-2a expression was positively related to
the expression of cytotoxic T lymphocyte (CTL) markers in gliomas
(Fig. S3B). PD-L1 on tumor cells binds with PD-1 on CD8* T cells to
enhance tumor immune evasion (Fig. 4A). We performed co-
culture experiments to examine the effects of AP-2a in glioma
cells on CD8™ T cell responses, PBMCs were co-cultured with U87
cells. The proportion of CD3"CD4" and CD3"CD8" subpopula-
tions was increased when cocultured with AP-2a-overexpressing
U87 cells (Fig. 4B). U87 cell apoptosis was improved compared
with controls (Fig. 4C). To ensure the specific role of CD8" T cells,
we isolated CD8" T cells with a percentage of 96.8% (Fig. 4D).
FACS analysis showed that the abundance of Ki67 is enhanced
while that of surface PD-1 is decreased in CD8" T cells cocultured
with AP-2a-overexpressing U87 cells (Fig. 4E), indicating prolifera-
tion of CD8™ T cells. In addition, the co-culture of CD8" T cells with
AP-2a-overexpressing U87 cells showed increased levels of TNFa
and IFNy to promote T lymphocyte activation (Fig. 4F, G) and
activated AKT/mTOR pathway to enhance the metabolic program
in potentiated CD8" T cells (Fig. 4H). Therefore, AP-2a in gliomas
enhanced the cytotoxicity of CD8" T cells.

AP-2a suppresses tumor progression and promotes anti-
tumor immune response of anti-PD-1 antibodies

We next sought to demonstrate that AP-2a-inhibited PD-L1
expression promotes antitumor immunity in vivo. Tfap2a-
overexpressing stable B16F10 cells were inoculated subcuta-
neously into randomized BALB/c mice (Fig. 5A, B), Tfap2a
suppressed tumor size (Fig. 5C and Fig. S4A). IHC staining revealed
that Tfap2a decreases PdI1 expression but improves the density of
Cd4' and Cd8" T cells in B16F10 tumor cells (Fig. 5D). The
expression of Ifng, perforin (Pfr) and Gzmb was increased in
Tfap2a-overexpressing B16F10 tissues (Fig. 5E), indicating the
stimulation and antitumor immunity of tumor-infiltrating CD8"
T cells. To investigate the therapeutic significance of AP-2a with
PD-1 antibodies (Fig. 5F), we found that the combined treatment
results in less tumor volume and slows tumor development
compared with single treatment or control (Fig. 5G and Fig. S4B).
There was no difference in the body weights of all mice (Fig. S4C).
Approximately 50% of mice survived 33 days with the combined
treatment, but all mice injected with anti-PD-1 antibodies died
within 21 days (Fig. 5H), indicating synergistic anti-tumor
immunity. The density of Cd4™ and Cd8™* T cells in tumor cells
and spleens was improved by combined treatment compared
with anti-PD-1 antibodies (Fig. 5| and Fig. S4D).

Similar results were obtained in CT26 mouse models, Tfap2a
slowed tumor progression (Fig. S5A-D) and decreased Pdl1
expression accompanied by increased Cd8™ T cells and effector
molecules in CT26 tumor tissues (Fig. S5E, F). In CT26 mouse
models, the combination treatment resulted in tumor regression
and prolonged the mouse survival compared with single
treatment or control (Fig. S6A-D) and improved Cd8™ T cell
function in tumor cells and spleens compared with anti-PD-1
antibodies (Fig. S6F, G) but all mouse weights remained
unchanged (Fig. S6E). Therefore, AP-2a, in combination with
immune checkpoint blockade, may have the best efficacy.
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Fig. 1 The negative correlation of AP-2a and PD-L1 expression in glioma tissues. A-C The expression of AP-2a, PD-L1, and CD8 in glioma
tissues analyzed by IHC and the corresponding staining scores in different grades of gliomas. D, E The correlation between AP-2a/PD-L1 and
AP-20/CD8 expression in grade Ill/IV gliomas based on IHC scores. F gRT-PCR analysis of AP-2a and PD-L1 expression in glioma tissues.
G, H Western blot analysis of protein expression of AP-2a and PD-L1 in glioma grade IV tissues and glioma cell lines.
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We next wondered whether AP-2a-mediated tumor immunity
depends on CD8™ T cells, 6-week-old C57BL/6 mice were depleted
of CD8" T cells by anti-CD8 monoclonal antibody (Fig. S7A).
Splenic Cd8" T cells were stained in B16F10 mouse models,
confirming Cd8 exhaustion (Fig. S7B). The Tfap2a-induced tumor
regression was attenuated by Cd8 neutralization (Fig. S7C-E). In
conclusion, AP-2a-mediated tumor shrinkage is dependent
on CTLs.
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EZH2/H3K27me3/DNMT1 complex enhances AP-2a
methylation in gliomas

