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Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate 
specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, 
is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing 
ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel 
composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by 
distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 
deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells 
within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 
mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental 
structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch 
and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We 
propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain 
distinctive cell fates within organs and tissues along evolution.
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Introduction

The Notch pathway is an evolutionarily conserved signaling 
mechanism that enables adjacent cells to adopt different 
fates [1–5]. In Drosophila, the Notch gene encodes a 
transmembrane receptor with a large extracellular domain 
carrying multiple epidermal growth factor (EGF)-like 

repeats and a cytoplasmic domain required for signal 
transduction. The Notch receptor interacts with membrane-
bound ligands encoded by the Delta and Serrate genes that 
in their extracellular domain contain the DSL domain (Delta, 
Serrate, Lag-2). The DSL domain is required for interaction 
of ligands with the Notch receptor [6, 7]

In vertebrates, four genes encoding Notch receptors 
(Notch1, Notch2, Notch3, and Notch4) and five genes 
encoding ligands for the Notch receptors (Jagged1, 
Jagged2, Delta-like1, Delta-like3, and Delta-like4) have 
been identified [5, 8, 9]. The signal induced by ligand 
binding is transmitted at the intracellular part of the 
receptor in a process involving proteolysis and interactions 
with cytoplasmic and nuclear proteins [1, 10–17]. 
Signals exchanged between neighboring cells through 
the Notch receptors influence cell fate determination, 
differentiation, proliferation and apoptotic events at all 
stages of development, thus controlling organ formation 
and morphogenesis [8, 9, 17–20]. The increasing number 
of Notch homologues in vertebrates, together with the 
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absence of Notch genes in non-metazoans, suggests a role 
for the Notch signaling pathway in the establishment of 
complex body plans [21, 22]. Notch malfunction has been 
shown to disrupt aspects of neurogenesis, somite formation, 
angiogenesis, kidney and lymphoid development [9, 16, 
23–30]. In humans, mutations in the Notch1, Notch3 and 
Jagged1 genes are associated, respectively, with a neoplasia 
(a T-cell acute lymphoblastic leukemia/lymphoma), a late 
onset neurological disease known as CADASIL (cerebral 
autosomal dominant arteriopathy with subcortical infarcts 
and leukoencephalopathy) and a complex inherited disorder 
known as Alagille syndrome (affecting mainly the liver, 
heart, vertebrae, eye and face) [9, 31–34].

Several studies have demonstrated that Notch signaling is 
involved in tooth morphology and enamel matrix deposition 
[35–42]. Teeth are organs that arise from progressive 
reciprocal inductive interactions between the stomodeum 
epithelium and the underlying neural crest-derived 
mesenchyme that transform the tooth primordia into complex 
mineralized structures with various cell types, among which 
the epithelial-derived ameloblasts that synthesize and secrete 
the organic components of the enamel [43–45]. Initiation of 
odontogenesis is visualized as local epithelial thickenings of 
the oral epithelium, at the sites of the future teeth [45–47]. 
Thereafter, the thickened epithelium grows and forms the 
dental bud and cap structures that mark the onset of the tooth 
morphology. Subsequent epithelial folding and growth gives 
rise to a bell structure where cytodifferentiation events start. 
In mammals, four clearly distinct dental epithelial cell layers 
(i.e., inner enamel epithelium, stratum intermedium, stellate 
reticulum and outer enamel epithelium) are present at this 
stage that are important for amelogenesis. However, to date, 
there is not much information concerning the role of the 
Notch signaling pathway in gradual cell fate determination 
and differentiation of these dental epithelial cell lineages.

Since the core Notch pathway requires two adjacent 
cells in direct contact with each other, we examined if 
Jagged2 deletion affects Notch1 and Notch2 expression in 
the epithelium of developing mouse teeth. We have recently 
shown that epithelial deletion of Jagged1 deregulated the 
expression of both Notch1 and Notch2 in dental epithelium 
[48]. Based on our recent findings and the results obtained 
here we suggest a hypothetical model involving molecules 
of the Notch signaling pathway in dental epithelial cell 
morphotype and function. The proposed model could unravel 
a general, functional correlation between the evolution of the 
discrete expression of Notch receptors and its ligands and 
the evolution of specialized dental cell types.

