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Abstract

Purpose: To develop and validate a deep learning (DL) model for detection of glaucoma 

progression using spectral-domain optical coherence tomography (SDOCT) measurements of 

retinal nerve fiber layer (RNFL) thickness.

Design: Retrospective cohort study.

Participants: A total of 14,034 SDOCT scans from 816 eyes from 462 individuals.

Methods: A DL convolutional neural network was trained to assess SDOCT RNFL thickness 

measurements of two visits (a baseline and a follow-up) along with time between visits to 

predict the probability of glaucoma progression. The ground truth was defined by consensus 

from subjective grading by glaucoma specialists. Diagnostic performance was summarized by 

the area under the receiver operator characteristic curve (AUC), sensitivity, and specificity, and 

was compared to conventional trend-based analyses of change. Interval likelihood ratios were 

calculated to determine the impact of DL model results in changing the post-test probability of 

progression.

Main outcome measures: AUC, sensitivity, and specificity of the DL model.

Results: The DL model had an AUC of 0.938 (95% confidence interval [CI]: 0.921, 0.955), with 

sensitivity of 87.3% (95% CI: 83.6%, 91.6%) and specificity of 86.4% (95% CI: 79.9%, 89.6%). 

When matched for the same specificity, the DL model significantly outperformed trend-based 
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analyses. Likelihood ratios for the deep learning model were associated with large changes in 

probability of progression in the vast majority of SDOCT tests.

Conclusions: A DL model was able to assess the probability of glaucomatous structural 

progression from SDOCT RNFL thickness measurements. The model agreed well with expert 

judgements and outperformed conventional trend-based analyses of change, while also providing 

indication of the likely locations of change.
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INTRODUCTION

Glaucoma is a progressive optic neuropathy, characterized by loss of retinal ganglion cells, 

and typical patterns of optic nerve damage and visual function loss.1 Due to its irreversible 

nature, the main goal of glaucoma management is to prevent further damage caused by the 

disease. Accurate and prompt assessment of progression is therefore essential to determine 

whether escalation of therapy is necessary.

Traditionally, glaucoma progression has been identified by the deterioration of visual 

function sensitivity, measured by standard automated perimetry (SAP). With the advent of 

technologies such as spectral-domain optical coherence tomography (SD-OCT), it became 

possible to acquire objective and reproducible structural measurements, such as retinal 

nerve fiber layer (RNFL) thickness, that can be used to monitor glaucomatous changes 

over time.2–4 Progressive RNFL thinning has been shown to be associated with future 

development of visual field loss5, 6 and, particularly in early glaucoma stages, the chance of 

detecting progression may be higher with SD-OCT than SAP.7, 8

There is, however, no consensus on how to determine whether an eye is presenting 

progression based on SD-OCT results. Aside from subjective clinical judgement, the two 

objective strategies most used in clinical practice and in research studies are trend- and 

event-based analyses. In trend-based analysis, a rate of change is calculated by estimating a 

linear trend of measurements over time, usually by ordinary least-squares linear regression. 

Although the rate of change is a useful parameter in clinical decision making, trend-based 

assessment relies on summary parameters, such as global peripapillary RNFL thickness, 

which may be insensitive to small, localized changes. Event-based analysis compares the 

amount of change from a baseline test to the expected limits of test-retest variability.9 

Although event-based algorithms may be more sensitive to small, localized progression, they 

do not take into account the time during which the changes have occurred. In addition, 

currently available event-based algorithms rely on short-term test-retest variability which 

may lead to spurious results when monitoring patients over the long-term.10, 11

Artificial intelligence algorithms, such as deep learning (DL) models, are (with sufficient 

and appropriate training data) capable of identifying complex patterns in data and make 

classifications or predictions with performance comparable, sometimes even superior, to the 

evaluation of experts. Particularly for glaucoma, several studies have proposed the use of 
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DL to detect signs of glaucomatous optic neuropathy on cross-sectional SD-OCT scans or 

optic disc volumes.12–21 However, there has been a lack of studies on using DL models for 

improving the assessment of longitudinal data and detection of progression with SD-OCT. In 

the present work, we report on the development of a DL model to detect structural glaucoma 

progression on SD-OCT tests and compare its performance to that of conventional analyses.

METHODS

This study used data from the Duke Glaucoma Registry, a database of electronic medical 

and research records developed by the Vision, Imaging, and Performance Laboratory 

at Duke University.22 The Duke University Health System Institutional Review Board 

approved this study, and a waiver of informed consent was granted due to the retrospective 

nature of this work. All methods adhered to the tenets of the Declaration of Helsinki 

for research involving human subjects and the study was conducted in accordance with 

regulations of the Health Insurance Portability and Accountability Act.

