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Abstract 

Objective  Ovarian cancer (OV) has a high mortality rate all over the world, and extrachromosomal circular DNA 
(eccDNA) plays a key role in carcinogenesis. We wish to study more about the molecular structure of eccDNA in the 
UACC-1598–4 cell line and how its genes are associated with ovarian cancer prognosis.

Methods  We sequenced and annotated the eccDNA by Circle_seq of the OV cell line UACC-1598–4. To acquire the 
amplified genes of OV on eccDNA, the annotated eccDNA genes were intersected with the overexpression genes 
of OV in TCGA. Univariate Cox regression was used to find the genes on eccDNA that were linked to OV prognosis. 
The least absolute shrinkage and selection operator (LASSO) and cox regression models were used to create the OV 
prognostic model, as well as the receiver operating characteristic curve (ROC) curve and nomogram of the prediction 
model. By applying the median value of the risk score, the samples were separated into high-risk and low-risk groups, 
and the differences in immune infiltration between the two groups were examined using ssGSEA.

Results  EccDNA in UACC-1598–4 has a length of 0-2000 bp, and some of them include the whole genes or gene 
fragments. These eccDNA originated from various parts of chromosomes, especially enriched in repeatmasker, introns, 
and coding regions. They were annotated with 2188 genes by Circle_seq. Notably, the TCGA database revealed that a 
total of 198 of these eccDNA genes were overexpressed in OV (p < 0.05). They were mostly enriched in pathways asso-
ciated with cell adhesion, ECM receptors, and actin cytoskeleton. Univariate Cox analysis showed 13 genes associated 
with OV prognosis. LASSO and Cox regression analysis were used to create a risk model based on remained 9 genes. 
In both the training (TCGA database) and validation (International Cancer Genome Consortium, ICGC) cohorts, a 
9-gene signature could successfully discriminate high-risk individuals (all p < 0.01). Immune infiltration differed signifi-
cantly between the high-risk and low-risk groups. The model’s area under the ROC curve was 0.67, and a nomograph 
was created to assist clinician.

Conclusion  EccDNA is found in UACC-1598–4, and part of its genes linked to OV prognosis. Patients with OV may 
be efficiently evaluated using a prognostic model based on eccDNA genes, including SLC7A1, NTN1, ADORA1, PADI2, 
SULT2B1, LINC00665, CILP2, EFNA5, TOMM.
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Introduction
OV is the second most frequent malignancy in women’s 
health and the leading cause of mortality from gyneco-
logical cancers [1–6]. About 70% of patients with OV are 
not detected until late stages because of a lack of early 
symptoms, indicators, and effective screening tools [7, 8]. 
The majority of patients are unable to have surgery due 
to metastases [1, 9]. They can only get palliative therapies 
like radiation and chemical therapy [10, 11]. Advanced 
patients have a 5-year survival rate of just 20% [12]. 
The molecular mechanism behind the occurrence and 
progression of OV is yet unknown, which makes early 
detection of the disease challenging [13]. As a result, 
a thorough knowledge of the biological and molecu-
lar mechanisms that contribute to the advancement of 
OV, as well as the identification of crucial variables in 
the incidence and progression of OV, is critical for fur-
ther research into efficient early detection and treatment 
techniques for OV.

The hypothesis of “mutation and carcinogenesis” is now 
the most commonly recognized theory on the process of 
malignant transformation and progression of tumor cells 
[8, 11, 14]. Previous research has established a functional 
association between copy number variations (CNVs) and 
carcinogenesis in human malignancies [15]. eccDNA is 
a small circular DNA that is found outside of the chro-
mosome and may self-replicate independent from chro-
mosome [16–18]. EccDNA is formed by a variety of 
chromosomal events, and its amplification can directly 
increase the copy number of oncogenes, speeding up the 
generation and development of tumors [18]. According 
to Paulsen’s research, eccDNA can be transcribed and 
affect gene expression in cells [19]. Kim discovered that 
in glioblastoma, the epidermal growth factor receptor 
(EGFR) gene was frequently mutated to EGFRvIII, which 
could offer tumor cells an advantage in terms of prolif-
eration. Furthermore, EGFR VIII was mostly amplified 
on eccDNA, making tumor cells more vulnerable to TKI 
treatment [20]. In Wu’s study, GBM39 circular ecDNA 
was analyzed in combination with TCGA database and 
explored its potential value in tumor therapy [21]. With 
the development of sequencing technology and improve-
ment of experimental methods, Moller et al. proposed an 
experimental method for the extraction, enrichment and 
purification of eccDNA in 2018 [17]. Its core idea is to 
remove linear DNA using an ATP-dependent exonucle-
ase, leave eccDNA alone, circularly amplify it using the 
rolling circle approach, and sequence it using second-
generation sequencing. Gene annotation was done using 
Circle-map software. We believe that these fragments on 
eccDNA do not appear accidentally based on previous 
research [17]. eccDNA can be transcribed into mRNA 
and play important roles in tumor. To explain these 

