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ABSTRACT

Understanding the regulation of gene expression
requires the identification of cis-acting control
elements that modulate gene function. The recent
availability of complete genome sequences and
profiles of mRNA expression has facilitated the
development and utilization of computational
methods to identify discrete regulatory elements. We
have developed an oligomer counting method that
identifies sequences that occur significantly more
often in a group of interest relative to other genes in
the genome. The use of a second parameter, which
measures the frequency of oligomers within the
group of interest, allows the detection of false positive
signals caused by very infrequent oligomers that
would otherwise appear as significant. Applying this
method to gene groups that have a common expression
pattern or shared function should identify oligomers
that comprise cis-acting control elements. As a test
of this method, we applied this approach to a set of
intron-containing yeast genes, where we easily
identified the known splicing signals as control
elements. We have used this training set to examine
how this method is affected by the length of the
oligomer examined, as well as the size and composition
of the gene group. These simulations allowed us to
identify rules for selecting groups of genes to
analyze. Finally, application of this method to nuclear
genes encoding proteins targeted to the mitochondria
identified a new putative cis-acting sequence in the
3′-untranslated region of this family of genes, which
may play a role in mRNA localization or the regulation
of mRNA stability or translation.

INTRODUCTION

The expression of genes at the transcriptional and post-
transcriptional levels is often controlled by small cis-acting
sequence elements in or near the regulated gene. These
elements may be recognized by DNA-binding proteins which

modulate DNA metabolism (e.g. centromeres and telomeres)
or transcription (e.g. promoters) or by RNA-binding proteins
which affect RNA processing, RNA localization, translation or
RNA degradation. The identification and functional characteri-
zation of such cis-acting control elements will be a critical step
in developing the tools to interpret and understand complete
genomes.

Cis-acting sequences have been identified by a variety of
different experimental approaches. Historically, many cis-acting
sequences have been identified by mutational analysis of a
target gene or suspected regulatory region. In addition, some
cis-acting elements have been delineated by the identification
of a critical trans-acting regulatory protein, whose binding site
is then subsequently determined. Alternatively, cis-acting
elements have been identified as shared sequence elements in
groups of genes that are co-regulated or undergo similar
processing steps. For example, the alignment of several mRNA
sequences allowed the identification of a hexanucleotide
sequence specifying 3′-end formation and polyadenylation (1).
The central logic of this latter approach is that genes that share
common regulation or processing should share cis-acting
elements that dictate those common events. The recent availability
of complete genome sequences (2,3) and expression profiles of
most or all of the mRNA species in a population of cells (see
for example 4,5) has greatly facilitated the use of these types of
computational methods to identify cis-acting elements. For
example, by examining elements common to a set of transcripts
that are co-regulated, cis-acting transcriptional control
elements have been identified (6,7).

We are interested in developing computational methods that
can be used to identify cis-acting sequences that modulate
post-transcriptional events, such as mRNA splicing, mRNA
localization, translation and mRNA degradation. To this end,
we have developed a procedure that allows the identification of
oligomers that are over-represented in a specific group of
co-regulated genes. This approach does not focus exclusively
on what sequences are shared in the group of putatively
co-regulated genes, but instead identifies oligomers which
distinguish the group from the rest of the genome. The results
presented here indicate that this method readily detects cis-
acting signals involved in mRNA splicing when tested on
Saccharomyces cerevisiae genes with coding region introns.
Several additional experiments in which the composition of
this group was varied to more accurately simulate ‘real world’
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experiments indicate that the method performs well even when
non-optimal groups of genes are analyzed, indicating that the
method should be adequate to identify candidate cis-acting
elements in groups of genes which may be co-regulated based
on common function or expression pattern. We verified this by
identifying a new candidate cis-acting element in the 3′-
untranslated region (3′-UTR) of a group of S.cerevisiae genes
that encode proteins which are transported into the mitochondrion.

MATERIALS AND METHODS

Sequence files

Chromosome sequences, a FASTA file containing all the
spliced coding region sequences and a table listing gene names
and functions, chromosome position, number of introns and
exon boundaries were downloaded from the Saccharomyces
Genome Database (8) on 17 May 1999. A number of repetitive
elements were removed from the FASTA file and gene table.
These consisted of genes encoded in Ty retrotransposon
elements and several highly similar proteins encoded in the
subtelomeric regions. Preliminary experiments (data not
shown) had indicated that some bias might occur if these
repeated sequences were not excluded. Mitochondrially
encoded genes were also removed.

Based on data parsed from the gene table file, FASTA files
containing the 5′-UTR (nt –100 to –1), 3′-UTR (nt +1 to +150)
and unspliced coding region sequences were extracted from
the chromosome FASTA files. These files, as well as the Perl
source code for the scripts used to extract them, are available at
http://www.mcb.arizona.edu/Parker/

Gene group selection

The gene group containing genes with introns was obtained by
parsing the gene table file (see above). Genes with a non-zero
entry in the introns column were added to the list. The mito-
chondrial gene group was obtained by a query of the Yeast
Protein Database (9). The complex query form was used to
retrieve proteins annotated as localized to the mitochondria.
Mitochondrially encoded genes were removed by hand and the
resulting 281 gene list (available at http://www.mcb.arizona.edu/
Parker/ ) was used for the oligomer counting described here.

