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Summary
Background Non-alcoholic fatty liver disease (NAFLD) is a fast-growing, underdiagnosed, epidemic. We hypothesise
that obesity-related inflammation compromises adipose tissue functions, preventing efficient fat storage, and thus
driving ectopic fat accumulation into the liver.

Methods To identify adipose-based mechanisms and potential serum biomarker candidates (SBCs) for NAFLD, we
utilise dual-tissue RNA-sequencing (RNA-seq) data in adipose tissue and liver, paired with histology-based NAFLD
diagnosis, from the same individuals in a cohort of obese individuals. We first scan for genes that are
differentially expressed (DE) for NAFLD in obese individuals’ subcutaneous adipose tissue but not in their liver;
encode proteins secreted to serum; and show preferential adipose expression. Then the identified genes are
filtered to key adipose-origin NAFLD genes by best subset analysis, knockdown experiments during human
preadipocyte differentiation, recombinant protein treatment experiments in human liver HepG2 cells, and genetic
analysis.

Findings We discover a set of genes, including 10 SBCs, that may modulate NAFLD pathogenesis by impacting
adipose tissue function. Based on best subset analysis, we further follow-up on two SBCs CCDC80 and SOD3 by
knockdown in human preadipocytes and subsequent differentiation experiments, which show that they modulate
crucial adipogenesis genes, LPL, SREBPF1, and LEP. We also show that treatment of the liver HepG2 cells with
the CCDC80 and SOD3 recombinant proteins impacts genes related to steatosis and lipid processing, including
PPARA, NFE2L2, and RNF128. Finally, utilizing the adipose NAFLD DE gene cis-regulatory variants associated
with serum triglycerides (TGs) in extensive genome-wide association studies (GWASs), we demonstrate a
unidirectional effect of serum TGs on NAFLD with Mendelian Randomization (MR) analysis. We also
demonstrate that a single SNP regulating one of the SBC genes, rs2845885, produces a significant MR result by
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itself. This supports the conclusion that genetically regulated adipose expression of the NAFLD DE genes may
contribute to NAFLD through changes in serum TG levels.

Interpretation Our results from the dual-tissue transcriptomics screening improve the understanding of obesity-
related NAFLD by providing a targeted set of 10 adipose tissue-active genes as new serum biomarker candidates
for the currently grossly underdiagnosed fatty liver disease.
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Research in context

Evidence before this study
Leading theories suggest that adipose tissue dysfunction plays
a large role in obesity-related non-alcoholic fatty liver disease
(NAFLD). Adipose and liver gene expression have separately
been associated with NAFLD, and serum biomarker candidates
(SBCs) for NAFLD have previously been proposed, though
their accuracy is limited. However, not much is known about
NAFLD genes that have adipose tissue specific activity and
encode secreted proteins, which could potentially be traced in
serum to noninvasively diagnose NAFLD. To assess the
existing understanding of potential adipose NAFLD biomarker
genes, we searched PubMed with the following terms:
(adipose origin NAFLD) AND ((biomarker) OR (serum) OR
(diagnostics) OR (primary care) OR (multi tissue omics) OR
(multi tissue RNA-seq)), including results from all dates up to
October 19, 2022. This search returned 21 articles. Of these 21
studies, none utilised RNA-seq data from multiple human
tissues to study the effects of adipose tissue dysfunction on
NAFLD.

Added value of this study
We leveraged a dual-tissue RNA-seq obesity cohort with
adipose tissue and liver biopsy samples and liver histology
available to discover a set of 10 adipose enriched NAFLD SBCs.
To the best of our knowledge, our study is one of the first to
leverage multi-tissue RNA-seq data in humans to study

adipose origin NAFLD. We identified the SBCs using NAFLD
differential expression analyses in adipose and liver tissue,
followed by best subset analysis. We demonstrated that key
SBCs may induce or suppress adipogenesis via longitudinal
siRNA knockdown in human preadipocytes differentiated to
adipocytes. We also show that adipose-origin NAFLD is linked
to elevated serum TGs, which are influenced by cis variants
regulating SBC expression in adipose tissue. Thus, our findings
contribute significantly to the existing body of work on
adipose-origin NAFLD by pinpointing individual genes whose
NAFLD-associated expression can be traced specifically to the
adipose tissue and potentially detected in serum to diagnose
NAFLD early in its development.

Implications of all the available evidence
By discovering 10 SBC genes that may play a role in the onset
of NAFLD triggered by adipose dysfunction, we improve the
overall understanding of the NAFLD mechanisms in obese
patients. Our genes also have the potential to be developed
into a serum biomarker panel that could be used to diagnose
NAFLD in a cheaper and less invasive method than is currently
possible, overall improving patient health by avoiding adverse
downstream outcomes, including fibrosis and cirrhosis. The
feasibility of these biomarker genes will be further assessed by
testing the association of their serum protein levels with
NAFLD.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is a highly
prevalent disorder that affects ∼25% of people globally.1

NAFLD represents a heterogeneous spectrum of liver
disease, ranging from simple steatosis to liver fibrosis
and non-alcoholic steatohepatitis (NASH).2 NAFLD can
ultimately lead to liver cirrhosis, and is expected to
become the leading cause of liver transplantation within
this decade.3 Heterogeneity in NAFLD etiology and
pathogenesis is also reflected by the fact that while
obesity is the key risk factor for NAFLD, 5%–40% of
NAFLD patients are normal weight, depending on the
population.4

NAFLD manifests in the liver, but prevailing theories
suggest that the obesity-driven form of NAFLD originates
in adipose tissue.2,5,6 It has been hypothesised that some
obese individuals cannot generate new adipocytes effec-
tively enough (hyperplasia) to store extra fat, and instead
their existing adipocytes become larger (hypertrophy).2,5

These large adipocytes tend to undergo cellular death,
attracting infiltrations of inflammatory cells, such as
macrophages, which ultimately causes low-grade
inflammation and deteriorates adipose tissue func-
tions.2,5 As a result, adipose lipolysis increases, releasing
free fatty acids into the bloodstream2,5,7 This drives ectopic
fat deposits onto vital organs, including the liver. These
deposits evoke macrophage infiltration and inflammation
in the liver, which the liver attempts to repair with scar
tissue, i.e. fibrosis.2,5 Without weight loss intervention,
the obese adipose tissue becomes increasingly dysfunc-
tional, and the liver becomes increasingly fibrotic, until
the liver is permanently damaged.2,5 Existing evidence
broadly supports this hypothesis,2,6,7 but many of the exact
molecular factors driving NAFLD pathogenesis remain
unknown. Furthermore, the known common NAFLD
variants, including the PNPLA3, TM6SF2, HSD17B13,
and GCKR variants, explain only a small proportion
(10%–20%) of its heritability.8

Presently, there is no effective treatment for the
obesity-driven advanced forms of NAFLD; however, as
simple steatosis is still reversible through weight loss,
early diagnosis would be critically important.2 Although
a variety of diagnostic strategies currently exist for the
various stages of the NAFLD spectrum, these strategies
are either too invasive (e.g. liver biopsy) or too expensive
(e.g. magnetic resonance imaging (MRI)) to be broadly
implemented in primary health care.2,9 Liver biopsy can
accurately identify the stages of steatosis, fibrosis, and
NASH by direct histological assessment of the liver
tissue.2 However, a liver biopsy is invasive, relatively
risky, and prone to bias.2,10 Imaging methods, including
abdominal ultrasonography, MRI, and elastography, are
less invasive.2,9 However, MRIs are expensive, and ul-
trasonography and elastography have low sensitivity in
detecting early steatosis cases and cannot robustly detect
NASH.2 Existing serum biomarker panels2,9,11 are
noninvasive and inexpensive. However, predictive
www.thelancet.com Vol 92 June, 2023
power of these models remains limited, with area under
the receiver operating curve ranging from 0.66 to 0.87.2,9

Because of these diagnostic challenges, the early stages
of NAFLD go largely underdiagnosed, and many pa-
tients already exhibit fibrosis by the time NAFLD is
detected.

To elucidate the role of adipose tissue gene expres-
sion in NAFLD pathogenesis and identify adipose-origin
serum biomarker candidates (SBCs) for NAFLD, we
used a cross-tissue omics approach that utilises dual-
tissue transcriptomic data and liver histology from a
cohort of individuals with morbid obesity who under-
went bariatric surgery. To follow up our key cross-tissue
transcriptomics findings, we performed functional
analysis knocking down SBCs during preadipocyte dif-
ferentiation (i.e. adipogenesis), treated human liver
HepG2 cells with recombinant SBC proteins, and con-
ducted a Mendelian randomization (MR) analysis for
adipose-origin NAFLD in the large UK Biobank. We
found that knockdown of the SBC Coiled-Coil Domain
Containing 80 (CCDC80) significantly increased the
expression of the fatty acid synthesis master transcrip-
tion factor Sterol Regulatory Element Binding Tran-
scription Factor 1 (SREBF1),12 and knockdown of the
SBC Superoxide Dismutase 3 (SOD3) significantly
decreased the expression of the satiety signalling protein
Leptin (LEP).13 Additionally, we found that treatment of
the HepG2 cells with the CCDC80 recombinant protein
significantly decreased the expression of the fatty acid
metabolism transcription factor, PPARA,14,15 and treat-
ment with the SOD3 recombinant protein significantly
decreased the expression of the steatosis-associated
gene, RNF128.16 We also demonstrated a possible
adipose-origin unidirectional effect of serum tri-
glycerides (TGs) on NAFLD in MR. Our study has the
potential to substantially improve patient outcomes by
discovering genes which may contribute to the patho-
genesis of obesity-induced, adipose-origin NAFLD, and
could be developed into a serum biomarker panel to
noninvasively detect NAFLD.
Methods
Study cohorts
Kuopio Obesity Surgery Study (KOBS) cohort used for
Weighted Gene Co-expression Network Analysis (WGCNA),
Differential Expression (DE) analysis, best subset analysis, and
MR analysis
The KOBS cohort was recruited at the University of
Eastern Finland and Kuopio University Hospital among
Finnish individuals with morbid obesity who underwent
bariatric surgery, as described in detail previously.17–20

The mean age of the KOBS cohort is 49 years (±9
years), and comprises 78 males (30%) and 181 females
(70%) (self-reported). The inclusion criteria were: body
mass index (BMI) ≥ 40 kg/m2, or BMI ≥ 35 kg/m2 with
an obesity-associated comorbidity. Individuals with
3
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surgical contraindications were excluded. During the
surgery, subcutaneous adipose and liver biopsies were
collected for bulk RNA-sequencing as well as serum
samples for clinical measurements, as described in
detail previously.21 Briefly, the KOBS participants have
detailed phenotype data measured for liver histology,
metabolic, and anthropometric traits. These include age,
sex, BMI, serum lipid and glucose levels, and liver his-
tology assessments related to NAFLD (i.e. liver steatosis
grade, fibrosis stage, and NASH), diagnosed as
described in detail previously.17–20 KOBS genotype data
were generated using an Illumina HumanOmniExpress
BeadChip, as previously described.21,22 All individuals in
the KOBS cohort provided a written informed consent,
and the study protocols were approved by the local ethics
committee.

UK Biobank (UKB) cohort used for MR analysis
The UKB cohort is a large cohort of individuals from the
UK (n = 502,617), collected beginning in 2006. In this
study, we used the set of unrelated individuals of Eu-
ropean ancestry (n = 392,551; ∼54% self-reported fe-
male). We utilised the genotype data for these
individuals, which were collected using two different
genotype arrays spanning over 800,000 variants, as
described earlier.23 The genotype data were quality
controlled as described previously11 before being used
for GWAS analysis.