eccDNA functions, we tried to use the TCGA database 
to determine whether these genes play an important role 
in the development of OV. The overexpression eccDNA 
in OV will be enriched and analyzed by bioinformatics 
method. The risk model will be constructed by LASSO 
analysis and Cox regression model to obtain the prog-
nostic model of OV and compare the effects of gene tags 
related to eccDNA on the occurrence of OV.

This is the first study to use eccDNA gene to build a 
prognostic model in OV, even in all tumors. Our research 
will provide a more comprehensive landscape of eccDNA 
in UACC-1598–4, as well as valuable information about 
the clinical roles of eccDNA in malignancies. It will 
provide a novel idea to evaluating eccDNA roles in OV 
prognosis.

Materials and methods
Cell lines and culture conditions
The ovarian cancer cell line UACC-1598 was a kind gift 
from Dr. Xin-Yuan Guan (University of Hong Kong). The 
UACC-1598–4 cell line was a clone of UACC-1598–4 
selected for the stable maintenance of a high number of 
extrachromosome circular DNA. SKOV3, Ovarian can-
cer cell lines without extrachromosome circular DNA 
used as controls (Supplementary Fig.  1). UACC-1598–4 
and SKOV3 was maintained in Roswell Park Memorial 
Institute 1640 (RPMI1640) media (GIBCO, Carlsbad, 
CA, USA) supplemented with 10% fetal bovine serum 
(FBS). Cells were grown at 37℃ in a humidified atmos-
phere of 5% CO2 and passaged every 2 to 3  days when 
they grew confluent.

Extraction and purification of eccDNA
UACC-1598–4 cell line was alkaline treated to separate 
chromosomal DNA, lipids, and protein from eccDNA by 
rapid DNA denaturing–renaturing, followed by column 
chromatography on an ion exchange membrane column 
(Plasmid Mini AX; A&A Biotechnology), The eccDNA 
was purified according to the purification method pro-
vided in the document, linear and mitochondrial DNA 
were removed by endonucleases and rolling-circle 
amplification of eccDNA by Phi29 polymerase reactions 
(REPLI-g Midi Kit) amplifying DNA at 30  °C for 2 days 
for Circle-Seq and then the eccDNA was sequenced 
based on Illumina platform [17].

EccDNA data analysis
Briefly, Circle-seq data, the data analysis process is as 
follows: 1. FASTQC software to evaluate the quality of 
the original data. 2. BWA software to compare the origi-
nal data to the reference genome. 3. Samtools to process 
the SAM file to fit the format required by Circle-map. 
4. Circle-map to detect eccDNA. 5. Gene annotation to 
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eccDNA, Differential eccDNA analysis and annotated 
gene function enrichment analysis, Circle-seq data analy-
ses were performed by ZHONGKE SHENGXIN Biotech-
nology, Beijing, China.

Data collection and mining of mRNA profiles
We obtained the RNA sequencing (RNA-seq) data of 
379 OC patients and the corresponding clinical features 
from the TCGA database (https://​portal.​gdc.​cancer.​gov/​
repos​itory). The RNA-seq data of 88 normal human 
ovarian samples were downloaded from the GTEx data-
base (https://​xenab​rowser.​net/​datap​ages/). For further 
verification, the clinical data and transcriptional patterns 
were obtained from OV cases in the International Can-
cer Genome Consortium (ICGC) data-base (https://​icgc.​
org/).