The database contained longitudinal information on comprehensive ophthalmologic 

examinations during follow-up, diagnoses, medical history, visual acuity, slit-lamp 

biomicroscopy, intraocular pressure measurements, results of gonioscopy and dilated slit-

lamp funduscopic examinations. In addition, the registry contained fundus photographs, 

standard automated perimetry (SAP; Humphrey Field Analyzer II, Carl Zeiss Meditec, Inc., 

Dublin, CA) and Spectralis SD-OCT (Software version 6.8, Heidelberg Engineering, GmbH, 

Dossenheim, Germany) images and data. Individuals were included in the study if they were 

adults 18 years and older and if they had at least one year of follow-up and three visits with 

SD-OCT scans. Individuals were excluded from the study if they did not meet the criteria 

above and if they had other ocular or systemic diseases that could affect the optic nerve or 

the visual field.

Diagnosis of glaucoma was defined based on the presence of glaucomatous repeatable visual 

field loss on SAP (pattern standard deviation <5% or glaucoma hemifield test results outside 

normal limits) and signs of glaucomatous optic neuropathy as based on records of slit-lamp 

fundus examination. Glaucoma suspects were those with a history of elevated intraocular 

pressure, suspicious appearance of the optic disc on slit-lamp fundus examination, or other 

risk factors for the disease. Healthy participants were required to have a normal optic disc 

appearance on slit-lamp fundus examination in both eyes as well as no history of elevated 

intra-ocular pressure and normal SAP results.

RNFL thickness measurements were obtained from peripapillary circle scans, acquired using 

the Spectralis SD-OCT. The device uses a dual-beam SD-OCT and a confocal laser-scanning 

ophthalmoscope that employs a super luminescent diode light with a center wavelength of 

870 nm and an infrared scan to provide simultaneous images of ocular microstructures. 

The SD-OCT software acquires a total of 1536 A-scans from a 3.45mm-diameter circle 

scan (for scans from the Glaucoma Mode Premium Edition) or a 12-degree (for single 

circle scans) centered on the optic disc and automatically calculates the point-by-point 

RNFL thickness profile as well as global and sectoral RNFL thickness averages. Tests were 

acquired using the latest available software version at the time of the scan and exported 
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using the latest available version at the time of the analysis. Corneal curvature measurements 

were entered into the instrument software to ensure accurate scaling of all measurements, 

and the device’s eye-tracking capability was used during image acquisition to adjust for eye 

movements and to ensure that the same location of the retina was scanned over time. All 

scans were manually reviewed and excluded in the presence of artifacts or segmentation 

errors. In addition, scans with a quality score lower than 15 were excluded from this 

analysis, according to manufacturer recommendations.

Glaucoma progression grading

The presence of glaucoma progression was defined by the assessment of two fellowship-

trained glaucoma specialists (EBM and LSS). For the grading process, the entire series of 

SD-OCT tests performed for each eye was summarized in an overview report and presented 

to each grader individually. The overview report is illustrated in Figure 1 and contained 

the B-scan images with the segmentation lines included, the RNFL thickness profiles (768 

equally spaced RNFL thickness measurements on a 3.45-mm circle centered on the optic 

disc), and global and sectoral averages.

Initially, each grader evaluated the entire series of SD-OCTs in the overview report to 

determine whether the eye had glaucoma progression at any point of the follow-up or 

whether it had remained stable throughout the follow-up. If no progression was identified, 

the label “stable” was assigned to all follow-up tests. If the graders considered that 

progression had occurred, they were asked to define at which visit progression was first 

detected. The follow-up tests that were performed in that visit as well as those performed 

after that visit received a label “progression”, while the tests performed before that visit 

received a label “stable”. To ensure that the changes were not due to variability alone, the 

graders were encouraged to analyze the entire series of SD-OCT tests and to only label 

progression if the observed RNFL thinning was present in the subsequent visits. This was 

performed to improve the quality of the labels (i.e, the reference standard), aiding the 

DL model to differentiate true progression from test-retest variability. If progression was 

identified solely at the very last visit, due to the impossibility of confirmation, such visit was 

excluded from the analyses. Of note, since the last visit of each series was excluded from 

the development and evaluation of the DL algorithm, some eyes had a follow up shorter than 

one year included in the analyses. Finally, if the graders did not agree in their classification, 

a third fellowship-trained glaucoma specialist (AAJ) provided adjudication by agreeing with 

one of the two primary graders while blinded for the grader’s identities.