METabolic Syndrome In Men (METSIM) cohort used as a
linkage disequilibrium (LD) reference
The METSIM study was conducted at the Kuopio
University Hospital and University of Eastern Finland,
and enrolled Finnish males (self-reported) aged 45 to
73 (n = 10,197) as previously described.21,24 All partici-
pants provided written informed consent, and the
study protocols were approved by the local ethics
committee. In this study, we used previously collected
genotype data from 6686 unrelated individuals,
generated using an Illumina HumanOmniExpress
BeadChip.21,24

We used these three existing cohorts without
employing any sex-based criteria for our study design.
We adjusted for sex as a covariate in the WGCNA, DE,
and best subset analyses described below.

Genotype imputation and quality control in the KOBS and
METSIM cohorts
We performed a series of quality control steps on the
KOBS and METSIM genotype data using PLINK v1.9,25

as described previously with minor modifications.21,22 In
short, we removed SNPs that were strand ambiguous,
unmapped, monomorphic, had high missingness, failed
the Hardy–Weinberg equilibrium test, or had low minor
allele frequency. We also removed individuals with
mismatches between reported and imputed
chromosomal sex. Imputation was run on the Michigan
Imputation Server, as described previously with minor
modifications.21,22

Adipose and liver bulk RNA sequencing in the KOBS cohort
The adipose RNA-seq data17 (n = 262) were generated by
sequencing TruSeq stranded libraries on the HiSeq4000
sequencing platform, producing an average of 42.38 M
reads.17 The liver RNA-seq data19 (n = 267) were gener-
ated by sequencing Ribo-Zero stranded libraries on the
HiSeq2500 sequencing platform, producing an average
of 39.73 M reads.19 We aligned both the adipose and
liver bulk reads to the GRCh37/hg19 reference using a
2-pass pipeline with STAR,26 quantified the mapped
reads using the Subread v1.6.2 package featureCounts,
and performed QC using PicardTools.27

Identification of adipose and liver cell-type marker genes
To identify cell-type marker genes in adipose tissue and
liver, we leveraged two additional cohorts with existing
single nucleus RNA sequencing (snRNA-seq) data.

In the subcutaneous adipose cohort, snRNA-seq was
performed on subcutaneous adipose biopsies from 15
individuals in the Finnish Twin and CRYO studies, as
described in detail previously.22 The 15 individuals had a
mean age of 33 years (±7 years), and were comprised of
6 males (40%) and 9 females (60%) (self-reported). All
individuals provided written informed consent, and the
study protocols were approved by the local ethics com-
mittee. Filtering was performed with DIEM,28 and
clusters were identified using Seurat v3.2.3.29 Cell-type
annotation was performed using SingleR v1.2.4,30 and
cell-type marker genes were selected based on a Wil-
coxon rank-sum test.22

In the liver snRNA-seq cohort, female patients (n = 3,
self-reported), with a mean age of 78 years (±3 years),
underwent surgery at the Dumont-UCLA Liver Cancer
Center to treat hepatocellular carcinoma (HCC), as
described in detail previously.31,32 All participants pro-
vided written informed consent, and the study protocols
were approved by the UCLA IRB. During the surgery,
tumor and adjacent non-tumor biopsies were collected.
In the present study, we used only the snRNA-seq
samples from non-tumor tissue. To identify marker
genes for each liver cell-type, we tested normalised
expression between nuclei within and outside a cluster.
We normalised raw counts by first scaling all nuclei to
sum to 1,000, then log-transforming. Next, we used the
FindAllMarkers function from Seurat29 to run differen-
tial expression. For each cell-type, we performed a lo-
gistic regression for each gene testing expression of
nuclei within the cell-type against those classified as any
other cell-type. We kept marker genes with an average
log2 fold change of at least 0.1. We corrected p-values
for multiple testing across all genes and cell-types using
false discovery rate (FDR).
www.thelancet.com Vol 92 June, 2023
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Existing TG and NAFLD GWAS summary level data in the
UKB cohort used for the Mendelian randomization analyses
For our MR analysis, we leveraged our previously pub-
lished GWAS summary statistics for TGs and NAFLD.11

Serum TGs have been measured in the UKB cohort, and
for the NAFLD GWAS, we have generated an imputed
NAFLD status, as described in detail previously.11

Briefly, imputed NAFLD scores (NAFLDS) were
modelled for individuals in the UKB cohort using an
elastic net regression, and the imputed NAFLD status
was derived using cutoffs of NAFLDS.11 The NAFLDS
score was validated with 100-fold cross-validation.
GWAS was then performed on TGs and imputed
NAFLD status, using a linear mixed model imple-
mented by BOLT-LMM, as described previously.11

Identification of adipose and liver cis-eQTLs in the KOBS
cohort
To identify genetic variants associated with gene
expression in the KOBS adipose and liver data, we ran
cis-eQTL analysis using the R package Matrix eQTL.33 To
prepare the expression data, we first computed frag-
ments per kilobase of transcript per million mapped
reads (FPKMs) from the adipose and liver raw counts,
which were quantified using featureCounts as described
above. Next, we performed a rank-based inverse normal
transformation on the FPKMs for each gene, and con-
ducted probabilistic estimation of expression residuals
(PEER) analysis while correcting for common RNA-seq
technical factors. The adipose FPKMs were corrected
for 25 PEER factors, while the liver FPKMs were cor-
rected for 10 PEER factors, as described previously with
minor modifications.21,22 A subsequent inverse normal
transformation was performed on the PEER-corrected
FPKMs.

To compute adipose and liver cis-eQTLs, we ran
Matrix eQTL in linear mode on the KOBS imputed ge-
notypes and corrected FPKMs, defining the cis regions
as ±1 Mb from the end of each gene and otherwise
using the default parameters. We defined significant cis-
eQTLs in each tissue as those with FDR < 0.05.

WGCNA of KOBS adipose and liver expression data
To investigate molecular crosstalk between subcutane-
ous adipose tissue and liver, we used the KOBS
expression data to construct weighted gene correlation
networks with the R package WGCNA34 v1.70. In this
and all other statistical analyses, we utilised the R
package tidyverse,35 including ggplot2, extensively.
Before creating the networks, we first normalised the
expression data according to the developers’ instructions
for RNA-seq data. Briefly, we selected genes with
nonzero expression in 90% of samples (as described
previously36), calculated their counts per million (CPM),
performed an inverse normal transformation, regressed
out common RNA-seq covariates (age, sex, RNA integ-
rity number, percent uniquely mapped reads, percent
www.thelancet.com Vol 92 June, 2023
intronic bases, and median 3’ bias), and thereafter per-
formed a second inverse normal transformation. We
used the 90% over zero filter because genes with a
measured expression value of 0 in most samples typi-
cally display non-normal bimodal expression distribu-
tions, which cannot be fully corrected by inverse normal
transformation. This resulted in 21,408 and 22,500
input genes in the adipose tissue and liver, respectively.
A total of 17,523 genes were shared between the input
genes in the adipose tissue and liver (82% of the adipose
genes and 78% of the liver genes, respectively). After
normalisation, we verified that no extreme outliers
existed in the data by hierarchically clustering the
samples.

Next, we constructed two independent co-expression
networks, one in the subcutaneous adipose tissue and
one in the liver, using WGCNA. We followed the “step-
by-step network construction” tutorial from the
WGCNA website, which involved calculating an adja-
cency matrix, converting it to a dissimilarity topological
overlap matrix (TOM), clustering genes hierarchically
based on the TOM, performing a dynamic tree cut, and
merging modules based on their module eigengene
correlation. When constructing the adjacency matrix, we
used a soft threshold power of 7 and 10 in adipose and
liver, respectively, based on inspection of the plots
showing the effect of soft threshold power on mean
connectivity and scale free topology model fit. When
merging modules, we used a cut height of 0.10 and 0.25
for adipose and liver, respectively, based on inspection
of the module eigengene dendrograms. The completed
networks contained 57 and 28 modules for adipose and
liver, respectively.

With the two networks constructed, we followed the
“Relating modules to external clinical traits” tutorial to
correlate all module eigengenes in both networks with
relevant metabolic and histological phenotypes: liver
steatosis, liver fibrosis, NASH diagnosis, type II diabetes
(T2D), statin usage, BMI, TGs, and fasting glucose
adjusted for T2D. We assessed the significance of these
correlations after Bonferroni correction. Additionally,
we correlated the module eigengenes of both networks
with each other, and assessed the significance of these
correlations after Bonferroni correction.

Finally, we calculated the functional enrichment of
modules in both networks. First, we calculated the
KEGG pathway enrichment using an overrepresentation
analysis in WebGestalt37 2019. Next, we calculated the
enrichment (compared to all genes with nonzero
expression in 90% of samples) of adipose aware DE
genes; unique cell-type marker genes for adipocytes,
preadipocytes, and hepatocytes; and genes which were
both DE and unique cell-type markers, respectively,
using a hypergeometric test. We defined adipose aware
DE genes as genes DE in adipose tissue but not in the
liver between the individuals with histology-based
healthy liver and those with NAFLD. We also
5
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identified transcription factors in the modules using
PANTHER38 v16. We calculated the module member-
ship of key genes identified in the functional enrich-
ment tests using a Pearson correlation with the module
eigengene.

DE analysis of KOBS adipose and liver expression data
To identify genes DE between the KOBS partici-
pants with and without NAFLD, we performed case-
control DE analysis on KOBS adipose and liver
expression data for steatosis, fibrosis, and NASH,
diagnosed by liver histology.17–19 In each analysis,
the cases were patients with a nonzero grade for the
liver histology phenotype being tested (n = 158, 118,
and 85 for steatosis, fibrosis, and NASH, respec-
tively). The controls were patients with a grade of
zero in all three liver histology phenotypes (n = 87
for all tests).

To prepare for the DE analysis, we performed trim-
med mean of M values (TMM) normalization on the
adipose and liver bulk RNA-seq data using edgeR39

v3.32.1. To run the DE analysis, we then input these
normalised expression values into the limma-voom
pipeline40 v3.46.0, correcting for the same covariates
that were regressed out in the WGCNA analysis. We
assessed the significance of DE genes using FDR < 0.05.
After identifying the DE genes for steatosis, fibrosis, and
NASH in adipose and liver tissue, we calculated the
enrichment of cell-type marker genes in all DE gene lists
using a hypergeometric test.

Filtering of adipose NAFLD DE genes for adipose-origin serum
biomarker candidates
To identify adipose-origin SBCs for NAFLD, we
applied a filtering approach that focused on the adi-
pose NAFLD DE genes. We started with the list of
genes which were DE for any of the three liver his-
tology traits (steatosis, fibrosis, or NASH) in the sub-
cutaneous adipose tissue. Next, we removed the genes
that were also DE for any of the same NAFLD traits in
the liver. We then downloaded tissue-specific median
transcripts per million (TPM) data from GTEx, and
selected the genes that had both the median TPM > 30
in subcutaneous adipose tissue and whose ratio of
subcutaneous adipose median TPM to liver median
TPM was >10. Finally, we selected the genes that
encoded proteins secreted to serum, based on the
HPA list of secreted proteins.41 We designated the
adipose NAFLD DE genes that satisfied all of these
filters as SBCs.

To assess the relationship of the SBCs to each other,
we correlated their adipose expression. First, we nor-
malised the data by calculating the log-CPM of all SBCs.
Then, we computed the Pearson correlation of every
pairwise combination of SBCs using the R package
Hmisc42 v4.6, and assessed the significance of each
correlation after Bonferroni correction.
Best subset approach to identify key SBCs
To find the most effective subset of SBCs, we tested the
proportion of variance in steatosis, fibrosis, and NASH
explained by the adipose expression of different com-
binations of SBCs, using the leaps algorithm. To
normalise the data, we first calculated the adipose CPM
of the SBCs, and then performed an inverse normal
transformation. Next, we fit linear models in a best
subset analysis to test the variance in NAFLD traits
explained by adipose SBC expression, employing the
regsubsets function from the R package leaps43 v3.1.
This package is implemented with an iterative algorithm
which identifies the best-fitting linear model with each
number of genes included, ranging from a single vari-
able to every variable provided.

