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Stacked ensemble machine 
learning for porosity and absolute 
permeability prediction 
of carbonate rock plugs
Ramanzani Kalule 1*, Hamid Ait Abderrahmane 1, Waleed Alameri 2 & Mohamed Sassi 1

This study employs a stacked ensemble machine learning approach to predict carbonate rocks’ 
porosity and absolute permeability with various pore-throat distributions and heterogeneity. Our 
dataset consists of 2D slices from 3D micro-CT images of four carbonate core samples. The stacking 
ensemble learning approach integrates predictions from several machine learning-based models into 
a single meta-learner model to accelerate the prediction and improve the model’s generalizability. We 
used the randomized search algorithm to attain optimal hyperparameters for each model by scanning 
over a vast hyperparameter space. To extract features from the 2D image slices, we applied the 
watershed-scikit-image technique. We showed that the stacked model algorithm effectively predicts 
the rock’s porosity and absolute permeability.

Determining geological rock properties such as absolute permeability and rock porosity is essential for oil and 
gas reservoir production, enhanced oil recovery, and CO2 injection and hydrogen storage1–3. Estimating reservoir 
properties can be challenging due to the heterogeneities and complexity of the reservoir rock structures, which 
can vary significantly across different geological formations and burial histories4. Rock properties such as perme-
ability can be determined experimentally in the laboratory by conducting core flooding. However, experiments 
are time-consuming, labour-intensive, and expensive5,6. Rock properties can also be estimated using numerical 
simulations; however, these methods require extensive computational resources and numerical skills to set up 
the simulations7,8. Recently, Digital rock physics (DRP) has been established as an efficient workflow to estimate 
the petrophysical properties of the rock sample, particularly in the case of homogenous rocks9,10. DRP relies on 
advanced imaging approaches, image processing techniques, and computational methods. The high-resolution 
digital images of pores and grains structures are used to conduct numerical simulations at the pore scale and 
infer rock properties such as porosity and directional permeability11–22. However, in the case of heterogeneous 
carbonate rocks comprising micro and nano-pores, predicting the rock properties using DRP workflow can have 
significant uncertainties4,13.

Several empirical and theoretical models correlate porosity, permeability, and other reservoir-based 
properties23–25. However, the generalizability of these correlations is limited because several reservoir property 
relationships are complex and nonlinear. Therefore, properties such as permeability cannot accurately be esti-
mated using simplified or linear relationships. Machine learning (ML) and deep learning (DL) approaches are 
considered alternatives to overcome the nonlinear dependencies of the properties of the rock structure. ML 
approaches aim to extract statistical patterns from CT images and correlate them to the rock properties. The 
efficiency of the ML model depends on its generalizability, i.e., making accurate predictions based on unseen 
structures and features.

ML and DL approaches can predict multiple rock properties from various rock samples in a few seconds 
with limited computational resources2,26–30. This presents a significant advantage compared to experimental 
measurements and numerical simulations, which do not allow the characterization of more than one reservoir 
sample at a time. Several successful studies on predicting porosity and absolute permeability from rock images 
using ML are found in the literature. For instance, Araya-polo et al.31 used DL to predict absolute permeability 
from 2D high-resolution images. They showed that DL accurately predicts absolute permeability in seconds. 
Wu et al.32 proposed a physics-informed Convolutional neural network (PIML-CNN) algorithm to improve the 
accuracy of the conventional convolutional neural network (CNN) algorithm in predicting absolute permeability. 
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They showed that DL efficiently estimates absolute permeability compared to flow dynamics simulations and 
the Kozeny-Carman equation. Alqahtani et al.33 used CNNs to estimate porosity using 2D image slices of Berea 
Sandstone with or without image segmentation34. Their results portrayed a good agreement with ground truth 
labels. Similarly, Alqahtani et al.33 applied CNNs to 2D greyscale micro-CT rock images33. They predicted poros-
ity with a less average error compared to the experimental measurements. Finally, Tembely and Alsumaiti35 
applied shallow learning and DL algorithms to 3D micro-CT images to determine absolute rock permeability. 
They observed that shallow learning combined with gradient boosting (GB) performs well concerning their 
predictions of absolute permeability. Additionally, they observed better performance from deep neural networks 
(DNN) than gradient boosting with linear regression analysis.