Identification of amplified genes in OV
GEPIA2 analysis Gene Expression Profiling Interac-
tive Analysis (GEPIA, http://​gepia2.​cancer-​pku.​cn, ver-
sion 2) is an open-access online tool for the interactive 
exploration of RNA sequencing data of 9736 tumors and 
8587 normal samples from the TCGA and the Genotype-
Tissue Expression (GTEx) programs [22]. In this study, 
GEPIA2 was used to obtain the amplified genes Under 
the condition of log2FC > 1, p < 0.05, OV specific ampli-
fied genes in TCGA and GTEx databases were obtained.

Construction of a signature based on eccDNA genes
A univariate Cox regression model was adopted to deter-
mine the hazard ratios (HR) of prognosis prediction for 
eccDNA genes [23]. Univariate or multivariate Cox anal-
ysis was employed to determine the prognostic value for 
the risk signature or clinical features using the ‘forest’ R 
package. Genes were further screened by LASSO regres-
sion analysis, followed by tenfold cross validation using 
the ‘glmnet’ R package [24]. Nine genes with their regres-
sion coefficient (Coef ) were selected, the risk score for 
each patient was calculated through linearly multiplying 
the expression level with Coef of each gene, according to 
the following formula: Risk score = Coef gene1 × expres-
sion gene1 + Coef gene2 × expression gene2 + · ···· + Coef 
gene n × expression gene n [25]. Each patient was 
assigned a risk score based on the formula and divided 
into either high-risk group or low-risk group according.

Confirmation of the signature based on eccDNA genes
Subsequently, the receiver operating characteristic 
(ROC) curves were performed to assess the sensitivity 
and specificity of survival prediction by the risk signature 
using the ‘survivalROC’ R package. Univariate and mul-
tivariate Cox proportional hazards regression analysis 

was performed to determine whether the risk score is an 
independent predictor for prognosis.

Nomograph drawing
In order to construct a quantitative scoring system for 
prognostic evaluation of OV samples, the appropriate 
indicators were selected to construct a nomogram. The 
construction of  nomogram Age, stage, and risk score 
were used to construct the nomogram together using the 
“rms” and “survival” packages in R. Calibration curves 
were drawn to assess the consistency between actual and 
predicted survival.

Functional enrichment analysis
The “ClusterProfiler” R package was utilized to con-
duct Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [26] analyses based on the 
eccDNA related OV amplification genes. P values were 
adjusted with the BH method.

Immune cell infiltration estimation
The ssGSEA method was used to calculate the enrich-
ment levels of immune cell infiltration in ovarian cancer 
cohorts. The difference in the immune cell infiltration 
between the low and high-risk group was carried out by 
Wilcoxon tests, with the p value less than 0.05 as statisti-
cally significant.

Statistical analysis
Wilcoxon tests was used to compare Immune infiltra-
tion between high-risk group and low-risk group. The 
OS between different groups was compared by Kaplan–
Meier analysis with the log-rank test. All statistical analy-
ses were performed with R software (Version 4.0.0). If not 
specified above, a p-value less than 0.05 was considered 
statistically significant, and all p-values were two-tailed.

Transwell assay
For the migration assay, approximately 1.5 × 104 cells 
were placed in 200ul serum-free medium in the upper 
chamber of the transwell system. For the invasion 
assays, the upper chamber was covered with matrigel 
and placed in a 37℃ incubator for 4 h to allow matrigel 
to solidify. Approximately 1.5 × 104 cells were placed in 
200 ul serum-free medium in the upper chamber of the 
transwell system. 600  mL RPMI 1640 medium contain-
ing 10% FBS was placed in the lower chamber as a che-
moattractant. After 24 h of incubation, cells in the upper 
chamber were removed, and the lower chamber was fxed 
with formaldehyde and stained with crystal violet. The 
number of cells was counted using Image J software. All 
experiments were repeated at least thrice.