For fibrosis and NASH, we tested all SBC genes DE
for the target phenotype as possible inputs to the model.
For steatosis, to identify genes involved in the early
onset of NAFLD, we only tested SBC genes exclusively
DE for steatosis, and not fibrosis or NASH. We included
RNA-seq covariates (the same used in WGCNA and DE)
in these analyses by regressing them out of the trans-
formed CPMs before running leaps.

We identified the models that explained maximum
variance in steatosis, fibrosis, and NASH using the
Bayesian Information Criterion (BIC), and assessed the
significance of these models with a permutation test
(number of permuted sample sets, B = 100,000). For
each permutation, we selected a random set of adipose
genes with nonzero expression in 90% of samples, equal
to the number of genes in the best subset model chosen
by leaps. We then used a linear model to test the vari-
ance in the phenotype being assessed that was explained
by the adipose expression of those genes. The p-value
for each SBC model was defined as the proportion of
random permuted models whose r2 value was greater
than the SBC model.

Simone Golabi Behmel Syndrome (SGBS) cell culture
The SGBS human preadipocyte cells were obtained from
Dr. Martin Wabitsch, University of Ulm, Ulm, Germany,
who validated these cells, as described previously.44 No
evidence of any mycoplasma contamination was observed
during the culture or differentiation period. SGBS pre-
adipocyte cells44 were maintained in DMEM/F-12 Nut
media (Lonza # BE12-719F) with 4 μg/ml Pantothenate
(Sigma, #P-5155), 8 μg/ml Biotin (Sigma #B-4639), 10%
fetal bovine serum (FBS), 1% penicillin-streptomycin.
These cells undergo complete differentiation into
mature adipocytes in 14 days.45 When pre-adipocytes
reached confluence they were treated with serum free
differentiation medium DMEM/F-12 supplemented with
4 μg/ml Pantothenate, 8 μg/ml Biotin, 1% penicillin-
streptomycin, 2 μmol/l rosiglitazone (Cayman Chemical
# CAT 71740), 25 nmol/l dexamethasone (Sigma #
D-4902), 0.5 mmol/l methylisobuthylxantine (Sigma
#I5879), 0.1 μmol/l cortisol (Sigma #H0888), 0.01 mg/ml
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transferrin (Sigma #T8158), 0.2 nmol/l triiodotyronin
(Sigma #T6397), and 20 nmol/l human insulin (Sigma
#I9278) for 7 days. This was followed with cell culture in
adipogenic medium DMEM/F-12 supplemented with
4 μg/ml Pantothenate, 8 μg/ml Biotin, 1% penicillin-
streptomycin, 0.1 μmol/l cortisol, 0.01 mg/ml trans-
ferrin, 0.2 nmol/l triiodothyronine, and 20 nmol/l
human insulin for an additional 7 days.

CCDC80 and SOD3 siRNA knockdown and sample collection
for RNA-seq experiment
The cells were seeded in a 6-well plate at 1.6 × 106 cells
per well. Once the cells reached 50% confluency, they
were transfected with siRNA using lipofectamine
RNAiMAX (Invitrogen) according to the manufacturer’s
instructions. Predesigned siRNAs from Thermo Fisher
Scientific were used [scrambled (control) siRNA (30 nM)
(ref no: 4390843), CCDC80 (60 nM) (ID: s45625), SOD3
(60 nM) (ID: s13272)].

During differentiation, the cells were devoid of
serum and thus they stop dividing. This enables the
cells to retain the siRNA transfection mix for up to 14
days, as previously shown.46 In this study the cells were
differentiated, and the samples were collected at
different timepoints. The cells were incubated with the
transfection mix for 48 h, after which the baseline
samples were collected. The rest of the samples were
treated with differentiation media (as described above),
and collection was done at 24 h, 4 days, and 7 days.

Oil Red O staining of siRNA knockdown experiment samples
The cells were seeded in a 12-well plate at 8 × 104 cells
per well. Silencing of CCDC80 and SOD3 was done as
described above, and samples were collected at the
baseline, 24 h, 4 days, and 7 days, and stained with Oil
Red O (ORO). The cells were washed with 1 × DPBS
twice and fixed with 4% paraformaldehyde for 30 min at
room temperature (RT). The cells were rinsed 2x with
distilled H2O, followed by incubation for 5 min in 60%
isopropanol. The cellular neutral lipids were stained
with ORO (0.5% ORO in 100% isopropanol) for 20 min
at RT. The cells were rinsed, then counter stained with
hematoxylin for 1 min, and excess stain was washed off.
The cells were visualised using the EVOS Core XL mi-
croscope. The ORO stain from the preadipocytes and
adipocytes was extracted using 100% isopropanol. The
staining intensity of ORO was measured at 492 nm and
normalised to the cell number.

siRNA knockdown RNA-seq library preparation
Cells were lysed and RNA was extracted using miR-
Neasy micro kit (Qiagen). Library samples were pre-
pared using QuantSeq 3’ mRNA-seq library prep kit
FWD (Lexogen) according to the manufacturer’s in-
structions, amplified for 18 cycles, and then sequenced
with Illumina Next seq 500 for 75 cycles.
www.thelancet.com Vol 92 June, 2023
Alignment and quantification of siRNA knockdown RNA-seq
data
We aligned raw QuantSeq RNA-seq reads from the
siRNA knockdown experiment to the GENCODE
GRCh37 human reference genome and annotation v19
using STAR v2.5.2. We measured control, scrambled
(control) siRNA, CCDC80 siRNA knockdown, and
SOD3 siRNA knockdown conditions across the four
differentiation time points, with 3–4 replicates per
condition, resulting in a total of 59 samples. Before
running the alignment, we first trimmed the raw reads
with cutadapt v3.5, using a polyA sequence concatenated
to the standard Illumina adapter as the trimming target.
We used a 2-pass method to align the trimmed reads,
which had an average read length of 83.5bp. After
alignment, we verified the quality of our data using
FastQC, based on statistics including sequence quality,
GC content, and adapter content. Finally, we quantified
gene expression using the Subread v1.6.2 package fea-
tureCounts, and selected only uniquely mapped reads
for the expression data.

DE analysis of siRNA knockdown expression data
To identify genes DE between the CCDC80 and SOD3
knockdown samples and control samples, we performed
DE analysis of the knockdown experiment expression
data. First, we removed lowly expressed genes by
selecting only those which had a total count of >10
summed across the samples within one group (control
or knockdown). Next, we restricted the genes being
tested for DE to SOD3, CCDC80, unique cell-type
marker genes for adipocytes and preadipocytes, and
adipogenesis pathway genes downloaded from Wiki-
Pathways47 WP236 (n = 492 genes tested). We also
excluded the non-transfected control samples, resulting
in a final sample size of 28 for both CCDC80 and SOD3.

We ran the limma-voom pipeline on the knockdown
expression data in the same way as described for the
KOBS DE analyses, except without including any cova-
riates, thus comparing the knockdown samples to the
scrambled (control) siRNA samples independently at
each time point and for each knockdown condition
(n = 7 in all 8 tests). Our rationale for not including
typical technical covariates of RNA-seq is that this was
an in vitro cell-line experiment with isogenic replicates,
in which the expression was assessed by performing
QuantSeq 3’ tag-based sequencing instead of the regu-
lar, highly dynamic bulk RNA-seq analysis.

To interpret the results of the DE tests, we analysed
the lists of DE genes (n = 492 tested genes) at each time
point. First, we verified that the knockdown was suc-
cessful using the p-value of p < 0.05 for CCDC80 and
SOD3 in all timepoints from the corresponding exper-
iments. Then we assessed the significance of the DE
genes between the CCDC80 and SOD3 knockdown and
control cells after Benjamini-Hochberg correction.
7
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Liver HepG2 cell culture
Liver HepG2 cells (ATCC, HB-8065) were cultured in
Dulbecco’s modified Eagle medium (DMEM, 31966021
Gibco: High Glucose, GlutaMAX™ Supplement, pyru-
vate) and supplemented with 10% fetal bovine serum
(FBS, F7524, Sigma), 0.1 mM Non-Essential Amino
Acids Solution (11140050, Gibco) and 1% penicillin-
streptomycin. The cells were maintained at 37 ◦C in a
humidified atmosphere at 5% CO2.

Treatment of liver HepG2 cells with CCDC80 and SOD3
recombinant proteins and sample collection for RNA-seq
experiment
The HepG2 cells were seeded in a 12-well plate
(1 × 105 cells/well) in 1 ml of culture medium. The next
day, the cells were treated with CCDC80 (Origene; Cat:
TP762230) or SOD3 (Origene; Cat: TP304156) recom-
binant proteins (0 and 20 ng/ml) for 24 h. Then the cells
were lysed and RNA was extracted using the miRNeasy
micro kit (Qiagen). Library samples were prepared us-
ing the QuantSeq 3’ mRNA-seq library prep kit FWD
(Lexogen) according to the manufacturer’s instructions,
amplified for 15 cycles, and then sequenced with Illu-
mina NextSeq 500 for 75 cycles.

Alignment, quantification, and DE analysis of RNA-seq data
from the HepG2 treatment experiment
To align and quantify the RNA-seq data from the
HepG2 experiment, we utilised an identical pipeline to
the one used for the siRNA knockdown experiment data
(see above). We collected four replicates for each of the
four experimental conditions, resulting in a total of 16
RNA-seq samples. To identify genes DE between
HepG2 cells treated with CCDC80/SOD3 recombinant
protein and control cells, we compared the cells treated
with recombinant protein (20 ng/ml) to the control cells
(0 ng/ml), and we restricted the genes tested in this DE
analysis to the hepatocyte marker genes which were also
DE for steatosis, fibrosis, or NASH in the KOBS liver
RNA-seq DE analysis (n = 61 genes tested). We assessed
the significance of the DE genes between the cells
treated with CCDC80/SOD3 recombinant protein and
the control cells after Benjamini-Hochberg correction
(FDR < 0.05).

Correlation analysis of the adipose expression of the SBCs
with NAFLD-related liver networks to search for associations
between the SBCs and NAFLD pathways in the liver
To assess the potential connection between the adipose
expression of the SBC genes and liver functions related
to NAFLD, we computed the pairwise Pearson correla-
tions between the adipose expression of every SBC and
the module eigengene of each of the 10 liver co-
expression networks that correlated with steatosis,
fibrosis, or NASH. We assessed the significance of the
correlations after correcting for multiple testing using
Bonferroni correction. We then performed functional
annotation analysis using WebGestalt37 on the liver
networks that correlated with the adipose expression of
the SBC genes to evaluate their biological significance.

Mendelian randomization analysis to search for unidirectional
effects of serum triglycerides on NAFLD
To search for a unidirectional relationship between
serum TGs and NAFLD, we conducted MR analysis
using cis-eQTL data from the KOBS cohort and GWAS
summary statistics from the UKB cohort.11 Because we
hypothesised that serum TGs have a unidirectional ef-
fect on NAFLD, we considered the analysis testing for
the effect of TGs on NAFLD the “forward” direction,
and the analysis testing for the effect of NAFLD on TGs
the “reverse” direction. Before we ran the MR analysis,
we also tested for enrichment of GWAS signals for TGs
and NAFLD11 in the cis regions of the adipose aware DE
genes using MAGENTA,48 using a cis region definition
of ±1 Mb and otherwise default parameters.