Despite achieving impressive success, machine learning models often struggle with generalizability to new, 
unseen data due to overfitting and limited training datasets. These models can also be prone to biases and vari-
ances, negatively impacting their predictive accuracy. Ensemble learning has been proposed to minimize model 
variances and overfitting and provide better predictions36–38. Boosting, bagging, and stacking are some types of 
ensemble learning proposed in the literature. Stacking presents strong prediction capability because it integrates 
several model predictions into a single meta-leaner39. This approach improves the model generalizability and 
prediction accuracy of the meta-learner. Several studies have demonstrated the power of model stacking and 
other ensemble learning techniques in predicting different properties better than individual models39–44. Jian 
et al. (2020) studied the integration of DNNs and several ensemble learning machines in bagging and boosting 
types to estimate missing well logs. Results showed that combining several machine learning models can improve 
predictions. The application of the stacking method to predict petrophysical properties is very limited. Only 
one relevant study used stacking to estimate absolute permeability in heterogenous oil and gas reservoirs from 
well-log data45. The authors showed that their Ensemble model outperforms the individual models in terms of 
generalizability.

In this work, we leverage the advantages of the stacking approach, an ensemble learning algorithm, to predict 
absolute permeability and porosity from carbonate rock pore-scale features. We adopt six ML-based linear and 
nonlinear regression algorithms, including deep neural networks. We use averaged pore properties extracted 
from 2D slices of 3D micro-CT carbonate rock images using the watershed-sci-kit-image technique as input 
features to our proposed models. The rest of the paper is organized as follows. First, the methodology section 
highlights the methods and resources used in this work. Finally, the predicted results are presented and discussed 
in the third section.

Methodology
This section discusses the approach and methodologies to predict rock porosity and absolute permeability. We 
first discuss the geological analysis of the core samples selected for the proposed dataset. Next, we present the 
laboratory methods for measuring rock porosity and absolute permeability. Finally, we present the image pro-
cessing protocol, feature extraction methods, and used regression techniques. Figure 1 illustrates the proposed 
general flow chart of the study.

Geological analysis of the dataset.  Figure 2 shows typical 2D micro-CT image slices from the 3D CT 
scans of four core plugs selected for this study, namely, Silurian dolomite (SD), Albion-4 carbonate (ALB), and 
real middle eastern carbonate rocks (TC & BB). The rock samples, measuring 3.8× 7.6cm , were scanned at 
various resolutions using the Xradia Versa 500 Micro-CT machine to obtain high-resolution 3D scans. Each 
3D image obtained from the micro-CT reconstruction procedure contains information about the local density 

Figure 1.   Proposed general flow chart.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9855  | https://doi.org/10.1038/s41598-023-36096-2

www.nature.com/scientificreports/

of the rock sample, which can be visualized as a stack of 2D images46. These core samples were selected because 
they present different pore-throat distributions, various levels of heterogeneity, and a large range of permeabil-
ity (10–400 mD). Figure 3a indicates the BB sample’s pore size distribution, which ranges from 0.001 to about 
0.9 µm. The pore size distribution of the SD sample ranges from 0.01 to 50 µm; see Fig. 3b. ALB sample displays 
a bimodal pore distribution around 0.01 µm and 8 µm, respectively; see Fig. 3c. The TC sample has a broad pore 
size distribution that ranges from 0.005 to 50 µm, see Fig. 3d, exhibiting higher levels of heterogeneity.

(a). BB (b). SD (c). ALB (d). TC

Figure 2.   2D Micro-CT image slices of the selected carbonate rock samples at different imaging resolutions. (a) 
BB: 14.01 µm, (b) SD: 5.32 µm, (c) ALB: 0.81 µm, (d) TC: 3.93 µm.

(a). BB (b). SD

(c). ALB (d). TC

Figure 3.   Pore-throat distribution plots of the selected rock samples.
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Laboratory measurements.  The porosity and absolute permeability of the four different heterogeneous 
carbonate rock samples were measured in the laboratory, and their values are summarized in Table 1. Based on 
Boyle’s law, the rock porosity was determined using a helium porosimeter. Mercury Injection Capillary Pressure 
(MICP) tests were conducted on the trimmed samples from the four rock samples. The MICP porosity obtained 
corresponds to the effective porosity and does not include uninvaded or isolated pores. The absolute permeabil-
ity is estimated using water (brine) injection pressure drop results at different flow rates and Darcy’s law.

Image processing.  The image processing techniques include image denoising, removal of artifacts, and 
classifying pixels into representative clusters34. These consist of converting images into pores and rock matrices. 
Image processing techniques are either manual or automatic19. The manual segmentation algorithms are usually 
subjective and depend on the operator’s experience. Moreover, the manual segmentation algorithms cannot be 
generalized to all samples33. On the other hand, automatic segmentation algorithms are less subjective, more effi-
cient, and generalizable47,48. As a result, automated segmentation algorithms are more implemented in the DRP 
workflow49. In this study, we apply the Otsu localized algorithm, an efficient automatic segmentation algorithm, 
to the watershed image segmentation technique to segment the selected images. This segmentation approach is 
less subjective to the operator’s inputs than several conventional methods6. Furthermore, the proposed method 
can reduce binarized image noise and retain much of the original image information50. Figure 4b presents an 
example of a segmented image obtained from the original image in Fig. 4a using the proposed algorithm.