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://xenabrowser.net/datapages/
https://icgc.org/
https://icgc.org/
http://gepia2.cancer-pku.cn
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Results
Overview of the overall analysis process
To acquire the eccDNA genes overexpression in OV, the 
genes annotated by eccDNA in UACC-1598–4 intersect 
with the upregulated genes on OV obtained from the 
TCGA database. GO and KEGG were utilized to evalu-
ate pathways of these OV related eccDNA genes in order 
to better understand their mechanism in the occurrence 
and progression of OV. Univariate Cox regression was 
used to identify genes associated with OV prognosis, 
which were then screened using LASSO, a prognostic 
model was built by LASSO cox analysis, and the model’s 
efficacy was scientifically validated. Figure  1 depicts the 
study’s flow chart.

Landscape of eccDNA characteristics and identification 
amplified genes on eccDNA in OV
The extracted eccDNA genome was sequenced on the 
Illumina platform, and the Circle_seq method was used 
to identify and annotate eccDNA. The number of split 
reads and discordant reads were used to score the pos-
sibility of a circle. The top 15 eccDNA score genes were 
given in Table 1. The positional distribution of eccDNA 
on the UACC-1598–4 chromosome is shown in Fig. 2A. 
It can be seen that eccDNA is distributed on all chro-
mosomes. Under strict filtration conditions, a total 
of 2188 eccDNA genes were annotated. As shown in 
Fig. 2B, the length ranges from 0 to 2000 bp, with the 
majority falling between 400 and 600  bp. The source 

of eccDNA in the genome is depicted in Fig.  2C, the 
majority of which are repeatmasker areas, but it also 
can be found in the UTR region, gene coding regions 
and so on. GEPIA2 (http://​gepia2.​cancer-​pku.​cn/#​
index) was used to get a total of 2610 genes ampli-
fied in OV compared with normal samples. Figure  2D 
shows the distribution of genes amplified on OV in the 

Fig. 1  Flow chart of data collection and analysis

Table 1  The top 15 eccDNA location and the annotated genes

Chr Start End Discordant 
reads

Split 
reads

Gene 
name

chr19 39932344 39932930 18 10 FCGBP

chr5 3484327 3484685 8 10 LINC01019

chr5 83505278 83506203 6 10 VCAN

chr8 134602587 134602967 6 10 ZFAT

chr22 43887811 43888202 7 9 PNPLA5

chr17 50512702 50513101 8 10 MYCBPAP

chr2 68645344 68645830 8 10 PROKR1

chr10 55471553 55472626 9 10 PCDH15

chr17 33850812 33851395 14 10 ASIC2

chr7 50540627 50541378 10 10 DDC-AS1, 
DDC

chr6 90064028 90064826 6 9 BACH2

chr16 85076748 85077346 5 10 KIAA0513

chr16 75635660 75636289 9 10 KARS1

chr2 233642951 233643854 8 9 UGT1A10, 
UGT1A8

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
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Fig. 2  Landscape of overall analysis characteristics of eccDNA. A Distribution landscape of eccDNA in chromosome source. B Length distribution 
of eccDNA shows peaks at 200 -600 bases. C The sites in the genome that give rise to small eccDNA are enriched relative to random expectation in 
genic sites, The top three are RepeatMasker, ExonPlus, Introns. D The significantly amplified genes on OC were obtained by GEPIA2. E Intersection of 
eccDNA gene and OV amplified gene
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genome. There are 198 genes intersect with genes on 
eccDNA as shown in Fig. 2E.

Protein interaction (PPI) analysis and enrichment 
of eccDNA related OV amplified genes
To further explore the interactions of 198 genes, we con-
ducted a PPI analysis. To make it easier to display, Fig. 3A 
only shows the genes in the top5 nodes ranked by degree 
calculated by the Cytoscape plug-in cytohubba. It can be 
seen that ACTN4, HCK, ITGB5, ITGB6 and ATP13A2 
genes interact with multiple proteins. As shown in 
Fig.  3B-C, 198 genes were analyzed for GO and KEGG 
enrichment. It’s mainly enriched in the regulation of cell 
adhesion, ECM receptors, the actin cytoskeleon pathway 
and so on. This suggests that these genes may have a role 
in the onset and progression of OV via modulating the 
cell–cell junction or the dynamic network pathway. We 
selected ovarian cancer cell lines SKOV3 that do not con-
tain extracellular circular DNA for experimental analysis 
(Supplementary Fig. 1). Our experimental results showed 
that the expression of marker vimentin in mesenchymal 
cells was significantly increased in UACC-1598–4 cells 
containing eccDNA(Supplementary Fig.  2). In addition, 
we supplemented the cell migration experiment and 
found that the migration and invasion ability of UACC-
1598–4 cell line was significantly enhanced. (Supplemen-
tary Fig.  3). This echoes the enrichment results of the 
ECM receptor pathway and the cell adhesion pathway.