Development of the deep learning model

A DL model (details discussed below) was developed to predict whether a SD-OCT test 

presented glaucoma progression or remained stable compared to a baseline SD-OCT. The 

input to the DL model was the RNFL thickness profile (768 measurements at equally spaced 

points around the optic nerve) from two SD-OCT tests (the baseline and one follow-up test). 

The time between the two visits was also included as an input to modulate the probability 

prediction. The DL model was trained to output the probability of glaucoma progression, 

where the ground truth for “stable” versus “progression” was defined according to the 
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assessment of glaucoma specialists. For each eye, each follow-up test was paired to the 

baseline test and used as input to the DL network.

To maximize the use of our sample, we used a 5-fold cross-validation method to train and 

evaluate the DL model. Initially the whole sample was split into five different partitions, 

randomized at the patient level. Next, one partition was reserved as a separate test sample. 

Then, the remaining partitions were used to train a model (three partitions combined as 

a training sample and one as validation sample). The trained model was used to get the 

predictions on the partition reserved as test sample. This process was repeated with a new 

partition as test sample, and a new model was trained, until all partitions were used once as 

test sample. This approach allows predictions to be obtained in the whole sample, producing 

more precise estimates of performance.

We designed a custom convolutional neural network (CNN) for the DL model architecture, 

illustrated in Figure 2. The input to the CNN contained two channels of 1D vectors of 

size 768 that contained the RNFL thickness profiles of the baseline and follow-up tests. 

The CNN consisted of three convolutional blocks. The first convolutional block had four 

branches with convolutional layers of different kernel sizes (7×1, 15×1, 31×1, 63×1), in 

order to capture both localized and general features. The idea to include convolutional layers 

at various scales came from natural language processing, which has a similar input (1D 

vectors where there is a correlation between closer positions, but also an influence of the 

whole context of the input). The time between visits was input in a separate branch of 

the model and the resulting vector was added to the CNN features (outputs of the third 

convolutional block). The last layer of the DL model was a single fully connected layer 

with a “softmax” activation and output of size two: the probability of “stable” and the 

probability of “progression”. Training was performed to minimize the cross entropy loss 

function with stochastic gradient descent (with mini batches of size 1024) optimized by the 

Adam algorithm.23 The initial learning rate was 10−4, gradually decreasing to a minimum of 

10−5. The DL model was trained for 1000 epochs with early stopping based on the lowest 

loss on the validation set.

We also developed a visualization tool that illustrates, through a heatmap, the relative 

importance of each location of the RNFL thickness profile for the probability of progression 

given by the DL model. To generate the heatmap, we modified the original input to 

assess the impact of different regions of interest in the RNFL thickness profile. The RNFL 

thickness values of the follow-up test were replaced by the RNFL thickness values of the 

baseline test in all points outside those of the region of interest. For this report, we selected 

a size of 30° for the regions of interest. For example, to assess the impact of the sector 

from 0–30°, we used the original baseline and follow-up RNFL thickness values for this 

sector but replaced all the thickness values for all the other points outside that sector by their 

baseline values. Therefore, the only change possible would be in the sector under evaluation. 

We then repeated this process for all sectors along the 360°, to assess which region had the 

greatest impact on the algorithm’s predictions. The DL predictions of each location were 

then plotted as a heatmap along with the RNFL thickness profile. It is worth noting that the 

size of the region of interest can be adjusted to represent the probability of progression in 

more localized (smaller size) or more diffuse (larger size) areas.
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Performance of the deep learning model

The diagnostic accuracy of the DL model was evaluated by the ability of the DL 

probability of progression to discriminate between tests that presented progression versus 

those that were stable, as determined by the evaluation of glaucoma specialists. A receiver 

operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used 

to summarize diagnostic performance. In brief, a ROC curve demonstrates the tradeoff 

between the true positive rate (sensitivity) and the false positive rate (1-specificity) for 

different thresholds of a continuous variable to discriminate between two groups. The 