Materials and methods

Notch receptors and ligands in evolution

To obtain an overview of the Notch receptors and ligands 
in evolution and their conservation among vertebrates, we 
screened available protein sequences from representative 
species of five main classes: fishes (Zebrafish—Danio rerio), 
amphibians (Western Clawed Frog—Xenopus tropicalis), 
reptiles (Common Wall Lizard—Podarcis muralis), birds 
(Chicken—Gallus gallus), and mammalians (Human—
Homo sapiens). We then aligned all receptors and ligands 
sequences via ClustalW [49].

Animals and tissue preparation

All mice (C57Bl/6) were maintained and handled according 
to the Swiss Animal Welfare Law and in compliance with 
the regulations of the Cantonal Veterinary office, Zurich 
(License 11/2014). Mouse embryos from embryonic day 
12.5 (E12.5) to E18.5 were used for in situ hybridization. 
Jag2DDSL mutant mice have been described previously 
[50, 51]. E12.5–E18.5 wild type, Jagged2+/− and 
Jagged2−/− mouse embryos were obtained by intercrossing 
Jag2DDSL/+ mice. Embryonic age was determined according 
to the appearance of the vaginal plug (day 0) and confirmed 
by morphological criteria. Pregnant females were sacrificed 
by cervical dislocation and the embryos were removed in 
Dulbecco’s phosphate-buffered saline (PBS). Dissected 
heads were fixed in 4% paraformaldehyde (PFA) for 24 h at 
4 °C and prepared for sectioning.

Probes and in situ hybridization

Digoxigenin- and f luorescein-labeled (Boehringer 
Manhnheim) antisense riboprobes for Jagged2, Notch1 
and Notch2 were used [40, 51]. In situ hybridization on 
cryosections of E12.5–E18.5 embryos were performed 
as previously described [39, 40, 52]. Double in situ was 
performed using first the fluorescein probe, followed by the 
digoxigenin one.

Results

Overview of Notch receptors and ligands 
in vertebrates

Alignement of representative protein sequences of all 
Notch receptors and ligands in species of five main classes 
(fishes, amphibians, reptiles, birds, mammalians) showed 
that Notch1, Notch2 and Notch3 were broadly identified in 
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Fig. 1  Overview of Notch 
receptors and ligands among 
vertebrates. A Circular 
phylogram (guide tree) obtained 
from the alignment of protein 
sequences (ClustalW) of Notch 
receptors from five selected 
vertebrate species. B Circular 
phylogram (guide tree) obtained 
from the alignment of protein 
sequences (ClustalW) of Notch 
ligands from five selected 
vertebrate species. Notice that 
connections indicate sequence 
similarities as determined from 
multiple alignment (5 iterations) 
and do not necessarily imply 
phylogenetic relationships. 
Fish: Danio rerio (Zebrafish); 
Amphibian: Xenopus tropicalis 
(Western Clawed Frog); Reptile: 
Podarcis muralis (Common 
Wall Lizard); Bird: Gallus 
gallus (Chicken); Mammalian: 
Homo sapiens (Human)
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these classes. Notch orthologues in different classes showed 
higher sequence identity than paralogues within the same 
class (Fig. 1A). Notch4 was identified only in mammalians, 
and represented a clear side branch. Notch ligands clustered 
separately in the families of Jagged and Delta-like (Dll) 
ligands (Fig. 1B). Similarly to the Notch receptors, Notch 
ligands showed higher identity between orthologues, with 
Jagged1, Jagged2, Delta-like1 (Dll1), Delta-like3 (Dll3), 
Delta-like4 (Dll4) forming each separate branches.