Oligomer counting method

Complete source code implementing the algorithm described
below in Perl is available under the terms of the GNU Public
License (GPL, http://www.gnu.org/copyleft/gpl.html ) at http://
www.mcb.arizona.edu/Parker/

The oligomer counting method we have described here is
dependent on some genome-wide pre-calculation steps (for
reasons of computational time reduction). For the purpose of
the following description, ‘genome’ indicates a set of genes
from a single organism. The gene group of interest is a proper
subset of the genome set. The genome may consist of all the
genes in an organism (e.g. the S.cerevisiae genome) or only a
portion of the genes in an organism (e.g. the genes contained
on an oligonucleotide array chip).

The pre-calculation step requires a FASTA file containing
the sequences from the region of interest (e.g. 3′-UTR) for
every gene in the genome and a list of every oligomer of a
given length (e.g. AAAAA to TTTTT for lengths of 5 nt). Two

genome reference arrays are determined from this starting
point: one which contains the number of times each oligomer
is found in the genome and a second which contains the
number of different genes each oligomer is found in. Note that
the total number of oligomers (used in later steps) can be deter-
mined by summing the first array. These two arrays are then
written to files, which are then used in all subsequent analyses.
This step is somewhat time consuming, but only needs to be
performed once for each sequence of interest in the genome.

Once the pre-calculation step is complete, the gene group(s)
of interest is scored. The sequence of interest of the genes in
the group is counted just as the whole genome was (see above).
This generates two arrays specific for the gene group. By
subtracting each oligomer from the same oligomer in the
whole genome arrays, the two arrays specific for all genes not
in the group of interest are obtained. These will be used in the
subsequent normalization step.

The representational score RS for a particular oligomer O is
calculated as:

RS = (oligomers Ogroup/total oligomersgroup) ÷ (oligomers
Oremainder / total oligomersremainder)

where ‘remainder’ indicates the set of all genes not in the
group of interest (i.e. ‘remainder’ = whole genome – group of
interest). This measure represents how frequently an oligomer
occurs in the gene group relative to how frequently it occurs in
the genes not in the group.

For subsequent steps, the range of GWO values in the gene
group is used to construct a bin series, containing a variable
number of fixed size bins. If the range is (low)…(high), the
first bin would be (low – ½ bin size) and the last would be
(high + ½ bin size). (When the low number would have been
<1 gene, it was automatically set to 1 gene.) The representational
scores are sorted in these bins. A number (typically 1000) of
random gene groups are selected. After ensuring that a similar
(±20%) amount of sequence has been chosen (in order to
ensure that a similar number of total oligomers are counted), each
random group is counted as above. After the representational
scores are sorted into bins, the highest score from each bin is
saved in a statistical significance array. If no scores for a
particular bin are obtained, a value of 0 is placed in the
significance array for that bin in that trial. After the trials are
complete, the scores in each bin of the significance array are
sorted in ascending order. By checking the appropriate row of
the sorted array, significance cut-off values are obtained for
each bin. The scores from the gene group of interest are then
screened for significant oligomers, using the thresholds deter-
mined from the random trials. Results are output into text files,
imported into Microsoft Excel 98 for post-processing and
finally plotted using DeltaGraph 4.5.

Rare element simulations

In order to simulate rare elements, it was necessary to remove
a number of randomly selected genes from the genome for
each trial. In order to remove the need to re-calculate the
genomic reference arrays many times, a modified counting
procedure was used. First, a number of genes were randomly
selected. Oligomers and genes with oligomer counts were
determined for this subset of genes and these values were
subtracted from the genome reference arrays to generate the
‘genome’ reference arrays for the reduced genome for that
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particular trial. Results were then calculated as described
above.

Incorrect gene group selection simulations

In order to simulate incorrectly selected gene groups, it was
necessary to swap a number of randomly chosen genes from
the group of genes with introns for an equal number of
randomly chosen genes without introns (i.e. genes not in the
training group). For each experiment, the two sets were chosen
and then swapped, eliminating any potential back-swapping.
Results were then calculated as described above.

RESULTS AND DISCUSSION

General method

The approach we have used is an oligomer counting method,
conceptually similar to a method first presented by Staden in
1989 (10), as well as to several other recent methods (11–16,
reviewed in 17). The overall goal of this method is to examine
the usage of all possible oligomers of a given length in a group
of sequences and determine if any are over-represented in
those sequences as compared to the oligomer usage in the rest
of the genome. The essential steps in the process are as follows
(Fig. 1). First, a specific set of genes is chosen to examine. In
the test case first discussed below, we have chosen a subset of
225 yeast protein coding genes containing introns within the
translated region. Second, for the chosen group of genes, the
number of times each oligomer of a particular length occurs is
tabulated. For example, for oligomers of 3 nt, the number of
occurrences of AAA would be counted, then AAC and so on,
up to and including TTT. Counting is done with overlap, so
that, for example, the sequence ACGT is counted as one

instance of ACG and one of CGT. Third, a similar oligomer
count is performed on the remainder of the genome, i.e. all the
genes not in the chosen group. Fourth, these oligomer counts
are converted into representational scores, referred to as RS.
This representational score is the frequency of a given
oligomer in the test group (number of occurrences of oligomer
O/total number of oligomers of same length) divided by the
frequency of the same oligomer in the rest of the genome. An
RS value of 1.0 would indicate that the frequency of the
oligomer in question is the same in the set of putatively
co-regulated genes as it is in the rest of the genome. Since
cis-acting elements are expected to be more frequent in the
genes where they function, they should have high RS values.
To our knowledge, this is the first time a whole eukaryotic
genome has been analyzed in this fashion, as opposed to using
randomized or Markov model-generated sequences for the
purpose of normalization.