AUC summarizes the diagnostic ability of the parameter, with 1.0 representing perfect 

discrimination and 0.5 representing chance discrimination. Sensitivity and specificity were 

reported for the optimal cut-off point, i.e. the threshold that resulted in highest accuracy, 

selected with the Youden method.24 We also investigated the performance of the DL model 

as a function of disease status, patient demographics, time of follow up and disease severity 

by RNFL thickness and SAP mean deviation (MD). Continuous variables were categorized 

using mean ± 1 SD if normally distributed and using quartiles if they did not have a normal 

distribution. SAP MD was categorized using cut-offs described in Hodapp-Parrish-Anderson 

severity classification (−6 and −12 dB).25

We compared the performance of the DL model with trend-based analysis of glaucoma 

progression. Trend-based analysis was performed by calculating rates of RNFL thickness 

change over time from the baseline visit up to the date of the follow-up visit under 

consideration. Progression was considered if a rate of change of global RNFL thickness over 

time was statistically significant (P < 0.05) relative to and more negative than −1 μm/year.26 

To increase sensitivity and to detect localized RNFL thinning, a second criteria was also 

used, in which progression was considered if either global RNFL thickness or any of the 

sectoral averages presented a rate of change statistically significant (P < 0.05) relative to and 

more negative than −1 μm/year. We selected cut-off points for the DL predictions to match 

the specificity of each criterion and then compared the sensitivities of the different methods.

Likelihood Ratios

In order to better gauge the impact of the DL model in changing the probability of 

progression when used under different clinical scenarios, we also report likelihood ratios 

(LRs) for different DL model results. LRs have been proposed as the best way to incorporate 

results from a diagnostic test into clinical practice, according to principles of evidence-based 

medicine.27 The LR is calculated by dividing the probability of a given test result in those 

that are truly positive for the outcome, i.e., presence of glaucoma progression by expert 

subjective assessment, by the probability of that same test result in those that are negative 

for the outcome, i.e., stability according to expert evaluation.27, 28 LRs indicate how much 

a particular test result will change the probability of a certain outcome from a pre-test 

probability to a post-test probability. For example, it is desirable that a high probability of 

progression given by the DL model would induce a large change in the pre-test probability 

of progression to a new, high, post-test probability of progression (see discussion). Similarly, 

it is also desirable that a result of the DL model indicating low probability of progression 

would significantly decrease the pre-test probability to a new, low, post-test probability 

of progression. LRs greater than 10 or lower than 0.1 are generally associated with large 
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effects on post-test probability, whereas LRs from 5 to 10 or from 0.1 to 0.2 with moderate 

effects, LRs from 2 to 5 or from 0.2 to 0.5 with small effects, and LRs closer to one with 

insignificant effects.28 We have previously described in detail the value of LRs in assessing 

diagnostic accuracy of imaging tests in glaucoma in other scenarios.29–31

Statistical analyses

Normality was checked by inspection of distributions and by using the Shapiro-Wilk test. 

Variables that were individual-specific were compared across groups using Student’s t-test 

when distribution was normal and Wilcoxon rank-sum test for non-normally distributed 

variables. Pearson’s chi-squared was used for categorical variables. Characteristics that were 

eye-specific were compared using generalized estimating equations (GEE) to account for 

the presence of both eyes of the same individual in the analysis. Due to the inclusion of 

both eyes of the same individual and the presence of multiple tests for each eye, a bootstrap 

procedure with resampling performed at the individual level was used to calculate 95% 

confidence intervals (CI). This procedure has been widely used to account for correlated 

measurements.32

Development of the DL model was performed in Keras, an open-source neural-network 

library written in Python, and statistical analyses were performed in Stata (version 15, 

StataCorp LP, College Station, TX). The alpha level (type I error) was set at 0.05.

RESULTS

The study included 14,034 SD-OCT tests (816 baseline and 13,218 follow-up tests) from 

816 eyes of 462 individuals, where 446 (54.7%) eyes had glaucoma, 129 (15.8%) were 

suspects of having glaucoma and 241 (29.5%) were healthy eyes. The mean ± standard 

deviation (SD) age at baseline was 64.5 ± 12.6 years and 270 individuals (58.4%) were 

female. An average of 16.2 ± 11.4 SD-OCT tests were available for analyses, from 6.0 

± 4.1 visits. Average follow-up time was 3.5 ± 1.8 years, ranging from 0.3 to 7.0 years. 

The intergrader agreement for progression was of 86%. Based on the labels assigned by 

the glaucoma specialists after adjudication, progression was detected in 1655 tests from 

124 eyes of 106 individuals, whereas 11563 tests from 790 eyes of 460 individuals were 

considered stable. The average rate of global RNFL loss was −0.28 μm/year (95% CI: −0.50, 

−0.08 μm/year) for the stable group and −1.45 μm/year (95% CI: −1.72, −1.20 μm/year) for 

progressors (P<0.001; GEE). Table 1 shows the demographic and clinical characteristics of 

the eyes and individuals included in the study.