Notch1, Notch2 and Jagged2 expression 
during embryonic tooth development

To be able to interpret the role of the Notch signaling 
pathway in tooth evolution linked to the cell diversity 
of the enamel organ we first determined the expression 
pattern of Notch1, Notch2 and Jagged2 in development 
from sections of E12.5–E18.5 mouse teeth. At E12.5–13.5 
dental epithelium (bud stage), Jagged2 expression was 
observed in epithelial cells in contact with the condensed 
mesenchyme (Fig. 2A, red color), while Notch1 and Notch2 
transcripts were detected in distinct epithelial territories 
adjacent to the Jagged2-expressing cells (Fig. 2A, blue 

Fig. 2  Comparative analysis 
of the expression patterns of 
Jagged2, Notch1 and Notch2 
in dental epithelium during 
embryonic tooth development. 
In situ hybridization on frontal 
cryosections of E13.5–E18.5 
mouse embryos (A–E). A At 
E13.5 (bud stage), Jagged2 
transcripts (red color) are 
detected in dental epithelial 
cells in contact with the 
condensed mesenchyme 
(cm), while Notch1 mRNA 
(blue color) is observed in the 
neighboring to the Jagged2-
expressing cells. B At E14.5 
(cap stage), Jagged2 transcripts 
(red color) are found in dental 
epithelial cells contacting the 
dental papilla mesenchyme 
(dp), whereas Notch1 transcripts 
(blue color) are restricted to 
cells overlying the Jagged2-
expressing cells. C, D At 
E18.5 (bell stage), Jagged2 
expression is restricted in cells 
of the inner enamel epithelium 
(iee) (C), while expression 
of Notch1 is delimited to 
cells of the overlying stratum 
intermedium layer (si) (D). 
E At the bell stage (E18.5), 
Notch1 transcripts (red color) 
are detected in cells of the 
stratum intermedium, while 
Notch2 mRNA (blue color) is 
observed in cells of the stellate 
reticulum (sr). F Schematic 
representation of the expression 
patterns of Notch1, Notch2, 
Jagged1 and Jagged2 in dental 
epithelium of E13.5–E18.5 
molar tooth germs. de dental 
epithelium, oe oral epithelium, 
oee outer enamel epithelium; 
p dental pulp. Scale bars A, B, 
E = 100 μm; C, D = 25 μm
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color; Fig. 3A, B). During the cap stage (E14.5–E15.5), 
Jagged2 transcripts were detected in dental epithelial 
cells contacting the dental papilla mesenchyme (Fig. 2B, 
red color), whereas Notch1 labeling was restricted to 
cells overlying the Jagged2-expressing cells (Fig. 2B, 
blue color). At the bell stage (E16.5–E18.5), Jagged2 
expression was observed in cells of the inner enamel 
epithelium (Fig. 2C), while expression of Notch1 was 
found in a differentiated cell layer behind, as the stratum 
intermedium (Fig. 2D; Fig. 2E, red color; Fig. 4A, E, I) 
and that of Notch2 in middle cells of the stellate reticulum 
and as well as in outer enamel epithelium (Fig. 2E, blue 
color; Fig. 4C, G, K).

Downregulation of Notch1 and Notch2 expression 
in Jagged2−/− teeth

To analyze the effects of Jagged2 deletion in other molecules 
of the Notch signaling pathway, we examined the expression 
of Notch1 and Notch2 in teeth of E12.5–E18.5 Jagged2 
deficient embryos. At E12.5 (early bud stage), the expression 
of both Notch1 (Fig. 3C) and Notch2 (Fig. 3D) was severely 
downregulated in the dental epithelium of homozygous 
mutant embryos. Downregulation of these two genes, but 
to a lesser extent for Notch2 when compared to Notch1, 
persisted at more advanced developmental stages. Very 
few, if not at all, Notch1 transcripts were detected in cells 
of the stratum intermedium of E16.5 (Fig. 4B, F) and E18.5 
(Fig. 4J) Jagged2−/− mouse embryo teeth. Similarly, Notch2 
expression was greatly reduced in cells of the outer enamel 
epithelium and stellate reticulum of E16.5 (Fig. 4D, H) and 
E18.5 (Fig. 4L) Jagged2−/− teeth.