Feature extraction using watershed scikit‑image technique.  The watershed technique extracts the 
regional features (RegionProps) of image pores from each 2D image as a dimensional parameter. The water-
shed function is implemented in the scikit-image Python module. This function allows the calculation of useful 
dimensional parameters, including area, equivalent diameter, orientation, major axis length, minor axis length, 
and perimeter, among others, that are evaluated for the different pores in each image. Here, fourteen Region-
Props features were extracted. These features represent compact and informative descriptions of the objects in 
the image and are used to reduce a high-dimensional micro-CT image into a lower-dimensional feature space to 
ease the analysis. The average proportions of these different regional parameters from each image are evaluated 
and stored in a matrix (6500 X 14); the number of images in the dataset by the fourteen features columns. Fig-
ure 4a shows an example of a 2D 224X224 slice of an original image. Figure 4 represents a watershed segmented 
image, while Fig. 4c presents a visual of the various extracted pores from the segmented image.

Exploratory data analysis (EDA).  We conducted an EDA on the extracted features in which a feature 
correlation analysis is performed to reduce the number of features into a subset of strongly correlated features to 
the target. To understand the relationships between input features and minimize multicollinearity, we performed 

Table 1.   Experimental values for the selected samples.

Sample Resolutions (µm)

Experimental values

Porosity Permeability (mD)

BB 14.01, 3.92 0.257 11.30

SD 13.24, 5.32 0.158 278.85

ALB 13.44, 4.24, 0.81 0.208 10.23

TC 3.93, 0.94 0.256 336.94

(a). Original Image (b). Segmented Image (c). Extracted pore features

Figure 4.   Original image, segmented image, and extracted regional (pore) features or properties.
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hypothesis testing with statistical inference analysis at a 0.05 level of significance (p-value). This selection of the 
significance level is entirely based on literature as a commonly used threshold in hypothesis testing51,52. We adopt 
the weighted squares statistical regression model53 to identify the most relevant features to the target features. 
Moreover, we implemented the Variance Inflation Factor (VIF) to minimize multicollinearity between features.

Stacked generalization.  Stacking (stacked generalization) is an ensemble machine-learning algorithm 
that blends various estimator predictions in a meta-learning algorithm. This technique combines predictions of 
heterogenous weaker learners in parallel as features and outputs for a better singular (blender or meta-learning 
model) prediction42. Combining these different models with different strengths and weaknesses can give a better 
prediction with minimal variances than a single model, mitigating overfitting, improving model robustness, and 
minimizing misleadingly high model performance scores42. This approach involves two levels. Level 1 involves 
several ML and/ or DL models trained independently on the same dataset for a unique performance score. Level 
2 consists of a meta-learner that leverages the individual performances of the previously trained models in level 
1 and trains on the same dataset to provide an improved performance score41.

A summarized stacking regression approach is presented in Table 2 and illustrated in Fig. 5. Consider-
ing cross-validation over the training dataset, the original dataset will be sliced into k-folds or partitions 
ℑ = (ℑ1,ℑ2, . . . ,ℑk) . Therefore, when trained on a given dataset ℑi and tested on, ℑ−i the first weak learner 
M1 will provide an output M1(xi) . In this case, the new dataset ℑ′ =

{

x′i , yi
}k

i=1
 −→(xi ∈ ℜn, yi ∈ ℜn) will be 

generated from predictions of weak learners Mn , as in Table 2.
In the literature, it is common practice to have a heterogeneous combination of base (weaker learners) 

models36. However, this is not the only option since the same type of model, such as the DNN, can be used with 

Table 2.   A summarized stacking generalization approach.

Figure 5.   A stacked generalization illustration.
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different configurations and trained on different parts of the dataset. Therefore, we used both practices in this 
study to evaluate their influence on model accuracy, predictions, and computational requirements. Below we 
present the capabilities of six (6) ML regression models adopted for stacking and predicting permeability and 
porosity. The machine models adopted include linear and nonlinear regression models discussed below.