To prepare for running MR in the forward direction
(impact of TGs on NAFLD), we selected a set of genetic
variants to be used as IVs in the MR analysis. We began
this process by identifying the cis regions (±1 Mb) of all
adipose aware DE genes, i.e. the genes which were DE
in adipose tissue but not liver in the KOBS cohort. Next,
we selected DE gene cis regions which met the following
criteria: at least one significant adipose cis-eQTL
(FDR < 0.05) existed in the cis region of a gene, and at
least one significant GWAS hit for TGs (p < 5 × 10−8)
existed in the cis region, provided that the TG GWAS hit
was not also a GWAS hit for the imputed NAFLD status
(p ≥ 5 × 10−8). Next, we tested for colocalization in the
cis regions passing these criteria, using the coloc.signals
function of the R package coloc49 v5.1.0, which imple-
ments colocalization analysis that conditions on the lead
variant to identify multiple signals in a single region.
We used the METSIM cohort genotype data to compute
the LD matrix required by coloc, using PLINK v1.9.25 At
this point, we generated a list of IV candidates by
selecting all of the colocalised cis-eQTL variants. To
ensure the strength of our final IV list for MR analysis,
we removed all IV candidates in LD with imputed
NAFLD GWAS hits (r2 > 0.2)11; LD pruned IV candi-
dates in LD with each other (r2 > 0.2), taking the IV with
the most significant cis-eQTL and GWAS results as the
representative signal; and removed strand-ambiguous
IVs. We computed LD using PLINK v1.9,25 and detec-
ted strand ambiguity using the R package
TwoSampleMR.50

With the final list of IVs, we conducted MR analysis
to test for the unidirectional impact of TGs on NAFLD.
To prepare the input data, we harmonised the directions
of the IV effect sizes using the R package TwoSam-
pleMR50 v0.5.6. Next, we ran MR using three separate
methods with the default parameters: MR-PRESSO51

v1.0, Inverse-Variance Weighted (IVW) MR,52 and MR-
Egger.52 Of these, IVW and MR-Egger are implemented
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in the package MendelianRandomization52 v0.6.0. We
assessed the evidence for horizontal pleiotropy using the
MR-PRESSO global test, as well as the scatterplot of IV
effect sizes for TGs and NAFLD. Additionally, we ran
the MR analysis using just one VEGFB variant,
rs2845885, as a single IV. We only ran the IVW method
for this single-IV analysis, due to the requirement of
multiple IVs in the other three methods.

To test the reverse causal hypothesis, i.e. that NAFLD
has a unidirectional effect on serum TGs, we used an
identical method to the forward analysis, substituting
every instance of NAFLD GWAS hits for TG GWAS
hits, and vice versa. In the reverse analysis, we also used
the KOBS liver aware DE genes (DE in liver but not
adipose) and liver cis-eQTLs to select the IV candidate
regions.

Regression analysis to determine if additional variance in
NAFLD is explained by VEGFB expression when compared to
serum TGs alone
To assess how much SBC adipose expression may
improve the ability to explain variance in NAFLD on
top of serum TGs alone, we conducted a series of
regression analyses in the KOBS cohort, using VEGFB
as the example SBC given its significant MR result (see
Results). We first built logistic regression models that
utilized serum TGs alone as an explanatory variable for
the NAFLD status (i.e. steatosis, fibrosis, and NASH),
and then built analogous models that utilized serum
TGs along with the VEGFB adipose expression as
explanatory variables for the NAFLD status (6 logistic
regression models in total). Before fitting the models,
we log10-transformed the serum TG measurements,
and conducted an inverse normal transformation on
the VEGFB expression, measured in CPM. In all
regression analyses, we corrected for the same cova-
riates that were used in the WGCNA, DE, and best
subset analyses. We compared logistic regression
models to each other using the Nagelkerke pseudo-r2

value and the area under the receiver operating char-
acteristic curve (AUC).

Additionally, to back up the logistic regression re-
sults, we fit linear and elastic net regression models
using the same explanatory and outcome variables as in
the logistic regression models, as well as the same data
preparation steps (6 linear models and 6 elastic net
models in total). We fit the elastic net model parameters
using a 10-fold cross-validation across the entire dataset.
We evaluated both the linear and elastic net regression
models using the r2 statistic, as well as the adjusted r2

statistic in the linear model and the coefficients of
serum TGs and VEGFB adipose expression in the elastic
net model.

Ethics
All participants provided written informed consent
to participate in this research. The KOBS (#54/2005,
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104/2008, and 27/2010) and METSIM (#171/2004)
studies were approved by the Ethics Committee of the
Northern Savo Hospital District. The Finnish Twin study
(#270/13/03/01/2008) and CRYO study (#255/13/03/01/
2009) were approved by the Ethics Committee of the
Hospital District of Helsinki and Uusimaa. The liver
snRNA-seq study was approved by the UCLA IRB
(#20–001319). All research was performed in alignment
with the principles of the Helsinki Declaration.

Statistics
The used statistical tests, justification for their use,
and multiple testing correction procedures have been
described in the Methods. All RNA-seq analyses were
corrected for multiple testing, and the adjusted
p-values < 0.05 are reported.

Role of funders
The funders did not have any role in the study design,
data collection, data analyses, interpretation, or writing
of this article.
Results
Study design
We developed an integrative cross-tissue tran-
scriptomics approach to search for genes whose changes
in adipose expression reflect NAFLD in the liver (Fig. 1),
leveraging a cohort of individuals with morbid obesity
with RNA-seq data available from both adipose (n = 262)
and liver tissue (n = 267), as well as three NAFLD traits,
steatosis, fibrosis, and NASH, diagnosed by liver his-
tology (see Methods). First, to establish that there is
transcriptional crosstalk between subcutaneous adipose
tissue and liver, we searched for correlations between
adipose and liver co-expression networks and their as-
sociations with NAFLD. After finding evidence for
crosstalk between adipose and liver expression related to
NAFLD at the network level, we scanned for adipose
aware DE genes, defined as genes DE in adipose tissue
but not in the liver between the individuals with
histology-based healthy liver and those with NAFLD. We
then identified SBCs in this list of adipose aware
NAFLD DE genes by selecting genes that encode for
secreted proteins, are expressed highly enough in adi-
pose tissue to be detected in serum, and are expressed
substantially higher in the adipose tissue than in the
liver. After selecting key SBCs from this list using best
subset analysis, we investigated the functions of these
SBCs in adipose tissue by knocking them down in a
culture of differentiating human preadipocytes. We
further investigated these key SBCs by treating human
liver HepG2 cells with their recombinant proteins. We
also discovered cross-tissue correlations between indi-
vidual SBC genes and key liver co-expression networks
correlated with NAFLD. Finally, we demonstrated a
possible unidirectional effect of serum TGs on NAFLD
9
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Fig. 1: Study design to discover 649 adipose aware differentially expressed (DE) genes, and 10 serum biomarker candidates (SBCs), for
obesity-related non-alcoholic fatty liver disease (NAFLD). To discover SBCs for obesity-related NAFLD, we leveraged a unique dual-tissue
transcriptomic cohort with histology-based diagnosis of steatosis, fibrosis, and non-alcoholic steatohepatitis (NASH). 1) First, we found evi-
dence for our hypothesis of adipose-origin NAFLD by discovering molecular crosstalk between adipose tissue and liver using WGCNA. 2) Next,
we scanned genome-wide for genes DE in adipose tissue for the three NAFLD traits diagnosed by liver histology. 3) We filtered these adipose
NAFLD DE genes for secreted proteins, i.e. SBCs, using a set of selection criteria, and 4) determined the key SBCs using best subset analysis. 5)
We then followed up the key SBCs functionally by knocking them down in human preadipocytes during adipogenesis, and 6) treating liver
HepG2 cells with their recombinant proteins. 7) Next, we demonstrated a unidirectional effect of serum triglycerides (TGs) on NAFLD using
Mendelian Randomization (MR) analysis, with a set of instrumental variables (IVs) derived from the adipose aware DE genes. 8) Finally, we
followed up the MR analysis by quantifying the added variance explained by the lead MR SBC in the NAFLD models in addition to serum
triglycerides alone using a series of regression analyses.
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using Mendelian Randomization analysis with a set of
adipose aware NAFLD DE gene cis-regulatory IV vari-
ants, and found that the strongest IV regulates an SBC
gene whose expression significantly adds to serum TGs
in explaining variance in NAFLD.

Co-expression networks of distinct functional
pathways correlate across an individual’s
subcutaneous adipose tissue and liver
To search for signatures of molecular crosstalk between
adipose and liver tissue related to NAFLD, we used our
dual-tissue RNA-seq cohort to construct gene
co-expression networks separately in adipose and liver
tissue using the R53 package WGCNA,34 and related
these networks to each other (see Methods). To inves-
tigate the functional significance of the modules (i.e.
networks), we correlated all adipose and liver module
eigengenes with common metabolic traits and NAFLD
histological liver measurements (Supplementary
Fig. S1). To identify networks involved in tissue cross-
talk, we correlated every adipose module eigengene with
every liver module eigengene (Supplementary Fig. S1).
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In agreement with our hypothesis, we found evi-
dence that the normal physiological functions of adipose
tissue, consisting of storing and burning fat, are posi-
tively associated with the normal physiological functions
of liver tissue, consisting of synthesizing biomolecules
into fatty acids (Supplementary Fig. S1). This was rep-
resented by positive correlation between the adipose
lightyellow network (Supplementary Table S1) and the
liver saddlebrown network (Supplementary Table S3)
(R = 0.331, p = 2.296 × 10−7 by Pearson correlation).
Adipose lightyellow is negatively correlated with serum
TGs (R = −0.252, p = 9.979 × 10−5 by Pearson correla-
tion), and is enriched for regulation of lipolysis in adi-
pocytes (FDR = 0.0156 by WebGestalt enrichment test),
insulin signalling pathways (FDR = 0.0156 by Web-
Gestalt enrichment test), and adipocyte cell-type marker
genes (p = 1.453 × 10−7 by hypergeometric test). Liver
saddlebrown is negatively correlated with steatosis
(R = −0.378, p = 2.572 × 10−9 by Pearson correlation),
fibrosis (R = −0.306, p = 1.982 × 10−6 by Pearson cor-
relation), NASH (R = −0.384, p = 1.302 × 10−9 by
Pearson correlation), T2D (R = −0.291, p = 6.284 × 10−6

by Pearson correlation), and BMI (R = −0.277,
p = 1.825 × 10−5 by Pearson correlation), and is enriched
for the biosynthesis of amino acids pathway
(FDR = 1.725 × 10−9 by WebGestalt enrichment test) and
hepatocyte cell-type marker genes (p = 1.842 × 10−3,
2.202 × 10−3, 1.292 × 10−4, 7.143 × 10−4, and 1.513 × 10−3

for Hep-7, Hep-9, Hep-10, Hep-11, and Hep-13,
respectively by hypergeometric test) (Supplementary
Figs. S1 and S2).

Additionally, our results suggest that inflamed and
dysfunctional adipose tissue is associated with a
decrease in normal physiological liver function, and an
increase of NAFLD and other adverse metabolic trait
functions. This was represented by negative correlation
between the adipose cyan network (Supplementary
Table S2) and liver saddlebrown (R = −0.351,
p = 3.561 × 10−8 by Pearson correlation). Adipose cyan is
positively correlated with NASH (R = 0.268,
p = 3.303 × 10−5 by Pearson correlation) (Supplementary
Fig. S1), and is enriched for autoimmune and inflam-
matory pathways, including inflammatory bowel disease
(FDR = 1.824 × 10−11 by WebGestalt enrichment test)
and autoimmune thyroid disease (FDR = 5.558 × 10−13

by WebGestalt enrichment test) (Supplementary
Fig. S2b).