The number of genes that contain each oligomer at least once
is also simultaneously tabulated. This number, referred to as
GWO (genes with oligomer) gives a measure of how many of
the genes in the group of interest contain a given oligomer.
Cis-acting elements are predicted to be broadly (if not universally)
distributed in the groups of genes they regulate and should
therefore have high scores for this metric also. Based on this
method, strong candidates for cis-acting elements within a
group of co-regulated genes will be those oligomers that have
both high RS and GWO values. On a two-dimensional scatter
plot of these two values, oligomers that contain or that are
contained in cis-acting elements would then tend to be found in
the upper right quadrant, allowing easy visual identification
when results are displayed in this fashion. Use of the GWO
score as well as the RS metric allows us to simultaneously
quantify oligomer frequency in the gene group of interest
relative to all other genes and oligomer abundance within the
group.

The statistical significance of the representational scores is
determined by a variation of the permutation or resampling
statistics often used in quantitative trait mapping (18). Briefly,
a large number of random gene groups of the same approximate
size as the group of interest (same number of genes, 80–120%
of the number of base pairs) are chosen from the entire set of
genes in the genome and then counted and scored. The high
score from each random trial is recorded. When the high scores
from a large number of trials are sorted in ascending order, cut-offs
for different levels of significance are found. For example, if
the above procedure is used for 1000 random trials, the 950th
score (when scores are sorted in a lowest to highest order)
would define the P = 0.05 significance level cut-off.

Initial results (data not shown) demonstrated that rare
oligomers (those with a high GC content for example) were a
source of considerable noise when the above method was
utilized to determine statistical significance. Since these rare
oligomers will, by definition, have low GWO values, we
developed a GWO value-based binning strategy, so that RS
values were only compared between oligomers that occurred in
a similar number of genes. Briefly, after the group of genes of
interest is counted and scored for oligomers of a particular
length, the observed range of GWO values is used to define a
number of GWO value bins (e.g. 1–10 genes with oligomer,
11–20, etc.) When the subsequent statistical sampling is

Figure 1. Flowchart depicting the oligomer counting method. Unshaded ovals
indicate values obtained by observation or previously existing data (e.g. genome
sequence); the unshaded diamond indicates a decision that must be made;
unshaded squares indicate oligomer counting, processing or calculation steps;
shaded ovals indicate the output of the method. RS, representational score;
GWO, genes with oligomer. See text for details.
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carried out, the high scores in each bin are recorded and used to
determine significance as described above.

While the primary purpose of the binning of representational
scores is to mask the ‘noise’ caused by rare oligomers, the
binning also allows a qualitative finer granularity at the high
end of the GWO value scale. For example, given a group of
150 genes, it would be unexpected (and quite likely significant) to
find a 7 nt oligomer that was present in 145 of these genes. This
oligomer could still be interesting even if it had a low RS value
(relative to other oligomers with lower GWO scores). Without
some kind of binning step in the method, potentially significant
oligomers such as these would be overlooked. We chose to use
a variable number of bins of a fixed size, so that the range of
bin sizes was always based on the number of genes within the
gene group of interest. For example, if the range of GWO
scores observed in the experimental sample was 1–27 genes
and the bin size had been set at 5 genes/bin, then the bin sizes
used would be 1–5, 6–10, 11–15, 16–20, 21–25 and 26–30
genes (see Materials and Methods for details). Experiments
(see below) demonstrated that selection of bin size (i.e. 5 genes/
bin, 10 genes/bin and so on) was not a major factor in the
results obtained with our training set. Additionally, before
results were plotted, bin boundaries were divided by the
number of genes in the group of interest, so that the percentage
of genes in a group that contain a particular oligomer could be
more easily determined.

Sequence selection

When searching for cis-acting elements, the choice of which
region of the genomic sequence to examine is important.
Because of our interest in post-transcriptional gene regulation,
we chose to focus on sequences likely to be found in mRNAs,
which we further subdivided into three groups: 5′-UTR
sequences, arbitrarily defined as nucleotides –100 to –1 relative to
the ATG of each mRNA; coding region sequences, from (and
including) the translation start codon to stop codon of each
mRNA; 3′-UTR sequences, arbitrarily defined as nucleotides
+1 to +150 relative to the stop codon of each mRNA. It should
be emphasized that these choices reflect our particular interests.
The method presented here should work equally well on any
sequences, provided that the same region of sequence is used
for all genes examined and provided an entire genome sequence
is available. Partial genome sequences may be sufficient, although
using an incomplete genome sequence means that care must be
taken to obtain a proper representative sample of genes.