1. Multiple linear regression (MR) is the most basic ML model with a single predictor variable that varies 
linearly with more than one independent variable. It assumes little or no multicollinearity between the vari-
ables, and the model residuals must be normally distributed. The main objective is to estimate the intercept 
and slope parameters defining the straight line best fitting the data. The most common method used to cal-
culate these parameters is the least squares method, which minimizes the sum of the squared errors between 
the predicted and actual values of the dependent variable. The objective function is given in Eq. 1, with the 
λ (tuning parameter) set to zero.
2. Ridge regression (RG) is an enhancement to MR, where the cost function is altered by incorporating a 
penalty term (L2 regularization) which introduces small amounts of bias to reduce the model complexity 
and improve predictions. If λ (tuning parameter or penalty) is set to zero in Eq. 1, the cost function equation 
reduces to the MR model. Here, xij are the m explanatory variables, e is the error value between the actual 
and predicted, while yi is a dependent variable. bj represents a set of model parameters to be estimated to 
minimize the error value. The cost function is expressed as.

3. Lasso regression (LR): (Least Absolute and Selection Operator) is another regularized approach of MR. 
Unlike RG, which involves a penalty to reduce model complexity and avoid overfitting, LR considers the 
absolute form of the individual feature weights (see Eq. 2). The cost function of LR is expressed as:

4. Random Forest Regression (RF): The RF is the most widely used machine learning algorithm because of its 
simplicity and high accuracy on discrete datasets; it is also computationally cheaper to apply. RF technique 
is employed to decorrelate the base learners by learning trees based on a randomly chosen subset of input 
variables and a randomly chosen subset of data samples54. The algorithm for training a greedy decision tree 
is presented in Table 3. The RF algorithm follows two essential aspects: the number of decision trees (esti-
mators) required and the average prediction across all estimators. The ensembled estimators can introduce 
randomness to the model while mitigating overfitting and improving model accuracy.
5. Gradient Boosting Regression (GB): The GB Algorithm (Table 3) is a machine learning algorithm for clas-
sification and regression problems. In Gradient Boosting Regression, a sequence of weak decision tree models 
is created in a step-by-step fashion, where each model attempts to correct the errors made by the previous 
model. First, this technique is trained on a continuous dataset to provide given output/s by an ensemble of 
several weaker learners (boosting), such as decision trees, into a stronger learner. Then, at a constant learning 
rate, the weak learners are fitted to predict a negative gradient updated at every iteration by a loss function. 
This algorithm is widely used due to its computational speeds and interpretability of the prediction55.
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Table 3.   RF and GB algorithmic definitions.
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DNNs have been recognized as powerful tools that provide accurate predictions in classification and regres-
sion problems in several scientific fields. For example, DNNs have been applied in petroleum engineering to 
predict different reservoir rock properties from well-logging resistivity measurements, seismic data, and numeri-
cal or experimental measurements56. Figure 6 presents an illustration defining the flow chart of neural networks. 
Here, all inputs are multiplied with their corresponding weights representing the strength of neurons and are 
controlled by a cost function. A weighted sum then adds together the multiplied values. The weighted sum is then 
applied to an activation function that delivers the network’s output. Considering a DNN with multiple output 
targets, the corresponding cost function based on mean square training errors is given as:

where ⌢yid are the target values, and yid are the network outputs associated with the network output k and train-
ing example d . The gradient descent rule is used to find hypothesis values to the weights that will minimize J(θ) . 
Table 4 shows the backpropagation algorithm used to find these weights. The weight-update loop in backpropa-
gation may be iterated thousands of times in a typical application. A variety of termination conditions can be 
used to halt the procedure.

The study also adopts DNNs as a regression approach to map the extracted features to absolute permeability 
and porosity. We train optimum DNN models (M1–M5) of a different number of hidden layers and the num-
ber of perceptrons in each layer to affect the model performance score. During the training of each model, we 

(3)J(θ) =
1

2

∑

d∈D

k
∑

i=1

(

⌢
yid − yid

)2

Figure 6.   A schematic diagram of a neural network.

Table 4.   The backpropagation algorithm of neural networks.

Backpropaga�on algorithm
1. Create a feed-forward network.
2. Begin ini�alizing all network weights
3. for each (x, t) in training examples do

I. Propagate the input forward through the network.
a. Input instance x to the network and compute Ou of every unit u in the network.

II. Propagate errors backwards through the network.
a. for each network output unit k, the error term is: ← ( − )( − )

b. for each hidden unit h, the error term is: ← ( − )∑ ∈

c. update each network weight wji:    ← + ∆ , where;  ∆ = )

Table 5.   DNN model architectures.

Model (M) Hidden layer 1 Dropout layer 1 Hidden layer 2 Dropout layer 2

1 128 – – –

2 128 – 64 –

3 224 – 128 –

4 128 0.1 64 0.1

5 224 0.2 128 0.2
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investigated and adopted the optimum hyperparameters of batch size, number of epochs, and a suitable optimizer 
for each model through a constrained randomized search (RSO) approach.