Univariate Cox regression analysis of eccDNA amplified 
genes in OV associated with prognosis
The survival-related genes were first screened using uni-
variate Cox regression analysis. As shown in Fig. 4A, the 
13 genes (SLC7A1, NTN1, ADORA1, ITGB8, PADI2, 
SULT2B1, LINC00665, UNC5B, ALOX5AP, CILP2, 
AGAP1, EFNA5, TOMM5) that met the criteria of 
P < 0.05 were retained for further analysis. There are 11 
potentially hazardous genes and two potentially pro-
tective genes among them. Except for TOMM5 and 
LIN00665, all other genes had HR values more than 1, 
indicating that the majority of them are OV risk genes. 
The correlation coefficient heatmap is shown in Fig. 4B. 
It can be seen that there is correlation among the 13 
genes, specifically mentioned, there is an obvious nega-
tive correlation between AGAP1 and SCL7A1 (p < 0.05, 
r =—0.65), implying that there may be potential interac-
tions between these genes.

Further screen genes by LASSO and correlation study
For a more precise prediction of OV prognosis by 
eccDNA genes, the cox regression algorithm penalized 
by LASSO was utilized. The λ selection diagram is shown 
in Fig. 5A-B. λ between λmin and λ1se were considered 

appropriate. The model constructed by λ1se  was the 
simplest, that was, it used a small number of genes, 
while λmin had a higher accuracy rate and used a larger 
number of genes. The λmin  was selected to build the 
model for accuracy in our study. Patients in the train-
ing and validation cohorts were divided into low- or 
high-risk subgroups based on the median of risk scores 
[24].  After cross validation, 9 genes, including SLC7A1, 
NTN1, ADORA1, PADI2, SULT2B1, LINC00665, CILP2, 
EFNA5, TOMM5 were chosen for calculation of a risk 
signature. The genetic alterations of 9 eccDNA were ana-
lyzed by cBioPortal database as shown in Fig. 5C. Most 
of genes were significantly amplified except LINC00665, 
among which PADI2 and CILP2 had missense muta-
tion. In addition, Kaplan Meier survival curve for these 9 
genes was carried out, as shown in Fig. 5D, among which 
ADORA1 (p = 0.012), EFNA5 (p = 0.034), SULT2B1 
(p = 0.011) had significant correlation with prognosis, 
they were related poor prognosis in OV. TOMM5 was 
significant correlation with prognosis (p = 0.0087) but it 
was a protective factor. Significant correlation with each 
other except LINC00665, which was not correlation with 
PADI2, SULT2B1 (p > 0.05), TOMM5, which was not cor-
relation with NTN1, PADI2, CILP2 (p > 0.05). This sug-
gests that most eccDNA genes may interact in the onset 
of OV, some of these genes may have synergistic effects, 
while others may function independently (Fig. 5E).