Splicing signals are effectively detected

In order to determine the effectiveness of this method, we
constructed a training group consisting of the genes containing
annotated coding region introns from a recent version of the
Saccharomyces Genome Database (8; see Materials and
Methods for details; gene names available at http://
www.mcb.arizona.edu/Parker ). The sequences between and
including the ATG and stop codons (including introns) of these
225 genes were compared to the coding regions of the
remainder of the ~6000 yeast genes and the RS and GWO
values for all possible 6 nt oligomers were calculated and
plotted (Fig. 2B). In this and all other calculations discussed
below, 1000 random sets of similar size were also generated
and scored for statistical calculation (see above and Materials
and Methods). In this calculation, three oligomers particularly

stood out on the basis of both RS and GWO values: TACTAA,
ACTAAC and GTATGT (Fig. 2B). The first two sequences
are the 6 nt oligomers comprising the core of the branch site
consensus sequence (TACTAAC) and the third is the
consensus 5′ splice site sequence. Two other high scoring
oligomers were composed of portions of the TACTAAC
branch point sequence, with different bases of the less well
conserved flanking regions (e.g. CTAACA and TTACTA).
Additionally, TTTTTT was also detected at a significant level,
consistent with the observation that homouridine runs are
involved in selection of the 3′ splice site (19). Thus, the application
of this methodology to a group of genes encoding introns
easily and accurately identified the known splicing signals.

Although not as striking as the known splicing signals
discussed above, several other oligomers were also detected as
being over-represented in this group of genes [shown as red
boxes (P < 0.01) in Fig. 2B]. At least one oligomer that was
detected as statistically significant (GGTAAG) is not part of
any known splicing signal. This oligomer also has a significant
representational score when oligomers are counted in coding
regions with introns removed (data not shown), so it is likely to
be some coding region feature that is over-represented in this
set of genes. Examination of the location of the occurrences of
this oligomer relative to the start and stop codons and the
intron–exon junctions did not show any obvious pattern,
although >95% of these oligomers are in-frame (data not
shown), encoding Gly-Lys. The over-representation of this
oligomer, as well as the high number of other statistically
significant oligomers, relative to other gene groups
(e.g. compare Figs 2B and 7B) may be due to other biases in
this subset of the genes with introns. For example, this intron-
containing family of genes is enriched in ribosomal proteins
(90/225 genes or 40%), which are generally highly basic and
have a high codon bias, which may explain the difference in
oligomer distribution.

Effects of examining different oligomer lengths

We anticipated that the oligomer lengths that were examined
would be a critical variable in the results obtained with this
method. In order to investigate this issue, we examined
oligomers from 3 to 8 nt long in unspliced coding region
sequences of the same group of genes with introns as above.

The oligomer length examined affected the results in a
variety of manners. First, and as intuitively expected, at
oligomer lengths of 3 and 4 nt the components of the splicing
signals did not have exceptionally high RS values (data not
shown). Second, at an oligomer length of 5 nt the components
of the TACTAAC, TTTTTT run and GTATGT (e.g. GTATG
and TATGT) elements began to stand out with higher RS and
GWO values (Fig. 2A). At an oligomer length of 6 nt the RS
value of these elements continued to increase (Fig. 2B). At
oligomer lengths of 7 and 8 nt the RS values continued to
increase and variants of these elements begin to appear that
included more weakly conserved components of an extended
splicing signal. For example, at an oligomer length of 7 nt the
over-represented oligomers containing the GTATGT 5′ splice site
included AGTATGT, GGTATGT, GTATGTT and GTATGTA.
Similarly, at oligomer lengths of 8 nt the over-represented
oligomers containing the TACTAAC sequence included
TACTAACT, TACTAACA ACTAACAT, ACTAACAA,
ATACTAAC, TTACTAAC and TTTACTAA.
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Based on these types of results, we note two inferences that
can be made from the observations on different oligomer
lengths. First, the ‘core’, or highly conserved, portion of a
cis-acting sequence can be identified. This is because the
components of over-represented oligomers are themselves
over-represented (usually to a lesser extent). In practical terms,
at oligomer lengths shorter than the core element, overlapping
oligomers offset by a single nucleotide will be detected. The
composite sequence formed by these overlapping oligomers
will define the ‘core’ element. For example, GTATG and
TATGT are both significant 5 nt oligomers (Fig. 2A);
TACTAA and ACTAAC are both significantly over-represented
in the 6 nt oligomers (Fig. 2B). Thus, a ‘core’ element will be
observed when overlapping over-represented oligomers of
length n – 1 coalesce into a single over-represented oligomer of
length n.