Discussion

Evolutionary processes have contributed to the extensive 
diversification of cell types in animals. Cell homology 
in an increased number of new cell types that appeared 
during animal evolution could be due to inheritance 
from a common precursor [53, 54]. Notch signaling is an 
ancient, evolutionarily conserved signaling pathway that 
allows distinctive cell types with defined functions to be 
delineated and compared within and between species [1]. 
Evolutionary changes in the genome coding for molecules 
of the Notch pathway from the simplest to the most complex 
organisms could have permitted the sprouting of distinct 
sister cell types and ensure their independent evolution 
by regulating cell-type specific traits. The Notch gene 
has been initially identified in Drosophila melanogaster 
[55]. Insects, Ciona  species, sea urchin and amphioxus 
carry only one Notch copy [21, 22]. The two Notch copies 
in  Caenorhabditis elegans (C. elegans), resulted from 
an independent duplication event within its linage [56], 
differ from the Notch copies from other taxa. Four Notch 
paralogues (i.e., Notch1, Notch2, Notch3, Notch4) have been 
found in invertebrates and vertebrates [9]. It is believed 
that Notch1, Notch2 and Notch3 have originated by two 
duplication events in vertebrates prior to the divergence of 
mammals, birds, reptiles, amphibians and teleost [21, 22] 
(Figs. 1 and 5). Notch2 has emerged from Notch1, possibly at 
the first round of duplication events in vertebrates, whereas 
Notch2 duplication led to the appearance of Notch3. The 
exclusive presence of a second Notch1 copy in fishes 
might be due to an independent duplication event after the 
differentiation of tetrapoda and teleost fish [21, 57]. The 
Notch4 gene has been identified only in mammals and its 
origin is still under debate [22]. Notch evolution in birds and 
reptiles is still unclear: Notch3 has not yet identified in birds, 
while both Notch3 and Notch4 have not detected in reptiles 
[21, 22]. A more thorough sequencing of avian and reptile 
genomes could elucidate the Notch evolutionary gap between 
teleost fish and mammals. Albeit this lack of information, 
it is well-established that Notch genes are highly conserved 
throughout metazoans [21, 22]. There is still no evidence of 
the existence of Notch genes in any group besides metazoan 
phyla, suggesting that Notch appeared as a necessity for 
complex cellular communication and organization.

The canonical Notch signaling pathway mediates 
interactions between two neighboring cells, one of which is 
the signaling cell and the other is the receiving cell, via the 
physical interaction of the ligand with the Notch receptor 
at the cell surface [8]. It is well-established that the fine 
regulation of the Notch pathway is efficient for the activation 
of distinct downstream mechanisms in both developmental 
and evolution processes. Therefore, Notch is essential for 

Fig. 3  Expression of the Notch1 and Notch2 genes in the developing 
tooth areas of E12.5 Jagged2 heterozygous (+/−) and homozygous 
(−/−) mouse embryos. Genotypes are indicated in each panel. In situ 
hybridization on frontal cryosections. Red dotted lines represent the 
borders between the dental epithelium (de) and mesenchyme (m). 
Notch1 (A) and Notch2 (B) are expressed in distinct cell populations 
of the dental epithelium in heterozygous embryos. Notch1 (C) and 
Notch2 (D) genes are not detected in dental tissues of homozygous 
embryos. Scale bars 100 μm
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the formation of complex and exquisite tissues that require 
often the cooperation of different cell types with discrete 
functions. By directing cell fates toward proliferation, 
differentiation, self-renewal, or cell death, Notch signaling 
is also involved in the assemblage of distinct cell populations 
that will accomplish the refined, ordinated and complex 
mechanisms for the generation of a unique tissue. For 
example, duplicated Notch paralogues expressed in the 
cerebral cortex resulted in progenitors’ clonal expansion and 
improved neurogenesis [58, 59]. Deletion of the partially 
duplicated NOTCH paralogues (NOTCH2NL) in the human 
cortex induced microcephaly, while their duplication caused 