Taken together, our gene co-expression network
results indicate that there are correlated networks be-
tween an individual’s adipose tissue and liver, and that
these normal physiological correlations are signifi-
cantly inverted in NAFLD. To investigate the details of
this tissue crosstalk, we aimed to move past the co-
expression network level and discover individual
genes as indicators for adipose dysfunction-related
NAFLD.
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A total of 649 genes are DE in subcutaneous
adipose tissue, but not in the liver, between
individuals with and without NAFLD
Given the observed correlations between adipose and
liver co-expression networks, we hypothesised that there
would be adipose-liver crosstalk mediated by proteins
secreted by adipose tissue that affect NAFLD. To this
end, we first identified genes whose adipose expression
was associated with three key histology-based NAFLD
traits (steatosis, fibrosis, and NASH), using DE analysis
with the R limma-voom pipeline.40 We compared the
adipose expression of individuals with steatosis, fibrosis,
and NASH to those with healthy livers, while correcting
for common demographic and technical confounders
(see Methods). We identified 953 genes DE for at least
one NAFLD histology trait (680, 273, and 663 DE genes
for steatosis, fibrosis, and NASH, respectively) (Fig. 2,
Supplementary Fig. S3 and Table S8). All 953 DE genes
were determined after adjusting for multiple testing
with the Benjamini-Hochberg method, and thus we
used adjusted p < 0.05 (i.e. FDR < 0.05) for determining
the significance of the DE genes. To select genes with
adipose tissue aware differential expression, we filtered
out all liver DE genes for the same three NAFLD traits
(Supplementary Table S9). This resulted in 649 total
adipose aware DE genes (440, 188, and 471 adipose
aware DE genes for steatosis, fibrosis, and NASH,
respectively). As expected, these adipose aware DE
genes were enriched in both the adipose lightyellow
(p = 1.467 × 10−7 by hypergeometric test) and adipose
cyan (p = 6.430 × 10−13 by hypergeometric test) adipose
co-expression networks (Supplementary Tables S1 and
S2), in line with our hypothesis that dysfunctional adi-
pose tissue is associated with NAFLD. Next, we focused
on the genes among these 649 that were most likely to
be detectable in serum to discover potential adipose-
origin serum biomarkers for NAFLD.

Identification of 10 SBCs for NAFLD
We reasoned that the adipose aware NAFLD DE genes
that are effective SBCs must leave the cell, be expressed
at sufficient levels in their source tissue to be detect-
able in serum, and have predominantly adipose
enriched expression. To implement these constraints,
we filtered the 649 adipose aware DE genes for the
ones present in the Human Protein Atlas (HPA)41 list
of secreted proteins, and with median TPM greater
than 30 in subcutaneous adipose tissue, using data
from the GTEx portal. Additionally, we filtered out all
genes whose ratio of subcutaneous adipose median
TPM to liver median TPM was less than 10. This
design resulted in a final list of 10 SBCs: CCDC80,
CD300LG, COL6A1, COL6A2, GPX3, MGP, SFRP2,
SOD3, TIMP3, and VEGFB (Fig. 3). Taken together, all
SBCs are DE in subcutaneous adipose tissue for at least
one NAFLD trait (steatosis, fibrosis, or NASH), are not
11

www.thelancet.com/digital-health


Fig. 2: A total of 953 genes are differentially expressed (DE) in subcutaneous adipose tissue between the obese individuals with the
three main non-alcoholic fatty liver disease (NAFLD) traits, steatosis, fibrosis and/or non-alcoholic steatohepatitis (NASH), and the
obese individuals with healthy livers. We performed DE analysis on bulk RNA-seq data from subcutaneous adipose biopsies in the KOBS
cohort, comparing individuals with the NAFLD traits diagnosed by liver histology to those with healthy livers. Gene counts represent numbers
of genes DE for NAFLD in the subcutaneous adipose tissue before filtering for serum biomarker candidates (SBCs). Of the 953 adipose DE genes,
680, 273, and 663 genes are DE for steatosis, fibrosis, and NASH, respectively. (a) Volcano plot showing the results of the NASH DE analysis in
the adipose tissue. The X-axis represents log fold-change (logFC) in adipose bulk RNA-seq data from individuals with NASH and those with
healthy livers. The Y-axis represents the negative log of the DE p-value, adjusted for multiple testing with the Benjamini-Hochberg procedure.
Significant SBCs identified in our subsequent filtering steps (Fig. 3) are highlighted. Volcano plots of steatosis and fibrosis DE results in the
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Fig. 3: Filtering of subcutaneous adipose non-alcoholic fatty liver disease (NAFLD) differentially expressed (DE) genes to select serum
biomarker candidates (SBCs). To identify SBCs among the list of 953 adipose NAFLD DE genes, we selected the genes that were DE for NAFLD
in adipose tissue but not in the liver, coded for secreted proteins, had moderate to high expression in adipose tissue, and had >10x higher
expression in the subcutaneous adipose tissue than in the liver. These filters reduced the list of 953 total adipose DE genes across steatosis,
fibrosis, and non-alcoholic steatohepatitis (NASH) to 10 SBCs. Blue genes are upregulated in steatosis, fibrosis, and/or NASH in adipose tissue,
while red genes are downregulated.
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DE in liver for any of the same three NAFLD traits,
code for secreted proteins, have median TPM > 30 in
subcutaneous adipose tissue, and have >10x higher
median TPM in subcutaneous adipose tissue than in
liver tissue.

Determination of key SBCs using best subset
modelling approach
To find the best subset of these 10 genes for evaluating
NAFLD risk, we modelled the effect of their adipose
expression on NAFLD. First, we observed that there are
significant adipose expression gene-gene correlations
among the 10 SBCs (Fig. 4a), indicating that they are not
fully independently expressed in the adipose tissue. To
avoid redundancy, we then searched for the minimum
set among the 10 SBCs whose adipose expression
explained the maximum amount of variance in NAFLD,
subcutaneous adipose tissue are shown in Supplementary Fig. S3. (b) Bar
for steatosis, fibrosis, and NASH. X-axis represents logFC in adipose bulk R
healthy livers. Y-axis represents the SBC name, sorted by logFC. Blue SBC
compared to the individuals with healthy livers, while red SBCs have dec
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using a best subset approach with the R package leaps.43

In this approach, we fit linear models for different
combinations and numbers of SBCs, and tested the
variance in steatosis, fibrosis, and NASH explained by
each combination of genes, while correcting for the
same covariates we used in the WGCNA and DE ana-
lyses (see Methods). We discovered that the gene
Collagen Type VI Alpha 2 Chain (COL6A2) explains the
most variation in steatosis (r2 = 0.055, ppermutation

= 1.22 × 10−2 by permutation test), and the genes
CCDC80 and SOD3 explain the most variation in both
fibrosis and NASH (r2 = 0.102, ppermutation = 1.97 × 10−3

for fibrosis; r2 = 0.166, ppermutation = 3.50 × 10−4 for
NASH, by permutation test) (Fig. 4b, Supplementary
Table S10). This result further strengthens the prem-
ise of CCDC80 and SOD3 as biomarkers, because our
permutation results show that their adipose expression
plot showing the DE direction of the SBCs in the adipose DE analysis
NA-seq data from individuals with each NAFLD trait and those with
s have increased adipose expression in individuals with NAFLD when
reased adipose expression.
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Fig. 4: Selection of the key serum biomarker candidates (SBCs) using the best subset analysis, motivated by our prior gene-gene
correlations observed in the adipose expression of the SBCs. We filtered the list of 10 SBCs further by testing the proportion of vari-
ance explained in steatosis, fibrosis, and non-alcoholic steatohepatitis (NASH) by the adipose expression of the SBCs. (a) Pairwise gene-gene
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explains more variation in fibrosis and NASH than
virtually all other pairs of genes.

Effect of CCDC80 and SOD3 knockdown on human
preadipocytes during adipogenesis
Because CCDC80 and SOD3 were observed as the
strongest SBCs for both fibrosis and NASH, we next
investigated their effects on adipogenesis in vitro using
an siRNA knockdown experiment. In this experiment,
we cultured human SGBS preadipocytes over the course
of differentiation to adipocytes, and collected bulk RNA-
seq data at four time points. We first confirmed that the
knockdown was effective, as evidenced by the down-
regulation of both CCDC80 and SOD3 (p < 0.05) in
their respective knockdown conditions (Fig. 5,
Supplementary Tables S11 and S12). We then per-
formed Oil Red O (ORO) staining on the SGBS pre-
adipocytes at each time point of adipogenesis to
compare the amount of lipid accumulation between the
scrambled control and CCDC80 and SOD3 knockdown
samples (Supplementary Fig. S4). We discovered that
there are significant changes in the ORO intensity in
both the CCDC80 and SOD3 knockdowns during adi-
pogenesis when compared to the scrambled control. By
day 4, the ORO intensity was significantly decreased in
both knockdowns when compared to the scrambled
control, and by day 7, there was either no significant
difference (CCDC80), or the knockdown samples had
significantly higher intensity (SOD3) than the scram-
bled control (Supplementary Fig. S4). The ORO in-
tensity values of the scrambled control did not
significantly differ from the ones in the non-scrambled
control in these experiments (all P > 0.05 by Student’s
t-test). As the ORO intensity can quantify the amount of
fat present in the sample, this evidence suggests that
knocking down CCDC80 and SOD3 delays the onset of
adipogenesis.

Next, we searched for DE genes between control and
separate knockdown of CCDC80 and SOD3 at each
adipogenesis time point from baseline to seven days
(see Methods). Because we were interested in the impact
of CCDC80 and SOD3 knockdown on adipogenesis
specifically, we restricted the genes tested for DE to a list
of preadipocyte, adipocyte, and adipogenesis marker
genes (n = 492 genes tested, see Methods).
correlation structure between the subcutaneous adipose expression of the
Pearson correlation (R) between the adipose expression of the SBC genes
correspond to a negative correlation. “X” indicates that the correlation is
first principal component (PC). Boxed gene names represent the SBCs
eigengenes. The observed correlations between the adipose expression
capture most of the expression of all 10 SBCs, which we then tested in
steatosis, fibrosis, and NASH, the best subset of significant SBCs was chos
fatty liver disease (NAFLD) trait explained by each combination of genes.
(see Methods). To capture genes involved in the early onset of NAFLD, o
steatosis in the subcutaneous adipose tissue were considered for the ste
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We found evidence suggesting that CCDC80 may
contribute to NAFLD progression by inhibiting the
ability of adipose tissue to produce new adipocytes to
store fat. This was supported first by the observation that
CCDC80 adipose expression is increased in the obese
subjects with NAFLD when compared to the obese in-
dividuals with healthy liver (Fig. 2, Supplementary
Table S8), and second, by the observation that knock-
down of CCDC80 during adipogenesis significantly
increased the expression of fatty acid master transcrip-
tion factor SREBF1 at 7 days (log fold-change in
knockdown compared to control (logFC) = 1.547,
p = 8.608 × 10−4 vs control by R package limma) as well
as TG hydrolysis enzyme Lipoprotein Lipase (LPL) at 7
days (logFC = 2.597, p = 7.215 × 10−4 vs control by R
package limma) (Fig. 5a and b, Supplementary
Table S11). Of the 141 adipogenesis pathway genes we
downloaded from WikiPathways, 13 were DE during at
least one timepoint in the CCDC80 knockdown (Fig. 5a
and b, Supplementary Table S11).