In addition, information about partially conserved flanking
sequences can be found by examining oligomers that are
longer than the ‘core’ element. If there is no bias in the
flanking sequence, all the ‘core’ element-containing oligomers
should be equally over-represented. Conversely, if there are
additional partially conserved nucleotides that flank the ‘core’
sequence, one will observe the appearance of multiple over-
represented oligomers, which represent the additional partially
conserved nucleotides. For example, the highly over-repre-
sented oligomers that contain TACTAAC are TACTAACT,
TACTAACA, ACTAACAT, ACTAACAA, ATACTAAC,
TTACTAAC and TTTACTAA, which is consistent with the
results of a recent hidden Markov model-based analysis of
S.cerevisiae introns, which defined a WWTACTAACWW
extended branch point consensus sequence, where W is A or T
(Fig. 2D and fig. 4 in 20). Similarly, the over-represented 7 nt
oligomers containing GTATGT are AGTATGT, GGTATGT,

Figure 2. Application of the method to 225 genes with introns. As described in the text, oligomers were counted and analyzed in the coding region (including
introns) of 225 genes containing introns. The coding regions of the genes without introns were used for normalization. 1000 random trials were used to determine
significance levels; see text for details. Black diamonds, insignificant oligomers; blue triangles, oligomers significant at P = 0.05; red squares, oligomers significant
at P = 0.01. Blue line, P = 0.05 significance cut-off in each bin; red line, P = 0.01 cut-off. Text and arrows indicate the sequences of pertinent over-represented
oligomers; green backgrounds indicate oligomers comprising or containing TACTAAC, while blue backgrounds indicate the GTATGT 5′ splice site consensus. RS,
representational score; %GWO, percent of genes in group with oligomer. %GWO is obtained by dividing GWO values by the number of genes in the group, 225 in
this case. (A) Values from analysis of 5 nt oligomers. (B) Values from analysis of 6 nt oligomers. (C) Values from analysis of 7 nt oligomers. (D) Values from
analysis of 8 nt oligomers.
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GTATGTA and GTATGTT, consistent with the
RGTATGTW (where R is A or G and W is A or T) extended
5′ splice site consensus found by the hidden Markov model
(Fig. 2C and fig. 4 in 20).

Oligomer distribution bin size affects the significance of
the results

A second parameter that could impact on the results obtained
with our method is the size of the bins used in the random trials
to determine the significance of over-represented oligomers. In
order to determine the effect of this variable, we compared the
effects of different bin sizes on the statistical significance in an
experiment using 6 nt oligomers in the same training gene
group as above. Bin sizes of 1, 2, 5, 10, 25, 50 and 100 genes/bin
were examined (Fig. 3 and data not shown). In each case, 1000
independent random sets were generated for each bin size. The
smaller bin sizes (1–25 genes/bin, Fig. 3A and B and data not
shown) did not have an impact on the significance of the
results, as can be seen by the position of the marginally
significant TATGTA oligomer (part of the 5′ splice site with

one less well conserved 3′-flanking nucleotide) (Fig. 3A and
B). With larger bin sizes, this oligomer is no longer detected as
significant (Fig. 3C and data not shown). The increased
resolution of very small bins (1 or 2 genes/bin) was offset by
the observation that their calculation required more computer
memory. Subsequent experiments with gene groups of
different sizes (see below and data not shown) demonstrated
that a bin size that balanced memory usage and statistical
resolution was typically one-tenth to one-fifth the number of
genes in the group of interest or 10 genes, whichever was smaller.

Variables affecting the choice of the gene group to examine

A critical step in our approach to the identification of cis-acting
elements is the choice of the genes in the group that is examined
for over-represented oligomers. Critical variables include the
size of the selected group and where to draw the distinction
between the selected group and the remainder of the genome.
For example, consider a case where a number of mRNAs have
been identified as increasing in level in response to a particular
condition. Is it better to examine a large group containing all

Figure 3. Effect of bin size on significant element detection in genes with introns. As described in the text, 225 genes with introns were analyzed using different
GWO bin sizes. Plots and experiments are as in Figure 2; the position of an element with differing significance with the different bin sizes is indicated. All data
presented are from analysis of 6 nt oligomers. (A) Values from analysis with 1 gene/bin. (B) Values from analysis with 10 genes/bin. (C) Values from analysis with
100 genes/bin.
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the genes encoding the mRNAs that change their level or is it
more effective to select a smaller group of genes that undergo
larger changes in expression, knowing that some co-regulated
genes are likely to be left in the genome control? In order to
address these types of issues we manipulated the set of intron-
containing genes in various manners and determined the
effects on detection of splicing signals as over-represented
oligomers.

Effect of the size of the selected gene group. One issue is the
number of genes in the selected gene group. In order to
examine the effects of group size on the calculation, randomly
selected genes with introns were removed from the genome
(and hence from the gene group). Six nucleotide oligomers
were then counted in unspliced coding region sequences of the
remaining genes with introns. Ten independent trials of groups
with 112, 56, 22 and 10 genes (40 trials total) were conducted
and results were averaged across all trials of a particular size.
Averages as well as individual trials were examined for effects
on RS and GWO values.

As shown in Figure 4, the average RS values are largely
unchanged as the size of the selected gene group decreased.
However, the RS values required for a given statistical
significance increased substantially as the gene group

decreased in size. The smaller gene groups were expected to
have a greater number of biased oligomers because of random
effects, which would lead to higher significance thresholds,
due to the underlying mechanism of our method and statistical
calculations. The binning of scores based on oligomer distribution,
which normally ameliorates this effect, was not expected to be
effective because of the small range of bins available. The
results of the small group simulations (Fig. 4) showed that the
significance thresholds displayed an inverse correlation with
the number of genes per group and that this resulted in the
splicing elements not being detected as significant in the
smaller gene groups. Nevertheless, it should be noted that we
could detect the splicing elements marginally at 10 genes/group
and significantly at 22. Based on these simulations, we
conclude that this method can effectively detect elements
present as few as 20 times in a genome, albeit at a lower
significance.