The median [interquartile range; IQR] DL probability of progression was 1.4% [0.3%, 

5.1%] for tests that were deemed stable by expert grading, and 47.4% [18.5%, 89.0%] 

for tests that were deemed to have progressed (P < 0.001, GEE). Figure 3 illustrates the 

distribution of the DL probability of progression in progressing versus stable eyes. The 

DL model had an AUC of 0.938 (95% CI: 0.921, 0.955) to discriminate between tests 

that were stable versus those that showed progression according to expert grading and an 

area under the precision-recall curve of 0.737 (95% CI: 0.715, 0.756). Table 2 shows the 

performance of the algorithm as a function of demographic and clinical characteristics. The 
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performance to detect glaucoma progression was generally similar among categories, with 

largely overlapping confidence intervals.

The sensitivity was 87.3% (95% CI: 83.6%, 91.6%) and specificity was 86.4% (95% CI: 

79.9%, 89.6%) for the optimal cut-off point. Trend-based analysis using global RNFL 

thickness showed a sensitivity of only 46.1% (95% CI: 36.7%, 55.0%) and specificity of 

92.6% (95% CI: 90.7%, 94.3%). When matched at the same specificity of 92.6%, the DL 

model had a sensitivity of 75.8% (95% CI: 66.7%, 83.1%), with an absolute difference of 

29.7% (95% CI: 18.7%, 39.4%) versus trend-based analysis. For the trend-based analysis 

considering global and sectoral RNFL thickness, the sensitivity was 83.7% (95% CI: 

78.4%, 88.7%) but specificity decreased to 68.6% (95% CI: 65.5%, 71.7%). At this level 

of specificity, the sensitivity of DL model was 96.2% (95% CI: 94.3%, 97.8%), with a 

significant absolute difference of 12.5% (95% CI: 7.6%, 17.8%). Figure 4 illustrates the 

ROC curve and the precision-recall curve of the DL probability of progression, as well as for 

each trend-based analysis.

Table 3 shows LRs for different intervals of DL probability of progression. DL results 

with probability lower than 5% were associated with large effects to decrease the post-test 

probability of having glaucoma progression, whereas DL results with probability larger than 

50% would result in large changes in increasing the post-test probability of having glaucoma 

progression. Importantly, LRs for the DL model were associated with large changes in 

probability of progression in approximately 74% of the SD-OCT tests, indicating that in the 

vast majority of SD-OCT tests the DL model would provide useful information to clarify the 

presence of progression.

Figure 5 illustrates the series of SD-OCT tests performed for the same eye of Figure 1. 

Progression was first identified by subjective expert grading on the second follow-up visit. 

For the first visit, that was considered stable by expert grading, the DL model also predicted 

a low probability of progression, and the heatmap did not highlight any particular location of 

the RNFL thickness profile. As the disease progressed, the DL model predicted increasingly 

higher probabilities of progression, with the heatmaps initially highlighting localized regions 

with increasing intensity. As larger changes were seen on subsequent tests, the DL heatmap 

showed large areas of high probability of progression across most of the RNFL thickness 

profile.

DISCUSSION

In the present study, we developed a DL model to assess the presence of glaucoma 

progression on RNFL thickness measurements obtained by SD-OCT. The performance of 

the proposed DL model agreed well with expert assessment and proved to be a significant 

improvement over conventional trend-based analyses of progression. The model was also 

able to pinpoint the location of regions of likely progression using heatmaps. To the best of 

our knowledge, this is the first study to show an application of DL to assess progression with 

SD-OCT.
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The DL model developed in our study was able to accurately discriminate between 

progressing and stable glaucoma cases, achieving an AUC of 0.938, with sensitivity 

of 87.3% and specificity of 86.4%. In addition, the DL model showed a significant 

improvement when compared to trend-based analyses, the most commonly used method 

to objectively assess progression with the Spectralis SD-OCT. One likely reason for the 

improvement in performance is that while trend-based analysis relies on summary metrics, 

like global RNFL thickness and sectoral averages, the DL model takes as input all the 

RNFL thickness measurements. Using global or sectors averages can potentially miss 

small, localized regions of RNFL thinning. In contrast, DL models may be better suited 

to handle complex data that present with large number of measurements, such as the full 

RNFL thickness measurement profile. The models can learn to identify locations that may 

be particularly important for detecting progression, while also retaining higher levels of 

specificity.