We also found evidence suggesting that SOD3 may
protect against NAFLD by promoting a healthy satiety
feedback loop. This was supported first by the observa-
tion that SOD3 adipose expression is decreased in in-
dividuals with NAFLD compared to those with healthy
livers (Fig. 2, Supplementary Table S8), and second, by
the observation that the knockdown of SOD3 during
adipogenesis significantly decreased the expression of
the satiety signalling protein LEP at 4 days
(logFC = −0.651, p = 1.966 × 10−4 vs control by R package
limma) (Fig. 5c and d, Supplementary Table S12).
Seventeen of the adipogenesis pathway genes were DE
during at least one timepoint in the SOD3 knockdown
(Fig. 5c and d, Supplementary Table S12).

Effect of CCDC80 and SOD3 recombinant proteins
on human liver HepG2 cells
To further explore the potential functional role of the
key SBCs CCDC80 and SOD3 in NAFLD, we treated
liver HepG2 cells separately with CCDC80 and SOD3
recombinant protein for 24 h. To assess the changes
induced by the treatments with the CCDC80 and SOD3
recombinant proteins, we performed RNA-seq on the
treated and non-treated HepG2 cells, and then con-
ducted a DE analysis separately comparing the CCDC80
SBC genes. Each coloured box represents the strength of the pairwise
. Green boxes correspond to a positive correlation, and purple boxes
non-significant after Bonferroni correction. Genes are ordered by the
that correlate with the key NAFLD-related liver network module

of the SBCs motivate the idea that a small subset of the SBCs can
the best subset analysis. (b) Results of the best subset analysis. For
en by the leaps algorithm, based on the variance in the non-alcoholic
P-values were calculated based on a permutation test (B = 100,000)
nly the 3 genes that were uniquely differentially expressed (DE) for
atosis model.
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Fig. 5: CCDC80 knockdown in human preadipocytes differentiated to adipocytes activates known drivers of adipogenesis, and SOD3
knockdown deactivates known drivers of healthy energy homeostasis. We knocked down CCDC80 and SOD3 using siRNA transfection in
independent cultures of human SGBS preadipocyte cells (see Methods), and measured expression via RNA-seq at 4 time points during adi-
pogenesis. We then performed a differential expression (DE) analysis on the RNA-seq data between the CCDC80 or SOD3 gene knockdown and
scramble conditions at each time point. (a) Results of the CCDC80 knockdown DE analysis. The X-axis represents the log fold-change (logFC) of
all 43 genes which were DE in at least one time point during the differentiation; the Y-axis the gene names; and facets the time points of
adipogenesis. Blue genes were expressed significantly more in the CCDC80 knockdown than in the scramble conditions, and red genes were
expressed less. Yellow represents CCDC80, the knocked down gene. (b) Mean expression of CCDC80 and selected well known examples of
adipogenesis genes in the scramble and knockdown samples during differentiation. The X-axis represents the time point of the adipocyte
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and SOD3 treated HepG2 cells to the non-treated con-
trol HepG2 cells (see Methods). Because we were
interested in the impact of the CCDC80 and SOD3 re-
combinant proteins on processes related specifically to
the development of NAFLD in liver cells, we restricted
the tested genes to the hepatocyte marker genes which
were also DE for steatosis, fibrosis, or NASH in the
KOBS liver RNA-seq DE analysis (n = 61 genes tested).

In the DE analysis of the 61 genes, we identified a
total of 11 DE genes with significant, multiple testing
corrected p-values (FDR < 0.05), 9 for CCDC80 and 2 for
SOD3 (Fig. 6, Supplementary Table S13). Among these
11 genes, we highlight three genes, Peroxisome Pro-
liferator Activated Receptor Alpha (PPARA), NFE2 Like
BZIP Transcription Factor 2 (NFE2L2) (also called
NRF2), and Ring Finger Protein 128 (RNF128) (also
called GRAIL), with ample previous evidence in liver
fatty acid metabolism and fat accumulation in hepato-
cytes (see Discussion). Our experiment treating liver
HepG2 cells with the CCDC80 recombinant protein
shows that the PPARA and NFE2L2 genes had a
significantly lower expression in the CCDC80 treated
HepG2 cells when compared to the control HepG2 cells
(logFC = −0.866, −0.449, p = 2.141 × 10−3, 7.057 × 10−4 vs
control cells, by R package limma for PPARA and
NFE2L2, respectively). We also show that the RNF128
gene had a significantly lower expression in the SOD3
treated HepG2 cells when compared to the control
HepG2 cells (logFC = −1.930, p = 1.652 × 10−3 vs control
cells, by R package limma) (Fig. 6, Supplementary
Table S13). Taken together with the previously pub-
lished NAFLD-related evidence for these three genes
(see Discussion) our results suggest that the CCDC80
protein may induce hepatocytes to accumulate fat, while
the SOD3 protein may promote healthy lipid meta-
bolism in hepatocytes, in line with the observed
increased (CCDC80) and decreased (SOD3) adipose
expression in individuals with NAFLD (Fig. 2).

Adipose expression of four SBCs correlates with key
liver co-expression networks associated with
NAFLD
To investigate how individual SBC genes may be con-
nected to liver functions related to NAFLD, we corre-
lated the adipose expression of every SBC with the
module eigengene of each of the 10 liver networks that
correlated with steatosis, fibrosis, or NASH (i.e. the liver
saddlebrown, cyan, tan, magenta, lightcyan1, lightgreen,
differentiation; the Y-axis counts per million (CPM); facets the gene nam
experimental condition (knockdown or scrambled control). Each condition
and the total experiment included n = 28 samples. Annotations indicate t
for a given timepoint and gene: “***” = adjP < 0.001; “**” = adjP < 0.0
“++” = p < 0.01, “+” = p < 0.05. The CCDC80 p-values are not adjusted for
in the knockdown experiment. (c) Results of the SOD3 DE analysis, with
expression of SOD3 and selected well known examples of adipogenesis a
during differentiation. Plot elements are analogous to those in (b).
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darkgrey, violet, darkmagenta, and royalblue network
modules) (Supplementary Fig. S1 and Table S14). We
found that the adipose expression of four SBCs, GPX3,
COL6A1, SFRP2, and TIMP3, correlates significantly
with the key NAFLD-associated liver networks, which
represent important functional liver pathways, including
the biosynthesis of amino acids, sugar and fatty acid
metabolism, and metabolic processes (Supplementary
Figs. 2c–h and Table S14).

Notably, we also found that the adipose expression of
these genes, GPX3, COL6A1, SFRP2, and TIMP3,
seems to be effective at capturing the adipose expression
of all 10 SBCs, as demonstrated by their membership in
each of the significant (passing multiple testing correc-
tion) gene-gene correlation blocks in Fig. 4a. In more
detail, Fig. 4a shows that GPX3 belongs to the signifi-
cant correlation block with VEGFB, SOD3, COL6A2,
GPX3, and MGP; SFRP2 belongs to the significant
correlation block with CCDC80; COL6A1 forms a
singleton correlation block with itself as it is not
significantly correlated with other SBCs; and TIMP3
belongs to the significant correlation block with
CD300LG and TIMP3. Thus, we can conclude that the
adipose expression of these 4 SBCs, which represent all
positively correlated gene-gene correlation blocks
among the 10 SBC genes in Fig. 4a, are significantly
correlated with the NAFLD-associated liver networks,
and in turn with numerous co-expressed liver genes.

TG GWAS variants regulating the adipose NAFLD DE
genes in cis help identify a unidirectional pathway
from serum TGs to NAFLD
To understand the role of the adipose aware NAFLD DE
genes in NAFLD pathogenesis, we conducted MR
analysis using a set of IVs derived from adipose aware
NAFLD DE gene cis-expression quantitative trait loci (cis-
eQTLs) and TG genome-wide association study (GWAS)
results. We reasoned that it is important to search for
specific biological pathways that cause adipose
dysfunction to impact serum TGs, and in turn drive
NAFLD onset in the liver, because TG measurements
alone are not sufficient to diagnose NAFLD. Elevated TG
levels can be impacted by a wide variety of different
genetic and environmental factors, including but not
limited to adipose dysfunction and NAFLD. To select
our set of IV variants, we began with the adipose aware
NAFLD DE genes (n = 649 genes), motivated by the fact
that we observed a significant enrichment of TG
e; error bars the mean ± one standard deviation; and colours the
-timepoint combination within each facet represents n ≥ 3 samples,
he significance of DE between the knockdown and scramble samples
1; “*” = adjP < 0.05. In the CCDC80 panel only: “+++” = p < 0.001,
multiple testing because we directly manipulated CCDC80 expression
54 DE genes. Plot elements are analogous to those in (a). (d) Mean
nd satiety signalling genes in the knockdown and scramble samples
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Fig. 6: Treatment of human liver HepG2 cells with the CCDC80 and SOD3 recombinant proteins changes the expression of several known
NAFLD-related genes. We treated separate cultures of human liver HepG2 cells with the CCDC80 and SOD3 recombinant proteins for 24 h (see
Methods), and measured expression via RNA-seq. We then performed a differential expression (DE) analysis between the recombinant protein
treated cells and non-treated control cells. (a) Results of the CCDC80 treatment DE analysis. The X-axis represents the log fold-change (logFC) of
the 9 significant DE genes, and the Y-axis represents the gene names. Blue genes were expressed significantly more in the CCDC80 treated cells
than in the control cells, and red genes were expressed less. (b) Mean expression of all 9 significant DE genes in the CCDC80 treated cells
compared to the control cells. The X-axis represents counts per million (CPM), standardized by the mean and standard deviation of each gene;
the Y-axis gene name; error bars the mean ± one standard deviation; and colours the experimental condition (CCDC80 treated HepG2 cells or
non-treated control cells). Each row represents 4 samples treated with CCDC80 and 4 control samples, for a total of 8 samples per row. The “*”
annotation indicates that the gene was significantly DE between the CCDC80 treatment and control samples (adjP < 0.05 after Benjamini–
Hochberg correction (FDR < 0.05)). (c) Results of the SOD3 treatment DE analysis, with 2 significant DE genes. Plot elements are analogous
to those in (a). (d) Mean expression of the 2 DE genes in the SOD3 treated cells compared to the control cells. Plot elements are analogous to
those in (b).
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GWAS variants in their cis regions (±1 Mb)
(FDR95 = 8.00 × 10−4, FDR75 = 4.4 × 10−3 by MAGENTA
enrichment test), but not for NAFLD GWAS variants
(FDR > 0.05) using MAGENTA. Of the 649 adipose
aware NAFLD DE genes, we selected those with a sig-
nificant adipose cis-eQTL in the KOBS bulk RNA-seq
data and a TG GWAS hit that was not a NAFLD
GWAS hit in their cis regions (n = 191 valid cis regions).
We tested for colocalization between cis-eQTLs and TG
GWAS variants in each candidate region (n = 10
significantly colocalised regions, with the strongest
colocalised signal shown in Fig. 7a), selected the colo-
calised cis-eQTLs as IV candidates, LD pruned the IV
candidates, and removed strand ambiguous IVs (n = 6
final IVs, see Methods). We ran 3 methods of MR
analysis with these 6 IVs, using the UKB GWAS sum-
mary statistics for TGs and NAFLD (see Methods) as the
input data.
Using MR analysis, we discovered evidence of a
unidirectional positive effect of serum TGs on NAFLD,
as first demonstrated by a significant result in the MR-
PRESSO method (Beta = 0.163, p = 1.188 × 10−2 by
MR-PRESSO global test). Based on the MR-PRESSO
global test, there was no horizontal pleiotropy among
the 6 IVs (p > 0.05), and there were no outliers in effect-
size space (Fig. 7b). We found a similar significant
result with both the IVW MR method (Beta = 0.162,
p = 1.284 × 10−4 by Wald test), and the MR-Egger
method (Beta = 0.180, p = 0.036 by Wald test).