megacephaly [58]. These findings suggest that appropriate 
Notch signaling supplementation in higher vertebrates might 
contribute to the evolution of specific tissues. The numerous 
and distinct roles of Notch signaling in vertebrates are 
facilitated by different combinations of ligands and receptors 
[60, 61], interactions through additional signaling molecules 
[62, 63] or addition of novel genes [58, 59]. These events 
determine the predominant role of Notch signaling in the 
evolution of tissues and organs [64–67].

The evolution of teeth could also depend on Notch 
signaling for the generation of new dental cell types 
from the already existing primitive dental cell types, thus 

Fig. 4  Comparison of the expression patterns of the Notch1 and 
Notch2 genes in developing teeth of E16.5 and E18.5 Jagged2 het-
erozygous (+/−) and homozygous (−/−) mouse embryos. Genotypes 
are indicated in each panel. In situ hybridization on frontal cryosec-
tions. Red dotted lines represent the borders between the enamel 
organ (eo) and the surrounding mesenchyme. Arrowheads indicate 
Notch1 or Notch2 expressing cells in Jagged2−/− embryos. Distinct 
expression patterns of Notch1 (A, E, I) and Notch2 (C, G, K) in the 
dental epithelium of E16.5 and E18.5 Jagged2 ± embryos. Higher 
magnifications show that Notch1 is expressed in stratum intermedium 
(si) (E), while Notch2 is expressed in cells of the outer enamel epi-

thelium (oee) and stellate reticulum (sr) (G). Notch1 (B, F, J) and 
Notch2 (D, H, L) are downregulated in the dental epithelium of E16.5 
and E18.5 Jagged2−/− embryos. Also, note the fusions between the 
maxillary (mx) and mandibular processes (md) (B, D) in homozygous 
embryos. Higher magnifications show that Notch1 is not detected in 
stratum intermedium (F), while Notch2 expression is greatly reduced 
in cells of the outer enamel epithelium and stellate reticulum (H) in 
dental tissues of E16.5 Jagged2−/− embryos. iee inner enamel epithe-
lium, oe oral epithelium, p dental papilla mesenchyme, pa preamelo-
blasts, t tongue. Scale bars 200 μm
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allowing the formation of more complex dental structures 
such as the tooth enamel. Indeed, tooth morphology shows 
an astounding heterogeneity among vertebrates [68–73]. 
While all teeth display the same basic organization [74, 
75], their positioning, shapes, and mineral composition vary 
considerably [68, 76–82]. Cartilaginous and bony fishes are 
characterized by either homodont or heterodont dentitions 
(i.e., no or little morphological variability within the same 
dentition) that are continuously renewed (polyphydonts) 
[70, 73, 74, 83–87]. The single teeth can have nevertheless 
highly complex morphologies, and their positioning and 
orientation within the jaw is thought to confer a certain level 
of functional specialization [88]. Reptiles and amphibians 
possess relatively simple teeth, which are often continuously 
replaced [72, 89, 90]. Mammals display more complex dental 
structures and generally exhibit a reduced tooth turnover 
[68, 89]. At the level of mineralization, the teeth of fishes 
are covered by enameloid, a highly mineralized hard tissue 
that contains collagenous and non-collagenous proteins [83, 
91–95]. In contrast to fishes, teeth of reptiles, amphibians 
and mammals are covered by proper enamel [74]. Enamel 
does not contain collagenous proteins, and it is characterized 
by a higher degree of mineralization and a more complex 
structure when compared to enameloid of fishes [92]. 
Although tooth enamel in reptiles and amphibians is, with 
some exceptions [96], structurally simple and aprismatic 
[72, 74, 89, 97, 98], enamel in mammalian teeth is prismatic 
and characterized by the presence of organized bundles of 
hydroxyapatite crystals that confer it exceptional hardness 
and resistance to stresses [89, 99–101].