Since AP-2a expression is lost in glioblastoma [24], we next
address the molecular mechanisms of AP-2a expression. We first
generated Tfap2a-overexpressing GL261 cell lines (Fig. 6A),
confirmed that Tfap2a suppresses the transcription of the Cd274
gene (Fig. 6B), enhances PdI1 degradation (Fig. 6C-F). Tfap2a
suppressed intracranial tumor growth (Fig. 6G, H), prolonged
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mouse survival (Fig. 6l), and improved CD4" and CD8" T
abundance (Fig. 6J, K).

Epigenetic modifications are one of the major causes of gene
silencing [25]. We found high CpG islands in the AP-2a promoter
(Fig. 7A). Methylation-specific PCR (MSP) could amplify unmethy-
lated and methylated PCR fragments, indicating AP-2a methyla-
tion in U251 cells (Fig. 7B). DNA methyltransferase (DNMT)
inhibitor Decitabine improved AP-2a proteins (Fig. 7C). Bisulfite
sequencing revealed CpG methylation of the AP-2a promoter in
U87 cells and glioblastoma tissues (Fig. 7D, E). co-IP assays showed
that Enhancer of Zeste Homolog 2 (EZH2), DNMT1 and H3K27me3
form an epigenetic modification complex (Fig. 7F). EZH2 Knock-
down increased AP-2a expression in glioma cells (Fig. 7G). ChIP

Cell Death and Disease (2023)14:365

assays showed that the EZH2/H3K27me3/DNMT1 complex is
enriched in the AP-2a promoter (Fig. 7H), suggesting that EZH2
recruits DNMT1 and affects H3K27 trimethylation in the AP-2a
promoter. Therefore, these data indicated epigenetic silencing of
the AP-2a gene.

Finally, we detected the effects of Decitabine on AP-2a
expression in vivo. We treated GL261 tumor-bearing mice with
Decitabine, anti-PD-1 antibodies, or both (Fig. 71). Tumor volume
treated with Decitabine or anti-PD-1 decreased by 47 and 53%
compared with control tumors. Mouse tumors with combination
therapy regressed by ~86% reduction (Fig. 7J-K). Moreover,
approximately 40% of mice with combination treatment
survived 43 days, whereas the medial survival of all other mice

SPRINGER NATURE
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Fig. 4 AP-2a in glioma cells enhances the killing activity of CD8" T cells in the co-culture system. A CD8" T lymphocyte-regulated
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was 24.6 days (Fig. 7L). The combination treatment increased
Tfap2a expression and improved Cd8™" T-cell abundance (Fig.
S8A, B), indicating the combined efficacy against gliomas.
Noteworthy, Decitabine upregulated Pdl1 expression even other
gene expression in gliomas [26, 27], but Tfap2a overexpression
could downregulate Decitabine-induced PdIT upregulation
(Fig. S8C, D), elucidating the AP-2a methylation and AP-2a-
suppressed PD-L1 expression in certain types of gliomas.

