Skip to main content
. 2023 Apr 3;136(8):886–898. doi: 10.1097/CM9.0000000000002642

Figure 2.

Figure 2

The function of the ferroptosis mechanism is to balance oxidative damage and antioxidant defense. The mechanism of ferroptosis mainly involves two parts: oxidative damage and antioxidant defense. When the physiological state of the body changes and oxidative damage increases, ferroptosis and ferroptotic cell death are induced; in contrast, overexuberant antioxidant defense hinders the occurrence of ferroptosis. AA: Arachidonic acid; ACSL4: Acyl-CoA synthetase long-chain family member 4; AdA: Adrenic acid; BH4: Tetrahydrobiopterin; CoQ10: Coenzyme Q10; CoQ12: Coenzyme Q12; FSP1: Ferroptosis suppressor protein 1; GPX4: Glutathione peroxidase 4; GSH: Glutathione; iNOS: Inducible nitric oxide synthase; LOX: Lipoxygenase; NCOA4: Nuclear receptor coactivator 4; NO: Nitric oxide; NRF2: Nuclear factor erythroid 2-related factor 2; PE-AA: Arachidonic acid-phosphatidylethanolamine; PLOOHs: Phospholipid hydroperoxides; PUFA: Polyunsaturated fatty acid; ROS: Reactive oxygen species; SLC3A2: Solute carrier family 3 member 2; TF: Transferrin.