It was hypothesized that the reduction of tooth turnover 
in primordial mammals triggered the need for more durable 
teeth, leading to the formation of accurate and solid new 
enamel structures [89]. The complexity of enamel correlates 

with the specialization of the dental epithelium. In the 
mammalian dental epithelium, also called enamel organ, 
four distinct cell types have been identified based on 
histological analysis, gene expression analysis, functional 
characterization, and modern imaging techniques [102]. A 
similar organization of the dental epithelium was observed 
in other enamel-producing taxa, such as reptiles, where three 
to four dental epithelial layers were described [72, 103, 104]. 
In fishes, however, only two dental epithelial cell types are 
present [105].

Previous studies in mammals have demonstrated 
that Notch signaling is essential for tooth development, 
morphology and tooth-specific mineral matrices deposition 
[36, 37, 39, 40, 42, 48, 51, 106]. Notch signaling defines 
the four dental epithelial cell lineages through the temporo-
spatial differential expression pattern of the various Notch 
receptors and ligands during odontogenesis [41] (Fig. 2). 
However, it remains unclear how Notch signaling contributes 
to the establishment of distinct enamel or enamel-like 
structures in different species. Enamel formation represents 
a very sophisticated cellular process, as it requires a tightly 
controlled sequence of cell proliferation, differentiation, 
extracellular matrix secretion and re-absorbance, and 
crystal mineralization [100, 107]. This process needs 
to be tightly regulated spatially and temporally, as even 
minor changes can lead to functionally relevant alterations 
of the fine enamel structure [42, 101]. In mammals, all 
four dental epithelial cell types of the enamel organ are 
indispensable for the formation of a properly structured 
and mineralized enamel [42]. Among these, ameloblasts 
are the most characterized and directly responsible for the 
secretion and maturation of the enamel matrix [41, 100]. 
The role of the other three dental epithelial cell types (i.e., 
stratum intermedium, stellate reticulum and outer enamel 
epithelium) is not yet well-studied or understood. In lower 
vertebrates, such as different fish taxa (e.g., Teleosts), 
the enamel structure is less refined and organized than in 
mammals, which is indicative of a simpler and less precise 
mechanism for the formation of enamel. This procedure 
is carried out by a single epithelial cell type and requires 
mesenchymal-derived odontoblasts to co-participate in the 
processes of both organic matrices secretion and minerals 
deposition [74, 108]. Enameloid formation by a single cell 
type may represent a phylogenetically early stage in the 
differentiated capability of the evolving ameloblasts [105, 
109]. We can assume that a primitive dental epithelial cell 
type, forming a set of cells within the enamel organ, has 
changed during evolution and gave rise to additional, closely 
related cell types. It is indeed well accepted that the number 
of cell types has changed during animal evolution [110]. 
Basal metazoans have relatively few cell types, indicating 
that there was a large expansion of cell type diversity before 
the bilaterian ancestor [111]. This increase of cell types 

Fig. 5  Evolutionary scenario of Notch duplication events. Commonly 
accepted tree of the taxa was extracted from NCBI taxonomy browser 
[21]. Spots indicate duplication events in the Notch family. Red spot: 
two duplication events prior to the differentiation of Teleostei and 
Tetrapoda. Dark blue spots: independent recent duplication events, 
one for Notch1 in Teleostei and one for Notch in nematode. Light 
blue: possible independent duplication event that gave rise to Notch4 
in mammalian lineage. Alternatively, Notch4 could have been present 
already before the differentiation of Teleostei and Tetrapoda but lost 
along all lineages except Mammalia. Figure adapted from [21]
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was accompanied by the shift from few, multifunctional 
cells, towards multiple, specialized sister cells. These new 
cells can exert precise functions previously performed by a 
primitive single cell, or acquire completely new functions 
[112]. In many cases, this segregation and divergence is 
driven by gene duplication [112], by expression of novel 
genes, or by co-option of already existing genes for new 
cellular functions [110, 112]. By these means, sister cells 
can synergistically lead to the formation of extremely 
complex tissues that could not be generated by single 
multifunctional cells. We propose that the Notch signaling 
pathway, and in particular the differential expression of its 
ligands and receptors, could be a key determinant of cell 
specification and functional segregation in the evolution of 
teeth, and most probably in other organs and tissues (Fig. 6). 
Notably, Notch could also exert its biological functions via 
non-canonical signaling, as it does during neurogenesis and 
myogenesis [113]. However, there is no yet evidence of 
involvement of the non-canonical Notch signaling during 
odontogenesis and amelogenesis.