Effects of inappropriate genes in the selected subgroup.
Another key component of the selected group of genes is its
homogeneity with regard to the common function or regulation
being considered. In our test case of genes containing intron
sequences, all of the genes in the test group were known to
contain introns. This is an ideal case but will often not be met
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by available data. For example, consider the case of examining
all the genes that encode mRNAs that change level in response
to an alteration in a mRNA-binding protein that regulates
mRNA stability. The population of genes encoding mRNAs
that change will include those that are directly affected by the
mRNA-binding protein under investigation, but will also
include genes encoding mRNAs whose levels change in
response to alterations in the directly affected genes. In order
to simulate this type of regulatory cascade, we added randomly
chosen genes without introns to the training group of genes
with introns. In this simulation, the genes with introns
represent the primary genes, while the genes without introns
represent the secondary, downstream targets of these genes.

Groups of genes were created that contained the original
225 genes with introns combined with either 225 (50% introns
final), 675 (25% introns final) or 2025 (10% introns final) non-
intron-containing genes. Ten independent trials of each of the
groups totaling 450, 900 and 2250 genes were conducted,

where in each trial the additional genes were chosen at random.
For each trial, 6 nt oligomers were counted and scored in
unspliced coding region sequences. Results for experimental
groups were averaged across all trials of a given size, as were
the significance thresholds determined from the random trials.
The averaged results as well as results from individual trials
were examined.

Increases in the group size led to a reduction in the RS value
for the oligomers containing the splicing signals (compare
Fig. 5A, B and C). However, the oligomers corresponding to
the splicing signals were still easily detected as statistically
significant in populations where the intron-containing genes
were 50 or 25% of the total mix (Fig. 5A and B) and marginally
detected even when they constituted 10% of the total genes in
the mix (Fig. 5C). It should be noted that the largest group
consisted of nearly 40% of the genes in the genome. It is diffi-
cult to envision a biologically relevant application of this
method where a group with that large a fraction of the genome

Figure 4. (Opposite and above) Effect of small groups on element detection in genes with introns. As described in the text, smaller groups of genes with introns
were obtained by discarding randomly selected genes with introns. Plots and experiments are as in Figure 2, with the exception that %GWO is determined by
dividing by the appropriate number of genes for each experiment. Sequences are indicated for pertinent oligomers with text and arrows. Error bars indicate standard
deviations from 10 independent experiments. All data presented is from analysis of 6 nt oligomers. (A) Average values from analysis of groups of 112 genes with
introns. (B) Representative single experiment with a 112 gene group. (C) Average values from analysis of groups of 56 genes with introns. (D) Representative
single experiment with a 56 gene group. (E) Average values from analysis of groups of 22 genes with introns. (F) Representative single experiment with a 22 gene
group. (G) Average values from analysis of groups of 10 genes with introns. (H) Representative single experiment with a 10 gene group.
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could not be further subdivided based on additional criteria.
Thus, we conclude that this approach is sensitive enough to
detect cis-acting elements even in mixed populations where the
group of primary targets is as few as 25% of the total mix.

Effects of gene mixing between the selected and control
groups. Since the distribution of the putative cis-acting
element(s) is unknown when this method is used, the odds of
an imperfect gene group selection are quite high. As discussed
above, one type of common incorrect selection involves
including genes that lack the element of interest, perhaps
because they are affected by secondary effects. A second type
of incorrect selection could occur if some element-containing
genes were not placed in the gene group. The third, and potentially
most detrimental, type of potential incorrect gene group selection
is a combination of the first and second types, so that the
selected gene group contains genes with and without elements,
as does the remainder of the genome which is used for normali-
zation. In order to simulate this situation we randomly

swapped genes with introns (from the training gene group) and
genes without introns (from the rest of the genome). In
independent experiments, 56, 112 and 168 genes were
swapped between the groups. In these cases the final selected
group of 225 genes contained 75, 50 and 25% genes with
introns, respectively. The swapped genes were all selected
before any genes were exchanged, so no back-swapping
occurred. Ten trials of each kind were carried out. In each trial,
6 nt oligomers were counted and scored in unspliced coding
region sequences. All scores and significance thresholds were
averaged across all trials of a particular size and the results of
both the averaged and individual trials were examined.

Since this type of mixing both decreases the numerator and
increases the denominator of the ratio leading to the RS value,
we anticipated that this type of group selection would have a
strong effect on the ability to detect the splicing signals as
significant. The effect was predicted to be similar to that
observed in the regulation cascade experiment (above), but
more severe. As shown in Figure 6, a reduction in representational

Figure 5. Effect of regulatory cascade simulation in groups with some intron-containing genes. As described in the text, regulatory cascades were simulated by
addition of random numbers of genes without introns to the 225 genes with introns. Plots and experiments are as in Figure 2, with the exception that %GWO is
determined by dividing by the appropriate number of genes for each experiment. Sequences are indicated for pertinent oligomers with text and arrows. Error bars
indicate standard deviations from 10 independent experiments. All data presented are from analysis of 6 nt oligomers. (A) Average values from analysis of groups
with 450 genes [225 (50%) with introns]. (B) Average values from analysis of groups with 900 genes [225 (25%) with introns]. (C) Average values from analysis
of groups with 2250 genes [225 (10%) with introns].
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score occurred that correlated with the number of genes that
had been swapped. However, the splicing signals were still
statistically significant when the selected group contained 75
or 50% introns. This suggests that the effectiveness of this
method is dependent on having at least half of the instances of
a given element in the gene group. This, of course, may vary
depending on several factors, such as gene group size and
element size and distribution. In general, having more

instances of a particular element in the group of interest will
produce better results.