Although sensitivity and specificity are useful for an overall evaluation of model 

performance, they have limited direct applicability in clinical practice. When faced with 

a particular test result on an individual case, a clinician is interested in knowing how such 

result will increase or decrease the chance of a particular outcome. LRs can be used to 

provide such estimates, by showing how much the probability of progression would change 

from a pre-test to a post-test probability, after obtaining a particular test result. To illustrate, 

consider the case represented in Figures 1 and 5. We can assume that a reasonable estimate 

for a pre-test probability of glaucoma progression (i.e., before the test is acquired) is the 

overall prevalence of progression on a similar population. For this example, the pre-test 

probability can be estimated at 25%, which corresponds to the approximate percentage of 

eyes that had progression by SD-OCT on a large previous cohort study.22 We can then assess 

the impact that different results of the DL model would have in modifying such pre-test 

probability. In the first follow-up visit, the DL model prediction was 4.2%, which was 

associated with a LR of 0.08. With this test result, the post-test probability of progression 

would decrease to 2.5%. For the second visit, the DL model prediction was 15.2% (LR = 

3.2), resulting in a post-test probability of 51.6%. In the third visit (DL model prediction = 

53.4%; LR = 13.8), the post-test probability would increase to 82.1%, and from visits four 

to seven (DL model prediction > 95%; LR = 118.8) the post-test probability of progression 

would increase to essentially 100%. Therefore, it can be seen how the DL test results would 

greatly modify the probability of progression in this individual case. Although clinicians 

are not routinely trained to objectively quantify pre-test probabilities and use LRs, clinical 

decision making routinely involves subjective assessments of probability, even if they may 

sometimes appear unconscious. LRs, as illustrated here, could be easily provided as part 

of software printouts or displays. Even easier, post-test probabilities could be automatically 

calculated for plausible pre-test probabilities and a given test result, helping clinicians to 

better gauge the impact of the test findings in a particular case.

A concern regarding deep learning algorithms is the relative uncertainty related to the 

features that are used in their predictions. It is certainly a lot more reassuring for a 

clinician to know that a high probability of progression is shown associated with the 

depiction of the area where the progression is likely to occurred. Visualization tools, such as 

heatmaps, are attempts to open the “black box” of deep learning models, helping to better 
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understand their predictions. In the present work, we developed an innovative visualization 

tool that highlighted the areas of the RNFL thickness profile that had the greatest impact 

on the algorithm’s predictions. Although current commercially available reports may also 

highlight areas of potential change in the RNFL thickness profile, the analyses provided 

by these reports are often inadequate or insufficient. In fact, some reports simply present 

the absolute amount of change according to a color-coding scheme, giving no indication of 

their statistical significance. Even when formal statistical analyses are performed, they are 

mostly limited to comparisons to short-term estimates of test-retest variability, which may 

be inadequate to assess progression.10 As such, current reports fail to account for important 

features that can be easily captured by a DL model, such as time elapsed between tests 

and the overall context in which the changes happened, such as baseline RNFL thickness. 

In addition, the use of a convolutional network in our DL model allowed it to capture the 

spatial relationship between different areas of the RNFL thickness profile and their impact 

on the estimates of probability of progression.

Our work relied on gradings of glaucoma specialists as the reference standard for 

progression. This was necessary given the lack of a perfect reference standard for 

progression in glaucoma. We required a consensus of 2 expert graders with adjudication by 

a third one, and the entire series of follow-up tests was available when grading an individual 

eye. This likely helped improve the accuracy and reliability of final grading and distinguish 

variability from true change. However, it is possible that some misclassifications might still 

have occurred. As an example, some tests that were labelled as stable within a series in 

which progression happened later in the follow-up may have already had changes that were 

not detected by the expert gradings. It is also possible that some changes due to aging may 

have been graded as progression. However, the ultimate goal of our work was to demonstrate 

the feasibility of a deep learning model that could replicate gradings of glaucoma specialists. 

When applied in practice, such model could potentially bring non-specialists to a level close 

to specialists when assessing SD-OCTs for progression. Of note, the performance of our 

model was compared only to trend-based analysis of progression. It is known that SD-OCT 

measurements suffer from floor effects which may limit their ability to detect progression in 

advanced disease. Previous studies have shown, however, that subjective assessment of scans 

can often identify regions of interest with remaining neural tissue that can be assessed for 

detecting further change, even in cases of advanced disease.33–35 This may further explain 

the superior performance obtained by our model as compared to conventional trend analyses. 