Studies in fishes have shown that members of the Notch 
signaling pathway are actually expressed during tooth 
development [105]. In cichlid fishes, Notch1 and Jagged2 
expression are associated with the successional lamina 
(i.e., the structure responsible for tooth renewal, and hence 
new tooth buds), while during the maturation and secretion 
stages they are co-expressed in ameloblasts and the adjacent 
epithelial cells [105]. It is noteworthy that in the teeth of 
fishes the expression domains of Notch1 and Jagged2 are 
largely overlapping [105], and they are thus not obviously 

distinct and demarcated as in the teeth of mice, where the 
expression of Notch ligands and receptors clearly defines the 
four cell types of the enamel organ (Fig. 2F) [41]. No studies 
described the expression of Notch ligands and receptors in 
other taxa such as reptiles or amphibians. In mice, mutations 
or inhibition of Notch signaling affects teeth and most 
specifically the formation and structure of enamel [36, 37, 
42, 48, 51]. Constitutive deletion of Jagged2 is perinatally 
lethal in mice, and affects dental epithelial progenitor cells 
ability to form ameloblasts, leading to the development of 
teeth with abnormal morphology and lacking enamel [51]. 
Previous studies have shown that the postnatal inhibition 
of Notch signaling leads to alterations in cell–cell contacts 
at the ameloblasts-stratum intermedium interface, without 
major direct effects on ameloblasts [36]. Nevertheless, 
this disturbance eventually results in enamel defects [36]. 
However, we have shown recently that the epithelial deletion 
of Adam10, a membrane-bound metalloproteinase regulating 
Notch signaling, causes the loss of the stratum intermedium 
layer and the disorganization of ameloblasts that triggers 
deficient enamel formation [42]. Furthermore, deletion of 
the Jagged1 ligand in dental epithelium dysregulates the 
expression of genes involved in the Notch pathway (e.g., 
Notch1, Notch2, Hes5), as well as of enamel-specific genes 
(e.g., Amelx, Enam) [48]. Moreover, deletion of Jagged1 in 
the dental epithelium of transgenic mice leads to tooth crown 
shape modifications convergent to those observed along 
Muridae evolution [48]. Analogous mechanisms have been 
observed in humans. Mutations in TSPEAR lead to enamel 
defects via down-regulation of NOTCH signaling in human 
patients [114]. Similarly, mutations in AMELX, which 
cause severe enamel defects in humans, are associated with 
aberrant overexpression of NOTCH1 in ameloblasts [115]. 
Therefore, Notch signaling deregulation within the enamel 
organ, which can be seen as an evolutionary unit, do not 
allow sister cell lines to express distinct molecular programs 
that maintain their cellular specificity, resulting in defective 
enamel formation (Fig. 7) [42]. In fishes, pharmacological 
inhibition of Notch signaling impairs tooth renewal [105], 
while to date no studies investigated its roles in fish dental 
epithelium differentiation and enameloid formation. 
Molecules of the Notch pathway control the dental cell-type 
specificity and mediate their distinct responses to common 
signals [48]. On a broader scale, Notch signaling is the 
central hub of a molecular network that determines cell fate 
choice throughout animal development, homeostasis, and 
regeneration via lateral inhibition [8, 18, 116–119]. A flat 
hierarchy of gene regulation [18, 118] upon Notch signaling 
deletion could thus revert the evolutionary path, impairing 
the specialization of the cells that contribute to amelogenesis 
and thus generating structures resembling more enameloid 
of fishes than enamel of mammals [42]. Hence, loss of 
interactions between Notch and Jagged/Delta-like proteins 