The ensemble stacking approach is designed to stack multiple predictions from three (3) linear and two 
(2) nonlinear machine learning-based models into a meta-leaner linear model (SMR-ML). The method is also 
designed to stack various predictions from multiple DNN networks of various levels of model complexity (the 
number of hidden layers and perceptrons per layer (Table 5). Individual predictions ( P1 − P5 ) from the five 
DNN model ( M1 −M5 ) architectures are stacked together into a meta-leaner linear model (SMR-NN). Each 
model is trained and saved independently on an optimum hyperparameter space in both stacking cases. To 
demonstrate the capabilities of the proposed approach, we select the multiple linear regression model (SMR) as 
the meta-learning model57.

Hyperparameter tuning.  Hyperparameters, such as the size of the network, the learning rate, the num-
ber of layers, and the type of activation function, control the learning process of a machine learning model. By 
adjusting these parameters, the model’s performance can be improved. Hyperparameter tuning, the process of 
identifying the best training hyperparameters of a single model, is tedious and usually based on trial and error. 
However, it is possible to recommend searching the hyperparameter space for the best hyperparameters that can 
deliver the best model score. Two generic tuning methods widely used include the exhaustive grid search (EGS) 
and the randomized parameter optimization (RSO). The EGS is a compelling approach but computationally 
expensive58,59. In this study, we adopt the randomized parameter optimization method, which implements a 
randomized parameter search over selected model hyperparameters. Compared to the EGS, the addition of none 
influencing parameters into the pool of RSO-selected parameters does not affect the efficiency of the approach. 
Note that the selected best hyperparameters are entirely based on the dataset used and may change for other 
datasets.

Metrics and hyperparameters.  This study adopts the mean squared error (MSE) as a loss function. MSE 
is widely used in ML-based regression models. The MSE gives the mean value of the square differences between 
the target set points and the regression line, expressed in Eq. (4).

Additionally, we adopt the mean absolute error (MAE) function (Eq. 5), a metric related to the mean of the 
absolute values of each prediction error on the test data. P is the property operator, which is a function of the 
inputs and the weights of the predictor network. This may also be identified as an activation function. Θ denotes 
the model weights, li represents the actual labels, and N represents the dataset size.

Typically, when conducting regression analysis with multiple inputs, it is advisable to rescale the input dataset 
to account for variations in their influence on the dependent variable60. We tested various scaling techniques, 
including min–max scaling, absolute maximum scaling, and standardization. Based on our evaluation, stand-
ardization, which transforms the data to a normal distribution, yields the best results. Hence, we applied stand-
ardization (Eq. 6) to the dataset before training and evaluating the regression models discussed61. A dataset split 
of 80:20 in percentage is considered for the training and testing of the models. In Eq. (6), x represents the model 
inputs, µ denotes the mean, and σ is the standard deviation of the data.

The proposed models are trained and evaluated against test data using the coefficient of determination (R2) 
see Eq. (7). R2 is a goodness-of-fit measure of the model predictions to the actual targets. It ranges between 0 
and 1 or is expressed as a percentage. The higher the R2, the more accurate the model is in predicting the targets, 
where yi ,

⌢
yi and yi represent the targets, predictions, and mean values, respectively.

The proposed models are implemented using the Python platform. The RSO hyperparameter search is done 
using a single CPU node of a high-performance computer (HPC). Model training and testing were done using 
a NVidia GeForce Titan graphics card system with 12 Gigabyte memory, core i7 of 8th generation.

Results
Several ML models, including DNNs, have been optimally trained on the dataset of extracted features (pore 
properties). These features were extracted from 2D slices of 3D micro-CT images from four carbonate rock 
samples. The selected carbonate rock samples were scanned at various image resolutions, representing a wide 
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range of pore throat distributions and different levels of heterogeneity. Finally, the trained models are tested on 
unseen 2D slices to predict both porosity and absolute permeability for single and multi-output considerations.

In the EDA, we identified the most important features that were highly correlated with permeability and 
porosity. However, we also noticed that some features exhibited high multicollinearity between them, leading to 
unstable model predictions and inflated errors. To mitigate this issue, we dropped some of the highly correlated 
features, such as the area and the mean Intensity, while also considering the relevance of all features to the target 
predictions. By doing so, we could select a set of features that maximized the predictive power of the models while 
minimizing multicollinearity. The remaining features included the bounding box area, the convex area, eccen-
tricity, equivalent diameter, orientation, perimeter, filled area, solidity, major and minor axis length, minimum 
and maximum Intensity. Figure 7 presents the differences between the VIF before and after feature reductions. 
The plot shows that there was a significant reduction in VIF values after dropping the highly correlated features.

Figure 7.   Variance inflation factor (VIF) before and after feature reduction.

Table 6.   ML: model optimal hyperparameters.