Identification of a risk signature comprising of 9 eccDNA 
genes in OV
Each patient’s risk score was determined using the gene 
expression values of nine genes and the LASSO regres-
sion coefficient. (0.10781*SLC7A1) + (0.06002*NTN1) + 
(0.03454*ADORA1) + (0.01211*PADI2) + (0.06412*SULT
2B1) + (-0.18898*LINC00665) + (0.03455*CILP2) + (0.076
81*EFNA5) + (-0.21118*TOMM5) The samples are sepa-
rated into high-risk and low-risk groups based on the 
median value of the risk score (Fig. 6A-B). The prognosis 
of the samples in the low-risk group is considerably better 
than that of the samples in the high-risk group (p < 0.05), 
as shown in Fig. 6C. Figure 6D shows the expression of 
13 prognosis-related genes in high-risk and low-risk 
groups. To better understand the differences between 
the two groups. The mutation landscape of genes in high 
and low risk groups was analyzed, Fig.  6E shows the 
mutation landscape among high-risk group samples, it 
was found that TP53 exhibited the highest mutation fre-
quency followed by TTN, MUC16, CSMD3, AHNAK2, 
and USH2A, etc. Figure  6F shows the mutation land-
scape among Low-risk group samples, 17 had mutations 
in these genes, with frequency of 13%. It was found that 
TP53 exhibited the highest mutation frequency followed 
by TTN, FLG2, FLG, HMCN1 and DNAH5, etc.
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Fig. 3  Protein interaction (PPI) analysis and enrichment of eccDNA related OV amplified genes. A The string database shows 198 protein 
interactions (PPI). B GO database pathway enrichment analysis results. C KEGG database pathway enrichment analysis results
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Comparison of immune infiltration and immune 
checkpoints between high and low‑risk groups
Immune infiltration was used to get new understanding 
into the biological role of each of the risk groups. The 
violin plots depicted the relative enrichment levels of 28 
immune cells (Fig. 7A), Central memory CD4 T cell, Cen-
tral memory CD8 T cell, MDSC, and Monocyte, T follic-
ular helper cell, Type 1 T helper cell have higher levels in 
the high-risk category. We also looked at the differences 
between high-risk and low-risk groups in 29 immunolog-
ical checkpoints. Only significant different checkpoints 
between the two groups are shown in Fig.  7B. CD200, 
CD40, CD44, LAG3, NRP1, CD276, CD40LG, NRP1, and 
TNFRSF9 are shown to be significantly overexpression 
in high-risk groups (p < 0.05). These findings suggest that 
the high-risk group, as characterized by the eccDNA pro-
file, had more immune infiltration.

ROC evaluating diagnostic effectiveness and building 
a predictive nomogram
ROC curves for one-year, three-year, and five-year sur-
vival periods were produced to assess the prognostic effi-
cacy of the prognostic model. The area under the curve 
(AUC) in one year was 0.66, three years was 0.64, and five 
years was 0.67, as illustrated in Fig. 8A. The nomogram 
was then created based on the risk score and three clin-
icopathological risk indicators to give clinicians with a 
quantitative technique to estimate the probability of can-
cer development. Each factor’s score is proportionate to 

how much of a risk it poses to survival. The calibration 
curve indicator is accurate (Fig.  8B-C). We also looked 
at how our model performed in different data sets. ROC 
curves were drawn using OV data on ICGC, and it can be 
seen that its diagnostic efficacy is almost same to that of 
TCGA (Fig. 8D). Furthermore, in the ICGC data set, the 
high-risk group’s survival was significantly worse than 
the low-risk group’s (Fig. 8E), GSE72094 dataset also con-
firming the model’s reliability ((Supplementary Fig. 4).

Discussion
We demonstrated that the application of Circle-Seq pipe-
line can identify eccDNA in UACC-1598–4 cell line. The 
diversity of eccDNA found in this study supports the idea 
that eccDNA can come from any section of the human 
genome. However, there are specific hotspots in eccDNA 
production in the human genome: RepeatMasker, Exon-
Plus, and Introns had a greater frequency of circulari-
zation and formation of eccDNA, which is consistent 
with prior human germline and yeast data [27, 28]. The 
length distribution of eccDNA ranges from 0-2000  bp, 
with a peak of 400-600 bp. Kumar’s research found high 
levels of eccDNA in tumor mice and human blood, with 
lengths ranging from 0–2000 bp and an enriched region 
between 200 and 600 bp. [29]. We speculate that eccDNA 
can be released from tissue into the blood due to simi-
lar length. Pankaj Kumar also used the ATAC-seq com-
bined Circle finder method to identify the eccDNA of the 
C4-2B (prostate cancer) and OVCAR8 (ovarian cancer) 