Fig. 6  A model showing the generation of the enamel organ com-
posed by different cell types in teeth. In fishes, only one specialized 
epithelial cell type, the ameloblast (am), can be distinguished in the 
tooth germ. In mice, oral epithelial (oe) cells in close contact with the 
mesenchyme (m; yellow color) give rise to two cell types, the inner 
enamel epithelial (iee) cells and outer enamel epithelial (ooe) cells, 
while the rest of the epithelial cells give rise to cells of the stratum 
intermedium (si) and stellate reticulum (sr). All these cell populations 
compose the enamel organ, which is an evolutionary unit essential 
for elaborating the extremely refined enamel structure in mammalian 
teeth. Physical interactions between all these cell types (green arrows) 
through the Notch signaling machinery are necessary for proper 
amelogenesis. In fishes, amelogenesis relies exclusively to amelo-
blasts (am), having as consequence the formation of a less elaborated 
structure called enameloid. de dental epithelium, E embryonic day
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within the enamel organ may either shift the behavior of cell 
types or initiate the suppression of complementary dental 
epithelial cell fates.

The expansion of the functions of the Notch signaling 
pathway in the generation of highly specialized cell types 
could be due not only to the duplications of the genes coding 
for its ligands and receptors, but also to the refinement 
of their expression domains. Many loci involved in the 
patterning and growth of the musculoskeletal system and 
dental apparatus in vertebrates are controlled by complex 
cis-regulatory systems, as these systems permit highly 
compartmentalized and fine-tuned control of gene expression 
in specific cellular and tissue-specific contexts [120–128]. 

Indeed, it is becoming clear that changes in gene expression 
patterns play a pivotal role in the evolution of complex 
morphological traits [48, 129–131]. These changes are more 
often due to mutations in cis-regulatory sequences, rather 
than coding sequences, the latter of which can pleiotropically 
alter the expression domains of key signaling molecules 
[129]. Members of the Notch pathway should also be subject 
to this type of fine-tuned tissue-specific control and future 
functional genomics study on developing teeth and their 
cell populations will likely reveal this to be the case. These 
leads us to the suggestion that the concomitant duplication 
of Notch ligands and receptors, and their progressively more 
defined expression domains via the evolution of associated 
complex cis-regulatory systems could be the driving force 
of the generation of highly specialized cell types during 
the evolution of teeth [129]. The proposed correlation 
between Notch receptors and ligands, and the generation 
and maintenance of distinct dental cell types, could represent 
a general mechanism underlying the evolution of specialized 
cell types in metazoa.
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Fig. 7  Hypothetical model of Notch signaling action in the succes-
sive cell layers of the enamel organ during mouse odontogenesis. 
The defined expression pattern of the Notch ligands Jagged1 and 
Jagged2 (arrows) and the Notch receptors Notch1 and Notch2 (bars) 
in different cell types of the enamel organ with discrete and comple-
mentary functions contribute to the formation of the highly refined 
and well-structured mammalian enamel. Deletion of Jagged2 (green 
spaced dotted arrow) in inner enamel epithelium (iee) cells results in 
Notch1 down-regulation (thin spaced dotted bar) in stratum interme-
dium (si) cells, followed by Jagged1 (dark red spaced dotted arrows) 
down-regulation in stratum intermedium and of Jagged1 and Notch2 
(thin spaced dotted bar) in stellate reticulum (sr) cells, according to 
the Notch specific lateral inhibition mode of action. Loss of interac-
tions between Notch and Jagged proteins may either shift the behav-
ior of these cells or initiate loss of their identity, thus returning back 
the evolutionary path by impairing the specialization of the cells that 
contribute to mammalian amelogenesis. As a consequence, amelo-
genesis will be carried out by only one single cell type, thus gener-
ating structures resembling more enameloid of fishes than enamel of 
mammals
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