Implications for gene group selection

The results detailed above and summarized in Table 1 suggest
a strategy for selecting gene groups from the results of an
expression profiling experiment. First, since large groups of
genes do not appear to impair element detection, at least up to

Figure 6. Effect of group misselection simulation in groups with some intron-containing genes. As described in the text, selection of inappropriate gene groups
was simulated by swapping random numbers of genes without introns with genes with introns. Plots and experiments are as in Figure 2. Sequences are indicated
for pertinent oligomers with text and arrows. Error bars indicate standard deviations from 10 independent experiments. All data presented are from analysis of 6 nt
oligomers in groups of 225 genes. (A) Average values from analysis of groups with 167 genes with introns and 58 without introns (75% introns in set). (B) Average
values from analysis of groups with 113 genes with introns and 112 without introns (50% introns in set). (C) Average values from analysis of groups with 57 genes
with introns and 168 without introns (25% introns in set).

Table 1. Effects of changes in gene group size and composition on RS and GWO values

This table summarizes the effects of changes in gene groups on RS and GWO values, as described in the text.

Change in gene group Effect on RS Effect on GWO Other effects

Reduced number of genes (Fig. 4) Minimal None Increase in statistical cut-off levels

Increased number of genes (Fig. 5) Decrease Decrease Increased computing time and memory usage

Imperfect gene selection (Fig. 6) Decrease Decrease
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a biologically relevant ceiling value, inclusion of extraneous
(element-lacking) genes is not a primary concern. Furthermore,
small groups can have a negative effect on element detection
and failing to include element-containing genes in the group
does have a large detrimental impact. This suggests that an
effective strategy would be to analyze the group consisting of
those genes having and potentially having the expression
profile of interest. If this results in a group that is too large,
genes that fit the profile most poorly should be excluded, until
the group is of a suitable size.

Since the issue of gene group selection is of paramount
importance in using this method, we have chosen to present a
hypothetical situation and explain how the strategy described
above could be applied. While we have chosen an example that
involves selecting genes from an expression profile, it should
be emphasized that these guidelines are also applicable to other
situations as well (e.g. selection based on function). Consider
an expression profile comparing a wild-type population of
yeast cells to a population containing a mutation in an RNA-
binding protein that is known to stimulate the degradation of
some, but not all, mRNAs. Obviously, the population of
mutant cells is predicted to have increased levels of some
messages. Further, some of the mRNAs with increased levels
are predicted to share a sequence element that directs degradation.
Following the strategy outlined above, one approach in this
case would be to split the genes into three sets: significantly
increased (>2-fold), possibly increased (1.5- to 2-fold) and
unaffected genes. The initial gene group would be composed
of both significantly and possibly increased genes. If that
resulted in a gene group that was too large, the genes with the
lowest increases could be removed from the gene group. A
second approach would be to group the significantly affected
genes for analysis and use only the unaffected genes for
normalization purposes, rather than the whole genome. Once
putative elements were identified from the significantly
affected genes, the possibly affected genes could be searched
for instances of the putative elements. A positive correlation
between element distribution and/or consensus and the mRNA
level increase would be a strong indication that the element had
a role in the mRNA degradation process being studied.

Identification of a putative cis-acting element in the 3′-UTR
of nuclear genes encoding mitochrondrial proteins

To determine if the method described and characterized above
would be effective at identifying unknown potential sequence
elements, we performed several experiments on a group of 281
nuclear genes that encode mitochondrial proteins, which were
obtained by querying the Yeast Protein Database (9). These
genes are of interest because there is experimental data
suggesting that the 3′-UTR of these mRNAs may function to
target the mRNA to the surface of the mitochondrion and
thereby facilitate import of the protein into this organelle (21–25).
Examination of the distributions of oligomers from 5 to 8 nt
long in the 5′-UTR and coding region sequences (spliced and
unspliced) of this group failed to identify any candidate
elements (data not shown). However, when the 3′-UTR
sequences (+1 to +150 relative to the stop codon) of these
genes were examined for the distribution of 6 nt oligomers, a
number of partially overlapping sequences were identified as
significant (Fig. 7B). Further examination revealed that the

components of this composite sequence (CYTGTAAATA,
where Y is C or T) also had high RS and GWO values in the 5,
7 and 8 nt oligomer distributions (Fig. 7), making this sequence
a strong candidate for being a cis-acting element affecting the
function of this class of mRNAs. Additionally, analysis at
different oligomer lengths suggests that this 10 nt sequence is
the ‘core’ of this element, in terms of detection of overlapping
oligomers offset by a single nucleotide. We were not able to
detect any significant partially conserved flanking sequence,
possibly due to the fact that longer (>8 nt) oligomers were not
examined.