Notably, our MR results also suggest that the SBC
Vascular Endothelial Growth Factor B (VEGFB) (Fig. 7a)
may belong to a biological pathway upstream of NAFLD.
This is supported by the fact that one of the adipose IVs,
rs2845885, is an adipose but not liver cis-eQTL for
VEGFB (Betacis-eQTL = −0.722, FDRcis-eQTL = 8.833 × 10−10

by Matrix eQTL association test). By our IV definition,
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Fig. 7: Mendelian Randomization (MR) analysis suggests a unidirectional effect of serum triglycerides (TG) on imputed non-alcoholic
fatty liver disease (NAFLD) status, mediated by cis regulators of adipose aware DE genes. We derived 6 instrumental variable (IV) vari-
ants for MR analysis from the cis regions of adipose aware differentially expressed (DE) genes by selecting adipose cis-expression quantitative
trait loci (cis-eQTL) SNPs colocalised with TG GWAS SNPs that were not also NAFLD genome-wide association study (GWAS) SNPs. We then
conducted MR analysis with MR-PRESSO using variant GWAS effect sizes from the UK Biobank, and discovered a significant result. (a)
Colocalization of VEGFB adipose cis-eQTL rs2845885 with TG GWAS variant rs56271783. Strong colocalization of variants regulating both TGs
and adipose expression of an SBC gene suggests that key DE genes and serum TG levels may share a directional pathway. Each point represents
one genetic variant, and colour indicates pairwise linkage disequilibrium (LD) with rs56271783, as described in the legend in the left panel.
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rs2845885 is also a significant GWAS variant for TG
(BetaGWAS = 0.050, pGWAS = 2.9 × 10−31 by BOLT-LMM
GWAS test), and not a significant GWAS variant for
NAFLD. The single nucleotide polymorphism (SNP)
rs2845885 is significantly colocalised with the TG GWAS
variant rs56271783 (posterior probability of colocalisa-
tion = 98.8%) (Fig. 7a). When run by itself as the sole IV
in the IVW MR method, which can be run for single
variants, rs2845885 still produces a significant result for
the path from serum TGs to NAFLD (BetaMR = 0.182,
pMR = 6.153 × 10−6 by Wald test). This indicates that the
SBC, VEGFB, likely plays a significant role in the
observed effect of serum TGs on NAFLD that is induced
by obesity-related adipose dysfunction.

To ensure our MR evidence indicated an adipose-
origin unidirectional effect of TGs on NAFLD, we veri-
fied that the reverse causal hypothesis, i.e. that NAFLD
drives changes in serum TG levels, lacked substantive
evidence. To select IVs for the reverse direction MR
analysis, we first selected liver aware DE genes, which
were DE in the liver but not in the adipose tissue
(n = 304 genes), selected those with a significant liver
cis-eQTL and a NAFLD GWAS hit that was not also a TG
GWAS hit in their cis regions (n = 1 valid cis region), and
tested those for colocalization in the single remaining cis
region of the NEDD4 Like E3 Ubiquitin Protein Ligase
(NEDD4L) gene (see Methods). There was no significant
colocalization in this NEDD4L gene region, meaning
that there were zero valid IVs for the reverse MR anal-
ysis. Overall, this suggests that changes in adipose tis-
sue function may influence NAFLD via serum TGs,
rather than the other way around.

Adipose expression of the lead MR SBC, VEGFB,
explains additional variance in NAFLD compared to
serum TGs alone
To further explore the MR results, implying that VEGFB
may contribute to the measured effect of TGs on
NAFLD, we quantified the potential diagnostic value of
VEGFB adipose expression in comparison to TG mea-
surements alone using a series of regression analyses.
We first fit two types of logistic regression models to the
steatosis, fibrosis, and NASH status in the KOBS cohort,
while correcting for the same covariates as we did in the
DE and best subset analyses. The first model utilised
only serum TGs as an explanatory variable, and the
second added adipose VEGFB expression to the model,
Upper right panel: X-axis represents position on chromosome 11 in meg
with VEGFB adipose expression, i.e. the negative log p-value from adipose
on chromosome 11 in megabases (Mb). Y-axis represents the significance
value from GWAS analysis. Left panel: X-axis represents the negative log p
value from VEGFB adipose cis-eQTL analysis. Annotation reports the LD v
with MR-PRESSO. The absence of outliers in the plot indicates that there is
non-significance in the MR-PRESSO global test. Each point represents an
variant effect size for serum TGs, while Y-axis represents the variant effect
the MR-PRESSO output slope with an intercept of 0.
utilising both TGs and adipose VEGFB expression as
the explanatory variables for the NAFLD status (stea-
tosis, fibrosis, and NASH). We found that adding
VEGFB expression to the model substantially increased
the goodness of fit over the serum TGs alone. In more
detail, the NASH model showed the strongest
improvement, in which the pseudo-r2 increased from
23.4% to 27.8%, and the area under the receiver oper-
ating characteristic curve (AUC) increased from 73.7%
to 76.6%, after the addition of the expression of just one
SBC, VEGFB (Supplementary Table S15). We observed
similar increases in fibrosis, and slightly smaller in-
creases in steatosis.

To further confirm these results, we then built linear
and elastic net models with identical combinations of
explanatory variables, and found that, as expected given
the logistic regression results described above, adding
VEGFB increased the goodness of fit across all model
types and NAFLD phenotypes over the serum TGs
alone. This result was preserved in the adjusted r2 sta-
tistic from the linear model, and VEGFB also had a
nonzero coefficient in the elastic net models for fibrosis
and NASH, indicating that VEGFB expression contrib-
utes significantly to the model (Supplementary
Tables S16 and S17).
Discussion
We hypothesised that in some obese individuals, obesity
induces pathological inflammatory changes in the sub-
cutaneous adipose tissue, leading to ectopic deposition
of fat into the liver and the development of NAFLD, and
that these mechanisms could be observed in the
changes in adipose expression of key genes related to
adipose tissue function. Eventually, these pathways
could also be traced without liver biopsy or abdominal
imaging using adipose origin SBCs. To test our hy-
pothesis, we first demonstrated that there may be
crosstalk between the adipose tissue and liver by iden-
tifying correlations between adipose and liver gene co-
expression networks associated with NAFLD and
related metabolic traits. Next, we identified 649 adipose
tissue aware DE genes for liver histology-based NAFLD
phenotypes in individuals with morbid obesity with and
without NAFLD. Filtering these adipose aware DE genes
resulted in the identification of 10 SBCs, which are DE
in adipose, are not DE in the liver, show adipose
abases (Mb). Y-axis represents the significance of variant association
cis-eQTL analysis. Bottom right panel: X-axis represents the position
of variant association with serum TG levels, i.e. the negative log P-
-value from TG GWAS analysis. Y-axis represents the negative log P-
alue between rs2845885 and rs56271783. (b) Results of MR analysis
no significant horizontal pleiotropy in the set of IVs, as evidenced by
IV, and error bars represent the effect size ± SE. X-axis represents the
size for the imputed NAFLD status. Regression line is generated from
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enriched expression, and encode proteins secreted to
serum. Based on best subset analysis, we further follow-
up the SBCs, CCDC80 and SOD3, by knockdown in
human preadipocytes and subsequent differentiation
experiments, which suggest that their knockdown im-
pacts important adipogenesis genes. Finally, the TG
GWAS variants regulating the adipose NAFLD DE
genes in cis helped us identify a possible unidirectional
pathway from serum TGs to NAFLD.

Previous work has utilised transcriptomics data and
direct serum protein measurements paired with NAFLD
diagnosis to search for noninvasive biomarkers for
NAFLD.2,9 However, to the best of our knowledge, our
study may be the first to leverage a dual-tissue cohort
with both adipose tissue and liver RNA-seq available,
paired to a gold-standard NAFLD diagnosis using liver
histology. The originality of our study lies not primarily
in our hypothesis, rather in our approach to identify
cross-tissue disease effects using dual-tissue omics data.
With our cross-tissue analysis, which scanned genome-
wide for SBCs, we add this unique dual-tissue
perspective, focused on obesity-driven, adipose-origin,
NAFLD, to the body of previous NAFLD studies.2,9

Although previous work has assessed the connection
between either NAFLD and the adipose transcriptome54

or NAFLD and the liver transcriptome,55 our study made
use of RNA-seq data measured from both adipose and
liver in the same individuals.

This dual-tissue RNA-seq data first allowed us to
conduct a comparative WGCNA analysis to discover
adipose-liver communication within a single set of
individuals. Molecular crosstalk has been detected
previously using a similar method,56 but never on
human adipose-liver interaction. Our cross-tissue
design was also crucial in identifying our SBCs,
because we were able to remove the liver NAFLD DE
genes from the adipose DE genes to pinpoint genes
specifically involved in the adipose origin of NAFLD.
Detecting adipose aware SBCs is important, because
adipose tissue is known to secrete a wide array of
signalling proteins,57 which opens up the possibility
for capturing the specific adipokines associated with
NAFLD in serum. Additionally, our cross-tissue
approach adds value to our MR method, because our
IVs were derived from the list of adipose aware DE
genes, which required transcriptomic data from both
tissues. This allowed us to robustly demonstrate a
possible unidirectional pathway, from cis regulatory
variants of adipose aware DE genes, to elevated serum
TGs, to increased NAFLD risk. In a previous paper,
Yuan et al. observed a positive effect of TGs on
NAFLD with MR analysis, using genetic SNPs as IVs
in a NAFLD cohort of 8400+ cases and 770,000+
controls,58 but our study also ties the origin of the MR
signal to the subcutaneous adipose tissue by utilizing
cross-tissue data to obtain IV SNPs from adipose
aware DE genes.
www.thelancet.com Vol 92 June, 2023
Our selection criteria for SBCs, which are specifically
tailored to a cross-tissue transcriptomic design, provide
additional value to our study. The HPA secretome has
been applied previously to search for biomarkers,59 and
the GTEx median TPM data have been applied to study
NAFLD60; however, we applied the two resources in
combination as a set of filtering criteria for SBCs. These
publicly available datasets allowed us to implement a
crucial element of our study design, i.e. the selection of
the adipose aware NAFLD DE genes encoding secreted
proteins which are likely to be detectable in serum.
Thus, our SBCs are DE in adipose tissue but not in the
liver for the three key NAFLD traits, steatosis, fibrosis
and NASH, and in addition are highly expressed in
adipose tissue, secreted to serum, and expressed sub-
stantially more in the adipose tissue than in the liver. In
addition, the observed significant correlations between
the adipose expression of SBCs and NAFLD-associated
liver networks also support the possibility that the pro-
tein products of the SBC genes are markers of the liver
NAFLD status in serum.