Model Hyperparameter space

MR normalize = True, fit intercept = True

LR n_alphas = 50, max_iter = 2000, eps = 0.0001, cv = 3

RG normalize = True, fit intercept = True, cv = 3

RF n_estimators = 1400, min_samples_split = 2, min_samples_leaf = 1, max_features = ’auto’, max_depth = 100, bootstrap = True

GB n_estimators = 1200, min_samples_split = 5, min_samples_leaf = 4, max_depth = 10, loss = ’ls’, learning_rate = 0.1, crite-
rion = ’mse’

SMR-ML normalize = True, fit intercept = True

Table 7.   SMR-NN: DNN optimum hyperparameters.

Model Optimizer Epochs Batch size Best Score (R2)

M 1 Adam 150 64 0.77

M 2 Adam 150 32 0.96

M 3 Adamax 150 32 0.97

M 4 Nadam 150 32 0.96

M 5 Adam 100 128 0.96

SMR-NN normalize = True, fit_intercept = True 0.96
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For each of the selected models, we identify an optimal hyperparameter space from a vast array of significant 
hyperparameters for each proposed model. We used five-fold cross-validation RSO over a good grid of parameter 
values and functions and hundred iterations. As a result, the model generates a unique set of optimal hyperpa-
rameters for every iteration with a particular fold. This enhances precision, performance, and shorter training 
periods. Table 6 presents a set of evaluated optimal hyperparameters for each model selected in SMR-ML. Regard-
ing the SMR-NN, by fixing the model architectural structures (Table 5), we identify a set of optimal hyperparam-
eters for each of the selected DNN models based on the dataset. Table 7 presents the results obtained from the 
selected hyperparameter space and the best score (R2) based on two outputs of both porosity and permeability.

Figure 8 shows the performance of the different selected ML models for single and multi-output configura-
tions, while Fig. 9 shows the corresponding computational time requirement. The R2 and computational time 
of the linear models are significantly low (R2 ∼ 0.5). The influence of L1 and L2 regularization is also visible in 
the implementation of the LR and RG models compared to the MR model in terms of computational time, but 
there is no significant improvement in model performance. Figure 10 presents the corresponding mean absolute 
error values for the proposed models tested on unseen data. The test results reflect model performance during 
training in linear and nonlinear models. Tables 8 and 9 show the overall performance (R2 and Test-MAE) and 
computational time (C. Time) requirements of the proposed stacked models, which were trained using the 

Figure 8.   SMR-ML model performances with different target configurations.

Figure 9.   SMR-ML computational time requirements with different target configurations.

Figure 10.   SMR-ML test MAE with different target configurations.
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optimal hyperparameters shown in Table 6. In Fig. 11, the performance of DNN models improves as the model 
complexity increases. However, this performance improvement increases computational time (Fig. 12). Between 
models M4 and M5, we observe a decline in computational time with an increase in perceptron dropouts. How-
ever, this slightly increases the testing mean absolute error (Fig. 13).

Tables 10, 11, 12, and 13 compare the average prediction of porosity and absolute permeability (from unseen 
image slices) with single and multi-output stacking approaches values to experimental values. In a single out-
put arrangement, the SMR-NN and the SMR-ML model get promising results with average percentage error 
values ranging between 0.01–0.12% and 0.01–0.06% for porosity, and 0.22–1.38% and 0.16–15.8% for absolute 
permeability, respectively. On the other hand, with a multioutput arrangement, the SMR-ML outperforms the 
SMR-NN model, with average percentage errors for both porosity and absolute permeability ranging between 
0.64–1.7% and 1.5–5.93%, respectively.

Table 8.   General performance for the different ML models for both single and multi-output targets.

MR LR RG RF GB SMR-ML SMR-NN

Single-output (porosity)

 R2 0.52 0.52 0.48 0.99 0.99 0.99 0.99

 MAE 0.08 0.08 0.09 0.0003 0.0004 0.0012 0.0015

 C. Time (min) 0.1 0.01 0.001 2.1 9.6 55.6 4.8

Single-output (permeability [mD])

 R2 0.28 0.28 0.25 0.99 0.99 0.99 0.95

 MAE 1.13 1.14 1.20 0.0023 0.0003 0.0002 0.012

 C. Time (min) 0.4 0.05 0.001 2.3 95.7 229.4 4.5

Multi-output (porosity and permeability [mD])

 R2 0.39 0.39 0.39 0.93 0.92 0.93 0.96

 Test_MAE 0.61 0.61 0.61 0.11 0.09 0.11 0.02

 C. Time (min) 0.3 0.6 0.001 0.2 8.5 10.0 12.1

Table 9.   General performance for the different DNN models for both single and multi-output targets.