SPRINGER NATURE

DISCUSSION

The importance of AP-2a in transcriptional regulation, carcinogen-
esis, and development has been highlighted [28-31], but the
potential function of AP-2a in tumor immunity is still unknown.
Here, we show that AP-2a expression was downregulated and PD-
L1 expression was increased in glioblastoma. CD8" T lymphocytes
serve as cytotoxic effector cells against tumors [32], but CD8
expression remains at a low level in most gliomas [33]. Importantly,
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Fig. 5 Tfap2a promotes anti-tumor immune response in B16F10 tumor-bearing mice. A Fluorescence images showing Tfap2a
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AP-2a proteins increased the percentage of effector CD8" T cells in
gliomas. IDH1 wildtype gliomas represent hypo-methylation and
elevate the expression of the PD-L1 gene [34], the TCGA dataset
showed that AP-20""/PD-L1"M9" was associated with wild-type
IDH1 and glioma subtypes (classical, mesenchymal, neural),
indicating the potential clinical significance of AP-2a in molecular
classification and IDH1-wildtype glioma immunotherapy.

PD-L1 abundance was regulated at multiple levels, including
transcription, post-transcription, and post-translation [35]. PD-L1
expression was regulated by transcription factors, including
STAT3, NF-kB, HIF-1a, and miR-138-5p at the transcriptional and
posttranscriptional levels [36-39]. Moreover, important proteins,
including CMTM4/6, GSK3[, and CSN5, regulated PD-L1 stability
via post-translational modifications [23, 40-42]. Although PTEN
and FKBP51 regulated PD-L1 expression in gliomas [29, 43], the
complicated regulatory mechanisms of PD-L1 expression need to
be further investigated to accurately select patients and reduce
resistance to PD-1 treatment in “cold” gliomas. Our results showed
that AP-2a binds to the PD-L1 promoter, inhibits its transcriptional
activity, and enhances the lysosome-dependent degradation of
PD-L1. In addition, AP-2a enhanced ubiquitous degradation of PD-
L1 expression in several solid tumors [44], including hepatocellular
carcinoma, cervical cancer, breast cancer, and mouse CT26 cells,
B16F10 cells, which are commonly used in experimental tumor
immunotherapy [45-47]. Therefore, AP-20, which negatively
regulates surface PD-L1 expression, may be considered a novel
marker for PD-L1/PD-1-based immunotherapies.

Gliomas exhibit immune cell infiltrations with different func-
tionality [48]. We confirmed that high expression of AP-2a is
associated with increased frequency of CD8" T cells in gliomas.
Dysfunction of antitumor effector CD8" T cells from the tumor
microenvironment is a key feature of cancer [49]. Depletion of
CD8"' T cells decreased cytotoxic function and produced few
effector cytokines [50]. A co-culture system with CD8" T cells and
glioma cells decreased the proliferation of AP-2a-overexpressing
U87 cells, but increased Ki67 expression and cytokines TNFa and
IFNy secretion, decreased PD-1 levels in CD8' T cells in vitro.
Tfap2a could decrease PdI1 expression in tumor cells, increase the
infiltration of Cd8™ T cells, enhance effector molecule release, and
suppress tumor growth in vivo. Anti-CD8 antibody-mediated
depletion showed that AP-2a-regulated PD-L1 expression in tumor
immunogenicity depends on improved cytotoxic T cell activity. As
expected [51], Tfap2a combined with anti-PD-1 antibodies [47] to
improve Cd8™ T cell infiltration and inhibit tumor progression.
Overall, the combination of AP-2a and PD-1 blockade could
improve clinical efficacy in cancer patients.