Due to our integrative filtering design, CCDC80 and
SOD3 are likely to be indicators of NAFLD. Both of
these genes meet all of our filtering criteria for SBCs,
and our significant genome-wide permutation results
show that they explain more variance in fibrosis and
NASH than all other pairs of genes. Although our
knockdown results do not prove that CCDC80 and
SOD3 are causal in the pathogenesis of NAFLD, a
biomarker can be effective whether or not it is causal.
Our differentiation experiments suggesting that SOD3
and CCDC80 modulate genes involved in adipogenesis
demonstrate their premise as indicators of the onset of
NAFLD, either as responsive or causal players, and
provide support for our computational methods of dis-
covery. Additionally, previous work on the function of
both genes aligns with our results.61–64

As we observed in our study, CCDC80 has been
shown to associate positively with adverse metabolic
traits, including fatty liver.61,63 We observed significantly
increased differential expression of CCDC80 in in-
dividuals with NAFLD, using 3 independent tests
comparing individuals with steatosis, fibrosis, and
NASH to those with healthy livers. In line with our
human results, in a previous mouse model, CCDC80
knockdown decreased plasma TGs.61 In a human study,
CCDC80 was quantified in serum, and serum CCDC80
levels correlated positively with obesity risk, inflamma-
tion markers, and liver steatosis.63 It has been proposed
that CCDC80 increases hypertriglyceridemia by
decreasing the expression of LPL, a key catalyst in hy-
drolysis of TGs.61 Gong et al. observed that CCDC80
knockdown in vascular smooth muscle cells in vitro
increased LPL expression, while CCDC80 over-
expression decreased LPL.61 In agreement with this ev-
idence, we observed an upregulation of LPL in our
CCDC80 knockdown in preadipocytes during
21
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adipogenesis at day 7. Additionally, we observed that the
key transcription factor of fatty acid biosynthesis,
SREBF1, was significantly upregulated at day 7 in the
CCDC80 knockdown during adipogenesis. SREBF1 is
widely accepted as a transcription factor promoting
adipogenesis.12 SREBF1 exhibits a steep and sustained
increase in expression during the induction stage of
adipogenesis,12 preceding the increases in expression of
other known master adipogenesis regulators PPARG65

and CEBPA.12,66 Thus, our results suggest that
CCDC80 may contribute to the pathogenesis of NAFLD
by preventing adipose tissue from performing its vital
functions through adipogenesis.

When treating human liver HepG2 cells with
CCDC80 recombinant protein, we observed that the
CCDC80 recombinant protein significantly modulated
the expression of 9 genes, several of which have previ-
ously been linked to NAFLD and related liver pathol-
ogies, including PPARA, NFE2L2, MOGAT1, and
ZNF638.14,15,67–70 PPARA is a transcription factor that is
considered a master regulator of fatty acid metabolism
in the liver,14 and has been negatively associated with
NAFLD in multiple previous studies.15,67 NFE2L2 acti-
vation has previously been shown to protect against liver
steatosis, fibrosis, and NASH in obese mice.68 In line
with these previous findings and our own adipose tissue
CCDC80 NAFLD DE and CCDC80 knockdown results,
we observed a significant downregulation of PPARA,
NFE2L2, MOGAT1, and ZNF638 in the CCDC80
treated liver HepG2 cells when compared to the control
cells. Overall, these cellular results strengthen our
converging findings, pinpointing CCDC80 as a potential
new SBC for NAFLD.

Our results also corroborate evidence supporting
SOD3 as an adipose origin biomarker for NAFLD. We
observed significantly decreased differential expression
of SOD3 in individuals with NAFLD, using 3 indepen-
dent tests comparing individuals with steatosis, fibrosis,
and NASH to those with healthy livers. SOD3 is seen as
a protective factor against oxidative stress, which has
been shown to be a major contributor to the pathogen-
esis of NAFLD. SOD3 knockdown in human adipocytes
caused increased accumulation of TGs,64,71 and global
SOD3 knockout mice exhibited increased obesity and
insulin resistance.64 Adipocyte diameters in the white
adipose tissue of mice overexpressing SOD3 on a high-
fat diet were significantly smaller than those of control
mice on a high-fat diet, and were almost identical to
control mice on a regular chow diet.72 Previous work
suggests that SOD3 functions as a protective mecha-
nism against NAFLD development by inhibiting the
expression of inflammatory genes in adipose tissue,72

which aligns with our hypothesis that NAFLD onset is
triggered by dysfunctional and inflamed adipose tissue.
Gao et al. also detected SOD3 protein in the supernatant
of human adipocytes, suggesting it is secreted by the
adipose tissue.64 Additionally, we observed that LEP was
significantly downregulated in the SOD3 knockdown at
day 4 during adipogenesis. LEP encodes an adipokine,
leptin, which is secreted from adipose tissue that acts on
the brain, playing a major role in energy homeostasis
and satiety signalling.73 It has been shown that LEP acts
as the primary link between adipose tissue and the
brain, in a negative feedback loop that decreases hunger
urges with increasing energy intake and fat accumula-
tion.73 However, this same system has been demon-
strated to break down in obesity, where LEP deficiency
and/or LEP resistance hinder the ability of the body to
balance energy intake and expenditure.73 Taken
together, our SOD3 knockdown results suggest that
SOD3 may protect against NAFLD by promoting effec-
tive energy homeostasis.

We observed that the SOD3 recombinant protein
significantly altered the expression of 2 genes in liver
HepG2 cells, most importantly RNF128. RNF128 is a
transcription factor, the overexpression of which has
previously been shown to enhance hepatic lipid accu-
mulation and increase the expression of lipid metabolic
genes in mice and liver cells,16 and RNF128 knockout
mice were also found to be resistant to developing liver
steatosis on a high-fat diet compared to control mice,
indicating that its absence plays a protective role against
NAFLD.16 In line with these previous findings and our
own adipose tissue SOD3 NAFLD DE and SOD3
knockdown results, we observed a significant down-
regulation of RNF128 in the SOD3 treated liver HepG2
cells when compared to the control cells. These results
further support our existing findings, and highlight
SOD3 in addition to CCDC80 as a potential new SBC for
NAFLD.

Although an effective serum biomarker is not
necessarily causal, our MR results suggest that some
genetic regulators of adipose aware DE genes, notably of
the SBC VEGFB, may play an important role in NAFLD.
Our MR analysis used a set of 6 IVs, all of which
regulate local adipose aware DE gene expression and
colocalise with TG GWAS signals, to show that elevated
serum TGs have a possible unidirectional effect on
increasing NAFLD risk. We also show that there are
zero such IVs to support the reverse causal hypothesis
that serum TG levels are impacted by the NAFLD status.
This result provides converging evidence for our
adipose-origin NAFLD hypothesis, and places our adi-
pose aware DE genes at the beginning of the pathway
connecting obesity-induced adipose dysfunction to
NAFLD. Additionally, we observed that the VEGFB cis-
eQTL rs2845885 produces a significant result when
used as the sole IV in MR analysis. This result is
especially important, because it implies that VEGFB,
which already satisfies all of our SBC filtering criteria,
may be critical in the progression of adipose-origin
NAFLD. On top of this, our regression analyses add-
ing the VEGFB adipose expression to models only uti-
lizing serum TGs as an explanatory variable for NAFLD
www.thelancet.com Vol 92 June, 2023
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imply that VEGFB expression captures components of
the NAFLD variance that are not captured by TGs alone.
This makes VEGFB both a promising biomarker
candidate, and a potential target for therapeutic in-
terventions for NAFLD. VEGFB is significantly down-
regulated in our NASH DE results, which aligns with
our cis-eQTL and MR results, as well as previous
studies.74 The SNP rs2845885 is negatively associated
with VEGFB expression, but positively associated with
serum TGs. Previous studies in mice found that VEGFB
KO resulted in increased fat accumulation,74 while
VEGFB transduction suppressed adipose inflamma-
tion.75 Taken together, these results suggest that VEGFB
possibly functions as an inhibitor of NAFLD by pro-
moting the normal physiological functions of adipose
tissue.

CCDC80, SOD3, and VEGFB, along with the full list
of 10 SBCs, should be considered for inclusion in future
serum biomarker panels to diagnose NAFLD. Six of the
10 SBCs have been previously measured in serum, us-
ing ELISA kits and other related methods.63,64,76–79 Addi-
tionally, new results from another group studying the
UK Biobank80 support the assertion that the three SBCs
CCDC80, CD300LG, and TIMP3 are secreted to serum
and can be measured in serum, and that their protein
levels may indicate NAFLD. Sun et al. found that the
serum levels of these three proteins correlated signifi-
cantly with BMI in a cohort of more than 54,000 UK
Biobank participants (p < 1.000 × 10−651, 1.585 × 10−30,
and 2.512 × 10−119, respectively). BMI can be used as a
proxy for obesity, and thus these previous results indi-
cate that a significant proportion (30%) of the SBCs are
detectable in serum, are correlated with BMI, and may
correlate with obesity-related NAFLD. The other seven
SBCs were not measured in this previous study,80 and
the authors did not test any NAFLD traits. Thus, further
investigation specifically in NAFLD cases and controls is
still needed. Also, although our study leveraged the list
of secreted proteins from the HPA, the majority of our
analysis was done in a transcriptomic paradigm, under
the assumption that mRNA abundance of the SBCs in
adipose tissue is an effective proxy for their corre-
sponding protein levels in serum. Future vetting of our
SBCs should involve comparing their protein levels in
serum between individuals with and without NAFLD.

One of the limitations of our study is that our dis-
covery cohort consists of individuals with morbid
obesity originating from a relatively genetically homo-
geneous European population, the Finns.81 It is crucial
to follow up our work with future studies in populations
underrepresented in genomics, including Indigenous,
Latin American, African, and Southeast Asian pop-
ulations. Here, we made use of the European KOBS
cohort because it was the first to make our dual-tissue
NAFLD study design possible. Thus, even though the
previous mouse studies (described above) and our
experimental adipogenesis knockdown studies and MR
www.thelancet.com Vol 92 June, 2023
results support the role of the identified adipose aware
NAFLD DE genes in obesity-related NAFLD, it would be
important to further investigate these findings in other
European and more diverse human multi-tissue tran-
scriptomics cohorts with liver histology available for
study when those become available. Additionally, the
participants of the liver snRNA-seq cohort were older
than the participants of the adipose snRNA-seq cohort,
which may affect the identification of the adipose and
liver cell-type marker genes due to unknown age effects.
Future investigation is needed to determine whether
this age difference could be a confounding factor in the
identification of cell-type marker genes from snRNA-seq
data.

Currently, NAFLD can be diagnosed using liver bi-
opsy, which necessitates an invasive surgery or inpatient
procedure, or abdominal imaging (MRI, magnetic
resonance spectroscopy (MRS), or elastography), which
is costly and time consuming.2 Furthermore, NAFLD
often remains undiagnosed and is therefore grossly
underdiagnosed,2 emphasizing the pressing need for
SBCs. We envision that our cell culture-validated SBCs
have strong potential to be developed into an effective
blood panel for NAFLD, which could be used in the
primary care setting as initial screening before the
current invasive and expensive diagnostic techniques.
This could allow for more efficient primary care
screenings for NAFLD, including the clinically grave
form of NAFLD, fibrosis, and ultimately improve patient
health by catching and treating NAFLD earlier in its
development. We also envision that high-risk patients
for NAFLD, specifically obese patients, could greatly
benefit from this diagnostic option.

In conclusion, leveraging paired dual-tissue RNA-
seq data from the same obese individuals’ adipose
tissue and liver along with liver histology-based
NAFLD diagnosis, we discover a set of genes whose
adipose expression is likely to contribute to NAFLD via
obesity-induced adipose dysfunction. We also selected
10 serum biomarker candidates for NAFLD from this
set. We identified CCDC80 and SOD3, which explain
maximum variance in fibrosis and NASH compared to
all SBCs, as the key SBCs, and followed up this
conclusion with functional knockdown experiments
throughout adipogenesis. We also discovered proof-of-
principle genetic evidence for the involvement of ad-
ipose aware DE genes, especially the SBC, VEGFB, in
a possible unidirectional pathway from adipose
dysfunction to NAFLD via serum TGs. Our method-
ology can be extended to study cross-tissue links and
discover SBCs in any complex disease, provided that a
cohort of RNA-seq data from multiple tissues in the
same individuals is available, along with genotypes
and detailed phenotype data. Overall, identifying
genes and SBCs involved in tissue-tissue crosstalk
using our integrative transcriptomics pipeline could
contribute to improved understanding and earlier
23
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clinical detection and diagnosis of complex diseases in
the future.
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