M1 M2 M3 M4 M5 SMR-ML SMR-NN

Single-output (porosity)

 R2 0.88 0.99 0.97 0.97 0.96 0.99 0.99

 MAE 0.009 0.002 0.003 0.003 0.004 0.001 0.002

 C. Time (min) 0.5 1.2 1.1 1.7 0.3 55.6 4.8

Single-output (permeability [mD])

 R2 0.58 0.90 0.92 0.92 0.90 0.99 0.99

 MAE 0.06 0.02 0.014 0.02 0.02 0.0002 0.012

 C. Time (min) 0.4 1.1 1.1 1.5 0.3 229.4 4.5

Multi-output (porosity and permeability [mD])

 R2 0.77 0.95 0.96 0.96 0.95 0.93 0.96

 MAE 0.12 0.02 0.03 0.02 0.03 0.107 0.018

 C. Time (min) 1.2 2.5 3.5 4.4 0.5 10.0 12.1

Figure 11.   SMR-NN model performances with different target configurations.
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Figures 14 and 15 present a permeability–porosity cluster plot demonstrating the robust prediction capa-
bilities of the SMR-ML and SMR-NN models for single and multioutput arrangements, respectively. The plot 
showcases the accuracy of the models in predicting permeability and porosity values from the testing (unseen) 
dataset while highlighting the tight clustering of the predicted values to the true values, indicating their consist-
ency and reliability.

Figure 12.   SMR-NN computational time requirement with different target configurations.

Figure 13.   SMR-NN test MAE with different target configurations.

Table 10.   SMR-ML model single-output target predictions.

Sample

Experiments Prediction

Av. % errorPorosity Permeability Porosity Permeability (mD)

BB 0.257 11.30 0.257 12.21 4.07

SD 0.158 278.85 0.158 279.30 0.10

ALB 0.208 10.23 0.208 8.61 7.91

TC 0.256 336.94 0.256 337.60 0.13

Table 11.   SMR-NN model single-output target predictions.

Sample

Experiments Prediction

Av. % errorPorosity Permeability Porosity Permeability (mD)

BB 0.257 11.3 0.257 11.44 0.64

SD 0.158 278.85 0.158 278.13 0.16

ALB 0.208 10.23 0.208 10.09 0.69

TC 0.256 336.94 0.256 336.20 0.17
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Discussions
In machine learning models, results show a strong nonlinear relationship between the input features and all the 
targets. Regarding computational resources, nonlinear models require higher computational time to train than 
linear models. Interestingly, when we focus on both linear and nonlinear ML models, we see that linear models’ 
predictive capability is relatively limited for single and multi-output considerations. We also observe that add-
ing regularization hyperparameters to the MR model to form RG and LR decreases the computational training 
requirement of the model (Fig. 8). However, this presents no significant improvement in model performance, 
especially the RG model, with a decline registered (Fig. 7).

On the other hand, the robustness achieved in both RF and GB due to the accumulation of performances from 
several estimators enables them to capture the nonlinearities in the dataset. Regarding stacking, the approach 
yields better performance and predictive accuracy. However, the tradeoff is that this approach requires more 
computational time to train than the original linear model (MR) and the proposed individual models. Results 
show that the generalizability error of individual deep neural network (DNN) models can vary considerably 

Table 12.   SMR-ML model multi-output target predictions.

Sample

Experiments Prediction

Av. % errorPorosity Permeability Porosity Permeability (mD)

BB 0.257 11.30 0.257 11.01 1.29

SD 0.158 278.85 0.157 283.95 1.23

ALB 0.208 10.23 0.208 10.57 1.70

TC 0.256 336.94 0.257 333.96 0.64

Table 13.   SMR-NN model multi-output target predictions.

Sample

Experiments Prediction

Av. % errorPorosity Permeability Porosity Permeability (mD)

BB 0.257 11.3 0.237 11.84 1.50

SD 0.158 278.85 0.150 280.29 2.27

ALB 0.208 10.23 0.216 11.15 5.93

TC 0.256 336.94 0.249 318.29 4.13

Figure 14.   Permeability–porosity cluster plot demonstrating the robust prediction capabilities of the single 
output SMR-ML and SMR-NN models.
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during training. Therefore, quantifying the model’s complexity is essential to guarantee precision. By stacking 
multiple individual DNN models, we obtain a more robust model that improves generalizability and predictive 
power. This method is also more efficient computationally than stacking machine learning models. However, we 
identify that even with poor-performing weak learners, the SMR-ML model outperforms the SMR-NN regarding 
predictive accuracy, particularly in the multioutput arrangement. This improved performance of SMR-ML over 
SMR-NN may be attributed to the bias-variance tradeoff, in which DNNs are likely to present higher variances, 
which can lead to more diverse predictions compared to machine learning models.