The CYTGTAAATA sequence occurs 169 times in the
~14 Mb yeast genome, with 58 of these occurrences being in
the ~1 Mb that we termed 3′-UTR sequences (+1 to +150 of
each stop codon). When the list of genes containing this
sequence is examined, a biased distribution can clearly be
detected. The 58 3′-UTR occurrences correspond to 58 genes.
Of these 58, 38 are known to have functions in mitochondrial
metabolism and four others have sequence features suggestive
of such a role (Table 2). Fifteen of the remaining genes have
unknown functions. The only gene with a known non-
mitochondrial function is CAF17, a component of the CCR4
transcription factor complex (C.Denis, personal communication).
Interestingly, mutations of this gene lead to loss of mitochondrial
function, suggesting that there is indeed some functional link
to mitochondrial function for this gene as well (C.Denis,
personal communication). Of the 45 genes with known or
putative mitochondrial functions, 35 (77.7%) are involved in
post-transcriptional steps of mitochondrial gene expression
(primarily translation, but also RNA splicing and degradation
and protein complex assembly). Of the 58 genes, only 32
(55.1%) were present in the original selected gene group in this
experiment and these 32 comprised only 11.4% of the group of
genes analyzed.

We hypothesized that if this element was bipartite, or
composed of two conserved regions separated by a non-
conserved region, we would detect the second half of the
element as a series of highly significantly over-represented
oligomers when the 58 genes were analyzed as a group.
However, no new significantly over-represented oligomers
were found (data not shown) when oligomer representation in
the 3′-UTR sequences of the 58 genes was examined,
suggesting that this is not a bipartite element. Possible
functions for this element include the coordination of gene
expression of this family of genes and/or functioning in the
localization of these mRNAs to the mitochondrial surface.

These results support several conclusions. First, relying
solely on functional annotations in sequence databases is
unlikely to isolate all known genes of a particular functional
subclass, meaning that additional care must be taken when
assembling gene groups based on gene function. Second, the
above results indicate that the performance of our method is
robust, as predicted by the experiments performed with the
genes with introns group (see above and Figs 4–6). Finally,
once a putative element has been identified with our method,
listing all the genes in the genome that contain it can be a
useful check on the ‘correctness’ of the candidate element.
Additionally, finding a putative element in a gene with no
known function may provide hints as to what processes the
encoded protein participates in in the cell.



Nucleic Acids Research, 2000, Vol. 28, No. 7 1615

Future improvements

There are several potential improvements that could be made to our
method. The Perl source code for oligomer counting and scoring in
this manuscript is available (http://www.mcb.arizona.edu/Parker/ )
and has been released under the GNU Public License (GPL,
http://www.gnu.org/copyleft/gpl.html ), which will enable
these improvements and other modifications to be made by
members of the scientific community as well as our laboratory.

One improvement would be to use a more accurate set of
sequences with regards to mRNA structure. Ideally, whole
mRNA or promoter sequences (depending on the interests of
the researchers) of each gene would be used, to maximize the
biological relevance of the search. Unfortunately, given the
number of mapped mRNA 5′- and 3′-ends in S.cerevisiae, it is
currently easier to check the locations of putative elements
versus mapped ends after the putative element has been
identified. Another improvement in biological relevance could
be achieved by incorporating the results of a wild-type expression
profile, so that only the genes being expressed in the relevant
transcriptome are searched.

The core oligomer counting algorithm in our method is quite
fast. On a modern desktop workstation, the 6 nt oligomers in a
set of 100 genes can be counted in well under 1 min. However,
repeatedly performing that counting step, selecting appropriate
random sets for statistical purposes and counting multiple
oligomer lengths means that the entire experiment can take 6 h
or more. Reducing this time is a prerequisite if an interactive
web-based version of this method is to be deployed. A potentially
productive strategy would be to identify several stereotypical
gene group sizes (e.g. 50, 100 and 150 genes) and pre-calculate
the significance cut-offs for them. This would allow very rapid
‘prototyping’ of gene groups. Those elements identified in this
initial step could then be counted with more rigorous statistical
methods, which would also be faster since only certain
oligomers would need to be counted. Additionally, passing the
output oligomers through a contig assembly program could
facilitate detection of the longest shared overlapping sequences
from a given group of genes. Finally, we would be remiss if we
did not acknowledge that many elements are recognized on the
basis of secondary structure (e.g. stem–loops). It should be

Figure 7. Application of the method to 281 genes encoding mitochondrially localized proteins. As described in the text, oligomers were counted and analyzed in
the 3′-UTR of 281 genes encoding mitochondrial proteins. Plots and experiments are as in Figure 2, with the exception that %GWO values were determined by
dividing by 281, to reflect the change in gene group size, and that oligomer backgrounds are not color coded. (A) Values from analysis of 5 nt oligomers. (B) Values
from analysis of 6 nt oligomers. (C) Values from analysis of 7 nt oligomers. (D) Values from analysis of 8 nt oligomers.
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relatively easy to modify the oligomer counting section of our
method to instead look for potential stem-forming regions, the
distribution of which can then be examined in a fashion analogous
to that described here for oligomers.
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