Of note, we used a cut-off of −1 μm/year to take into account age-related changes in 

conventional trend-based analyses, based on a previous publication on follow-up of normal 

eyes.26 This ensured a high specificity of trend analyses. However, no set criteria could 

be used for detection of age-related changes when subjective evaluation of the images was 

performed by the expert graders. This may introduce difficulties in the comparison between 

the methods.

This work has limitations. Developing a reference standard for glaucoma progression is 

challenging and many would advocate for the inclusion of visual field information to 

determine whether an eye was progressing or was stable. While it is true that in clinical 

practice both structural and functional assessment are used in complementary ways, only 

a minority of eyes present with unequivocal progression that is detected by both methods. 
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When using the proposed algorithm in clinical practice, clinicians should be aware that it 

represents an analysis of structure alone and that assessment of functional changes would 

still be necessary by means of perimetry. Important to note, the proposed method is more 

akin to event-based analysis of progression. As such, it does not allow for an assessment of 

the rate of progression neither for prediction of the rate of future deterioration.

The size of the sample was relatively small when compared to some very large datasets that 

are often used to develop DL models. Our sample size was limited by the time-consuming 

step of expert labeling. To optimize the use of our sample, we employed cross validation 

to train the DL model and test the predictions on independent test samples, while still 

making use of the full data. Our results showed high accuracy, but it is possible that larger 

samples and the use of more complex networks may achieve even better performance. 

Our model made use of raw RNFL thickness measurements extracted from the SD-OCT 

software, which rely on accurate segmentation of the RNFL boundaries. We and others 

have shown previously the potential of segmentation-free assessment of SD-OCT B-scans 

for cross-sectional glaucoma assessment.12, 36, 37 It is possible that more complex neural 

networks may be devised to make use of the full raw B-scan image for assessment 

of change. Development of such complex networks will likely require larger samples, 

though. Importantly, although the dataset used in the study contained a diverse population 

with a sizable proportion of Black/African-American individuals, our proposed model 

should be validated on external datasets from independent populations to further assess 

its generalizability.

In conclusion, we developed and validated a DL model to assess the probability of glaucoma 

progression from SD-OCT measurements of the RNFL thickness. The model agreed well 

with expert judgements of progression and outperformed conventional trend-based analyses. 

Probabilities of progression provided by the model along with the visualization heatmaps 

may help clinicians in identifying structural glaucoma progression with SD-OCT.
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PRÉCIS

A deep learning model was developed to assess the probability of glaucoma progression 

from OCT retinal nerve fiber layer thickness measurements. The model agreed well with 

expert judgements of progression and outperformed conventional trend-based analyses.
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Figure 1. 
Example of an overview report presented to the glaucoma specialists for the grading process. 

Each overview report contained the B-scan image (left column) with segmentation lines, 

the retinal nerve fiber layer (RNFL) thickness profile (middle column), and global and 

sectoral averages (right column). For follow-up tests, the RNFL thickness profile included a 

comparison with the baseline test, where regions of thinning were shaded in red and regions 

of thickening were shaded in green.
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Figure 2. 
Architecture of the convolutional neural network (CNN) used in the current work. The first 

block of layers is represented in (A) and has convolutional layers (Conv1D) of different 

kernel sizes (7×1, 15×1, 31×1, 63×1) to handle features of both local and global relevance. 

The next two blocks of layers are represented in (B). After these two blocks, there is a 

global average pooling layer (GlobalAveragePooling1D) that outputs the features from the 

CNN. As described in (C), time is introduced as a single number in a separate input. A 

block of layers uses it as input and outputs a vector with the same dimensions of the CNN 

features, which are added together. A fully connected layer (Dense) uses the resulting vector 

to predict the probability of “stable” versus “progressing”.
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Figure 3. 
Distribution of deep learning (DL) probability of progression for tests that presented 

progression and tests that were stable according to the subjective grading by glaucoma 

specialists.
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Figure 4. 
(A) Receiver operating characteristic curve and (B) precision-recall curve illustrating the 

performance of the deep learning (DL) model to discriminate between tests that presented 

glaucoma progression and those that remained stable, according to the subjective grading by 

glaucoma specialists. The performances of trend-based analyses of change are plotted for 

comparison.
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Figure 5. 
Overview report of the same series of tests from Figure 1, with inclusion of deep learning 

(DL) probability of progression and the heatmaps illustrating the areas of the retinal nerve 

fiber layer thickness profile that were most relevant for the DL assessment of progression. 

In this example, the heatmap highlights localized areas in the temporal superior and inferior 

regions. With progressive RNFL thinning, the heatmaps highlight larger areas with higher 

probability of glaucoma progression.
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Table 1.