Fig. 4  Univariate Cox regression analysis of amplified genes in OV associated with prognosis. A Hazard ratio and P-value of constituents involved 
in Univariate Cox regression and some parameters of the eccDNA signature. The left side of the dotted line represents HR < 1, which is a protective 
factor, and the right side represents HR > 1, which is a risk factor. B Correlation matrix of hub genes implicated in eccDNA
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Fig. 5  Further screen genes by LASSO and correlation study. A LASSO coefficient profiles of the 13 genes in TCGA-OV. Different colors represent 
different variables (genes). B λ selection diagram. The two dotted lines indicated two particular values of λ. The left side was λmin and the right 
side was λ1se. The λmin was selected to build the model for accuracy in our study. C Genetic alteration of the 9 genes in the TCGA-OV cohort 
(cBioPortal). D The prognosis of 9 genes obtained from GEPIA2 database. E Correlation analysis among 9 genes by spearman correlation
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cell lines, finding that 68% of the eccDNA in C4-2B and 
37% in OVCAR8 are smaller than 1  kb, and 32% of the 
eccDNA in C4-2B and 63% in OVCAR8 are larger than 
1  kb. The eccDNA in their study was derived from all 
chromosomes, which was identical to our UACC-1598–4 
cell line’s results [30]. In human tumors, in addition to 
eccDNA, there also exist large fragments of double min-
utes (DMs), up to 330  kb with proto-oncogenes [31]. 
Actually, we also found some long-distance breakpoints 
(> 3 kb), but their credibility is not high according to the 
circle-map software. It may be because the number of 
reads on both sides of the breakpoint is not much differ-
ent from the contig. Low abundance and Phi29 amplifica-
tion step in the Circle-Seq method is biased for small and 
more abundant eccDNAs. Moreover, Circle-seq pipeline 
does not distinguish between eccDNA derived from a 
single DNA or several DNA fragments. As a result, we 
cannot exclude that some detected eccDNAs resembled 
complex structures [17].

We suspect 198 of these genes may be involved in the 
development of OV. They were enriched in the cell adhe-
sion molecules and ECM-receptor interaction pathway. 
These pathways are related to the structural homeosta-
sis and junction of cells Numerous studies have shed 
light on the connections between malignant transforma-
tion, metastasis, and cellular adhesion pathways [32–34]. 
Cell adhesion molecules, for example, can affect single-
cell motility and invasion, which are important in many 
cancer processes [35]. According to Bao’s research, the 
ECM-receptor interaction signal pathway is a critical 
signaling route implicated in the development of breast 
cancer [36]. As a result, we hypothesize that eccDNA 
genes regulate tumor pathways via influencing cell adhe-
sion molecules and the ECM-receptor interaction path-
way, which will be confirmed in future research through 
studies. In a study of 198 genes, Univariate Cox regres-
sion revealed 13 genes linked to ovarian cancer progno-
sis. Some of 13 genes, such as AGAP1 and SCL7A1, have 
a high expression correlation, indicating that the circular 
structure of eccDNA reduced their distance and synchro-
nized their expression. All 9 genes screened by LASSO 
regression in our study have been shown to play a role 
in different tumors from previous studies. SLC7A1 (sol-
ute carrier family 7 member 1), for example, could be a 
SPOP substrate and influence cell phenotypic via regulat-
ing arginine metabolism, as well as regulate the hepato-
blastoma process [37]. NTN1 (netrin-1) has been proved 

progressed in ovarian cancer and have the potential for 
the development of new diagnosis and treatment strate-
gies for ovarian cancer [38–40]. ADORA1 may modulate 
OIN1-mediated apoptosis in ovarian cancer, making it a 
possible molecular target for ovarian cancer treatment 
[41]. ADORA1 may modulate OIN1-mediated apoptosis 
in ovarian cancer, making it a possible molecular target 
for ovarian cancer treatment [42]. SULT2B1 expression 
was diminished by downregulating c-MYC, thereby 
restraining glycolytic metabolism to inhibit colon cancer 
cell proliferation and chemoresistance under condition of 
knockdown of OLR1 [43]. LINC00665 is an oncogenic, 
Cong et  al. had proved LINC00665–miR98–AKR1B10 
axis may serve as potential diagnostic biomarkers in 
LUAD tumorigenesis. CILP2 was identified of an energy 
metabolism‑related gene signature in ovarian cancer 
prognosis [44]. EFNA5 is an unfavorable factor in high-
grade serous ovarian cancer because it is a non-canonical 
Eph-receptor ligand [45]. The current main research on 
TOMM5 focuses on metabolism, and its involvement in 
tumors has not been reported [46, 47]. This suggests that 
the majority of those genes have an essential function 
in tumors; some of those roles have been demonstrated 
in ovarian cancer alone, but the use of a combination 
of these genes to diagnose ovarian cancer has not been 
reported.