Regarding the output size, both SMR-ML and SMR-NN models could accurately predict porosity values in 
a single output arrangement. However, SMR-ML struggled to accurately capture the wide range of permeability 
values, as seen in Fig. 14. This could be due to the strong nonlinear relationship between the inputs and the 
permeability values. On the other hand, SMR-NN could capture a wide range of permeability values but at the 
expense of porosity values. In the multioutput arrangement, SMR-ML could predict porosity values accurately, 
but it tended to under-predict absolute permeability, particularly at high values. Overall, the results suggest that 
SMR-NN may be a better choice when predicting permeability values in this dataset due to its ability to capture 
the nonlinear relationships in the data. However, SMR-ML remains a good option for predicting porosity values.

The results show that the meta-learner learned using trained, weaker learners can improve model performance 
and generalizability. We also observe that stacking independent models takes prohibitive time for training. 
Considering our approach is based on 2D slices of very complex carbonate rock micro-CT images, these results 
encourage the adoption of stacked ensemble learning for the petrophysical data determination of core plugs.

Our primary goal in this study is to show that stacked ensemble machine learning models outperform tradi-
tional machine learning models for predicting carbonate rock formations’ porosity and absolute permeability. 
However, we identified some limitations associated with this study. First, like any machine learning implementa-
tion, the accuracy of the prediction models heavily depends on the quantity and quality of the input data. Factors 
such as the normalization techniques and data partitioning strategy can also impact the model’s performance. 
In this study, for instance, we combined data from multiple core samples and randomly selected them for train-
ing and testing, which may lead to overestimating or underestimating the model’s performance. Second, the 
stacked ensemble machine learning approach can be computationally expensive and time-consuming, posing 
challenges for specific applications with limited computational resources. Therefore, considering the computa-
tional requirements and time constraints when applying this approach in practical scenarios is essential. Third, 
we acknowledge that the heterogeneity of carbonate reservoirs can be substantial; therefore, model prediction 
might not accurately reflect the whole reservoir’s properties. Increasing the dataset’s number of 3D core image 
samples from various spatial locations of the reservoir could remedy this issue. In subsequent works, we plan 
to use deep convolutional neural networks to predict absolute permeability and porosity using actual carbonate 
image data. In addition, we plan to investigate the impact of transfer learning, model size, and dataset size on 
performance and prediction accuracy.

Figure 15.   Permeability–porosity cluster plot demonstrating the robust prediction capabilities of the 
multioutput SMR-ML and SMR-NN models.
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Conclusion
The present study highlights the limitations and challenges associated with predicting petrophysical properties 
from 2D images for reservoir characterization and proposes stacked ensemble machine learning as a work-
flow to increase the predictive accuracy of 2-D image analysis. We showed that combining stacked ensemble 
machine learning models and well-established image analysis techniques (image pore properties or RegionProps) 
can enhance traditional machine learning methods’ predictive accuracy and effectiveness. Perhaps it is worth 
highlighting that the proposed stacked ensemble machine learning is applied in the context of carbonate rock 
formations, which pose challenges due to their inherent heterogeneity and complex pore structures and where 
the applications of statistical and machine learning techniques to predict porosity and permeability are limited.

In this paper, we developed a workflow and presented the capabilities of various ML models, including 
DNNs, to predict carbonate rocks’ absolute permeability and porosity. We utilized a large dataset of pore features 
extracted from 2D slices of 3D micro-CT images of four complex carbonate core plugs. To minimize model vari-
ances and mitigate overfitting, we used a novel ML approach (stacking) that integrates several ML and DL models 
to predict porosity and absolute permeability. We compared ML-based, DNN-based models and stacking meth-
ods regarding performance and computational time requirements. Obtained results show that both SMR-ML 
and SMR-NN can outperform the individual proposed models regarding predictive accuracy. However, results 
also show that the computational time of stacked models is generally higher than individual models. Therefore, 
the choice between stacked ensemble and single models should be made based on a tradeoff between prediction 
accuracy and computational efficiency.

Furthermore, we found that stacking workflow improves model generalizability. We also found that the DNNs 
perform slightly better than the individual ML models. This means the linear models perform and generalize less 
than the nonlinear ones, requiring higher computational time. Finally, we show that stacked models can predict 
permeability and porosity with average errors of 1.2% for SMR-ML and 3.5% for SMR-NN models. This study 
provides a workflow for predicting the petrophysical properties of complex rock samples based on micro-CT 
images. With a trained ML model, predicting target properties can take a few seconds compared to the time and 
cost-consuming numerical simulations and experiments.

Data availability
Data and codes accessible vias: Stacking-Ensemble: https://​github.​com/​kalx-​cyber/​Stack​ing-​Ensem​ble.
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