Demographic and clinical information of tests, eyes and individuals categorized as stable or progressing 

according to the expert grading of optical coherence tomography scans.

Stable Progression P value

Tests (%) 11,563 (87.5) 1,655 (12.5)

Eyes (%) 692 (84.8) 124 (15.2)

Individuals (%) 356 (77.1) 106 (22.9)

Age, mean ± SD, years 64.6 ± 13.0 64.5 ± 11.1 0.969a

Race: (%) 0.199b

 Black or African American 87.0 (22.3) 23.0 (31.9)

 White or Caucasian 271.0 (69.5) 43.0 (59.7)

 Other 32.0 (8.2) 6.0 (8.3)

Ethnicity: (%) 0.661b

 Hispanic or Latino 39.0 (10.0) 6.0 (8.3)

Female (%) 227.0 (58.2) 43.0 (59.7) 0.810b

SAP MD at baseline, mean (95% CI), dB −2.34 (−2.76, −1.92) −1.58 (−2.39, −0.76) 0.073c

RNFL thickness at baseline, mean (95% CI), μm 84.0 (82.5, 85.4) 84.2 (81.7, 86.7) 0.845c

Follow-up time, mean (95% CI), years 3.4 (3.2, 3.5) 4.0 (3.8, 4.3) 0.000c

Number of tests, mean (95% CI) 15.8 (14.8, 16.8) 17.1 (15.4, 18.7) 0.106c

Number of follow-up visits, mean (95% CI) 5.8 (5.5, 6.2) 6.3 (5.8, 6.9) 0.069c

DL probability of progression, median (IQR), % 1.4 (0.3, 5.1) 47.4 (18.5, 89.0) <0.001c

Abbreviations: SD = standard deviation; SAP = standard automated perimetry; MD = mean deviation; RNFL = retinal nerve fiber layer; CI = 
confidence interval; DL = deep learning; IQR = interquartile range.

a
= Student’s t-test;

b
= Pearson’s chi-squared;

c
= generalized estimating equations
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Table 2.

Model performance as a function of different demographics and clinical characteristics at baseline.

Variable AUC (95% confidence interval)

Disease status

 Suspect 0.914 (0.862, 0.953)

 Glaucoma 0.953 (0.933, 0.969)

Age, yearsa

 Younger than 51.9 0.982 (0.950, 0.996)

 Between 51.9 and 64.5 0.898 (0.847, 0.933)

 Between 64.5 and 77.1 0.943 (0.918, 0.962)

 Older than 77.1 0.955 (0.902, 0.99)

Sex

 Male 0.929 (0.901, 0.955)

 Female 0.942 (0.909, 0.961)

Race

 Black 0.895 (0.842, 0.939)

 White 0.945 (0.926, 0.961)

 Others 0.978 (0.940, 0.999)

Time from baseline, yearsb

 Less than 1.2 0.970 (0.942, 0.986)

 Between 1.2 and 2.3 0.911 (0.880, 0.938)

 Between 2.3 and 3.5 0.910 (0.878, 0.943)

 More than 3.5 0.912 (0.869, 0.940)

RNFL thickness at baseline, μmb

 Less than 74 0.974 (0.953, 0.989)

 Between 74 and 86 0.940 (0.904, 0.965)

 Between 86 and 97 0.927 (0.892, 0.958)

 More than 97 0.888 (0.842, 0.947)

SAP MD at baseline, dB

 Higher than −6 0.933 (0.911, 0.949)

 Between −6 and −12 0.940 (0.628, 1.000)

 Lower than −12 0.994 (0.985, 0.999)

a
Categories defined using mean − 1 SD, mean, mean + 1 SD as cut-offs.

b
Categories defined using p25, p50, p75 as cut-offs.
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Table 3.

Likelihood ratios for different intervals of deep learning probability of progression.

DL probability of progression (%) Number of tests graded as 
progression (%)

Number of tests graded 
as stable (%) Total of tests (%) Interval 

Likelihood Ratio

< 5 94 (5.7) 8625 (74.6) 8719 (66.0) 0.08

5 to < 10 132 (8.0) 1328 (11.5) 1460 (11.0) 0.69

10 to < 50 629 (38.0) 1375 (11.9) 2004 (15.2) 3.20

50 to < 90 408 (24.7) 207 (1.8) 615 (4.7) 13.77

90 to < 95 69 (4.2) 9 (0.1) 78 (0.6) 53.56

95 to < 100 315 (19.0) 19 (0.2) 334 (2.5) 115.83

Abbreviation: DL = deep learning.
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