The median risk score of samples was used to cat-
egorize samples into high-risk and low-risk groups. The 
Kaplan–Meier curve illustrated that the high-risk and 
low-risk groups have significantly different survival times 
(p < 0.05). We established nomograms in combination 
with clinical information and age of onset of patients. It 
could assist clinicians treat patients with OV by predict-
ing specific death risks. Our study established a good 
prognosis model in OV for the first time from the per-
spective of eccDNA, which enriched the understanding 
of eccDNA.

The relationship between tumor and immunity has 
gotten a lot of interest as tumor immunotherapy has 
progressed [48–50]. The number of immune cells infil-
trating a tumor is linked to tumor growth, progression, 
and patient outcome, and has been a hot topic in recent 
years [51]. The immunostimulant effect of eccDNAs was 
discovered in Wang’s study, as well as their pathway and 
potential clinical implications in immune response [52]. 
Our study provides more specific details of immunomod-
ulation involving eccDNA in OV cell lines. Between the 

(See figure on next page.)
Fig. 6  Identification of a risk signature comprising of 9 eccDNA genes in OV. A Distribution of patients in the TCGA cohort based on the median 
risk score. B The survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the 
dotted line). C Kaplan–Meier survival curve between high and low-risk groups. Red lines represent high risk patients, while blue lines represent low 
risk patients. D The heatmap of the expression profiles of 13 prognostic related genes signature. E Representative diagram of mutation landscape 
from the high-risk OV cohort. F Representative diagram of mutation landscape from the low-risk OV cohort
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Fig. 6  (See legend on previous page.)
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high and low-risk groups, there was a significant differ-
ence in central memory CD4 T cells, central memory 
CD8 T cells, MDSC and Monocyte, T follicular helper 
cell, Type 1  T helper cell, and certain immunological 
checkpoints (CD200, CD40, CD44, LAG3, NRP1, CD276, 
CD40LG, NRP1, and TNFRSF9). According to the find-
ings, the risk model produced by eccDNA genes may 
affect the prognosis of OV patients by regulated some 
immune cells or immune checkpoints. High immune 

infiltration in the high-risk group partly reflected the 
higher malignancy of the patients and the worse effect of 
various treatments, implying that our eccDNA signature 
could distinguish not only patients’ survival prognosis 
but also their immune cell infiltration levels. This should 
be discussed further in conjunction with experimental 
analysis.

For the first time, we isolated and purified eccDNA 
from an OV cell line and examined its function using 

Fig. 7  Comparison of immune infiltration and immune checkpoint between high and low-risk group. A The expression levels of 28 immunity cells 
were analyzed by ssGSEA. B Among the 29 immune checkpoint genes, 6 genes were differentially expressed between high and low risk group, P 
values were showed as: *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 8  ROC evaluating diagnostic effectiveness and building a predictive nomogram. A ROC curve was plotted for 1-, 3- and 5-years overall survival 
in the TCGA group. B Nomogram to predict the 1-years, 3-years and 5-years overall survival of OV patients. C Calibration curve for the overall survival 
nomogram model in test group. D ROC curve was plotted for 1-, 3- and 5-years overall survival in the ICGC group. E Kaplan–Meier survival curve 
results in ICGC groups
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the TCGA and GTEx database. Our study showed the 
landscape of eccDNA in UACC-1598–4 and its roles 
in the onset and progression of OV. It also gave clini-
cians useful information when assessing the prognosis 
of OV patients. However, there were some limitations 
to this study that need to be addressed. For example, 
the biological roles of the 9 eccDNA genes should be 
confirmed in wet experiment, especially in terms of 
their relationship to immunological infiltration. To 
make the eccDNA sequencing results more believable, 
the sample size must be increased. In addition, only 
one OV cell line was sequenced in this study, which 
cannot fully and accurately represent all OV patients. 
The eccDNA gene prognostic risk model should be 
validated in our clinical center to further determine 
the diagnostic effectiveness of the model. However, 
due to insufficient sample size and insufficient follow-
up time, it has not yet been completed. Therefore, we 
will include more kinds of cancer cell lines in future 
research.
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