The expression of AP-2a was lost in 99% of glioblastomas [24].
However, the critical mechanism of AP-2a downregulation in gliomas
was unclear. Histone methyltransferase EZH2 could recruit DNMT to a
target promoter and catalyze H3K27 trimethylation to enhance
epigenetic silencing [52, 53]. We demonstrated the crosstalk between
the EZH2/H3K27me3/DNMT1 complex and AP-2a methylation in
gliomas (Fig. S9), suggesting that AP-2a methylation may be a critical
epigenetic mechanism in glioblastoma. Depletion of Ezh2 was
correlated with disruption of CD8' Teff cell differentiation [54],
suggesting synergistic regulation between epigenetic modification,
antitumor immunity, and tumor signaling pathways. Decitabine
treatment in mouse glioma models increased CTL-mediated killing
[55]. EZH2 siRNA or Decitabine could increase AP-2a expression and
boost anti-tumor immunity, which partly explains the low response
of glioma immunotherapy. GL261 Tumor volume was decreased
upon treatment with the anti-PD-1 antibodies, as reported [51], and
combined therapy with Decitabine and immune checkpoint block-
ade promoted the greatest extent of regression. Although Decitabine
as a non-specific demethylating agent, upregulated Pdl1 expression
[56], Tfap2a could downregulate Decitabine-induced PdI1 upregula-
tion. However, the detailed regulation network needs to be deeply
investigated to optimize the safety and efficacy of Decitabine.

SPRINGER NATURE

Taken together, these studies describe AP-2a as a novel PD-L1
regulator in anti-glioma immunity and has ubiquitous therapeutic
implications for solid tumors. Understanding the mechanism of
AP-2a may provide more valuable information to control anti-
tumor immunity and suggest new combined strategies to combat
malignant tumors.

MATERIALS AND METHODS
Details of the following “Materials and methods” were described in the
Supplemental Materials and Methods.

Immunohistochemical (IHC) analysis

The experiments were approved by the Ethics Committee of Hunan
Normal University, and informed consent was obtained from all patients.
Polyformalin-fixed paraffin-embedded tissues were performed.

RNA extraction and qRT-PCR

Total RNA was extracted using TRIzol reagent and reverse transcribed into
cDNA. SYBR green (Invitrogen)-based real-time PCR was carried out using
ABI 7900 thermocycler.

Cell culture and transfection
Tumor cell lines were cultured in Dulbecco’s modified Eagle’s medium with
fetal bovine serum. PBMCs were cultured in RPMI 1640 medium.

Plasmid construction
Plasmids were constructed and sequenced by the Sanger method.

Generation of AP-2a-overexpressing cell lines
Lentiviral particles were generated, and tumor cells were infected and
screened according to standard procedures.

Immunoblotting, endogenous co-IP, luciferase assays, EMSA,
chromatin immunoprecipitation

For immunoblotting, cells were lysed in RIPA buffer and detected.

colP analysis was performed following the manufacturer’s protocol.

For the luciferase assays, the cells were cultured, and the expression of the
luciferase reporter gene was measured.

The EMSA was carried out following standard procedures.

ChIP was performed using an EZ-ChIP assay kit.

Immunofluorescence
Cells were treated and stained, fluorescence signals were analyzed using a
fluorescence microscope.

Flow cytometry

Cells were stained and detected on a FACSCalibur.

PBMCs were isolated by the Ficoll method and added to glioma cells. Cell
apoptosis was analyzed by an Annexin V-FITC/PI assay. The proportions of
stained T lymphocytes were measured by FACS analysis.

CD8™ T cells were fixed, blocked, and stained, followed by FACS analysis.

In vivo functional assays

For mouse models, tumor cells were subcutaneously or intracranially
injected into randomized mice. Anti-CD8 monoclonal antibodies, anti-PD-1
antibodies, or Decitabine were administrated by intraperitoneal injection
into tumor models.

Detection and sequencing of methylation sites in the AP-2a
promoter

Genomic DNA was modified by bisulfite treatment, amplified, inserted into
T-vector, and sequenced.

Statistical analysis
Statistical analyzes were conducted using GraphPad software (San Diego,
California, USA). P values of <0.05 were considered significant.
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