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Abstract
Motivation: Replicability is the cornerstone of scientific research. The current statistical method for high-dimensional replicability analysis either
cannot control the false discovery rate (FDR) or is too conservative.

Results: We propose a statistical method, JUMP, for the high-dimensional replicability analysis of two studies. The input is a high-dimensional
paired sequence of p-values from two studies and the test statistic is the maximum of p-values of the pair. JUMP uses four states of the p-value
pairs to indicate whether they are null or non-null. Conditional on the hidden states, JUMP computes the cumulative distribution function of the
maximum of p-values for each state to conservatively approximate the probability of rejection under the composite null of replicability. JUMP
estimates unknown parameters and uses a step-up procedure to control FDR. By incorporating different states of composite null, JUMP
achieves a substantial power gain over existing methods while controlling the FDR. Analyzing two pairs of spatially resolved transcriptomic
datasets, JUMP makes biological discoveries that otherwise cannot be obtained by using existing methods.

Availability and implementation: An R package JUMP implementing the JUMP method is available on CRAN (https://CRAN.R-project.org/pack
age=JUMP).

1 Introduction

Replicability is the cornerstone of modern scientific research.
We study conceptual replicability, where consistent results are
obtained from studies using different procedures and popula-
tions that target the same scientific questions. Replicability is
related to but different from meta-analysis. Both approaches
look at cross-experiment summaries. In a meta-analysis, the
null hypothesis is that there is no effect in all studies. On the
other hand, in replicability analysis, the alternative hypothesis
is that the effects exist in all studies and the null hypothesis is
a composite null, i.e. at least one study does not have an ef-
fect. Methods designed for meta-analysis, such as Fisher’s
method (Fisher 1925), the �Sidák’s method (�Sidák 1967), the
Lancaster’s method (Lancaster 1961), and the minimum of
p-values are not applicable for replicability analysis.

We focus on the replicability analysis of genomic data pro-
duced by high-throughput experiments (Li et al. 2011,
Philtron et al. 2018, Hung and Fithian 2020, Bogomolov and
Heller 2022). In a high-throughput experiment, many candi-
dates are evaluated for their association with a biological fea-
ture of interest, and those with significant associations are
identified for further analysis. We aim to simultaneously iden-
tify replicable features from high-throughput experiments in

multiple studies. To analyze a single high-throughput experi-
ment, an acute problem is the multiple comparison. A classic
method for multiple comparisons is the false discovery rate
(FDR) control approach proposed in Benjamini and
Hochberg (1995) (BH). The FDR is defined as the expected
value of the ratio of false rejections over total rejections.
Suppose we have m hypotheses. The BH procedure works as
follows. First, order p-values pð1Þ � . . . � pðmÞ: Second, find
the largest i0 such that pði0Þ � ai0=m: Third, reject hypotheses
corresponding to pð1Þ; . . . ;pði0Þ: Under the assumption that p-
values from the null are independent and follow standard uni-
form distribution, FDR is controlled at level ap0; where p0 is
the proportion of null hypotheses. The BH procedure is ro-
bust under positive dependence among p-values under the
null (Benjamini and Yekutieli 2001).

When we have two studies, an ad hoc approach for replica-
bility analysis is to first compute p-values for each study.
Multiple comparison methods such as BH can be used to
claim significance in each study. Replicable findings are those
that are significant in both studies. This approach cannot con-
trol FDR (Bogomolov and Heller 2013). Intuitively speaking,
if there is no danger that a multiple testing procedure produ-
ces false positives, then this ad hoc approach would work.
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However, multiple testing procedures have a non-zero proba-
bility of making false positives unless the procedure does not
reject. Thus, an approach that provides control over false pos-
itives in each study separately does not guarantee control of
overall false positives to test replicability (Bogomolov and
Heller 2013). The partial conjunction approach in Benjamini
et al. (2009) suggests applying a multiple testing procedure,
such as BH, on the maximum of p-values across two studies.
This provides effective FDR control yet the power is low.

In this article, we propose a joint super-uniform maximum
p-value (JUMP) method for high-dimensional replicability
analysis. The null hypothesis consists of three states. The orig-
inal maximum of p-values does not incorporate different
states of the null and has a cumulative distribution function
far smaller than that of a standard uniform distribution, caus-
ing power loss. We use four states for the p-value pairs indi-
cating whether they are null or non-null (Chung et al. 2014).
Conditional on the hidden states, we compute the cumulative
distribution function of the maximum of p-values for each
state separately. Combining with the proportion estimation
for each state, we get a conservative approximation of the cu-
mulative distribution function of the maximum of p-values
under replicability null. To estimate the proportion of each
state, we extend the proportion of null estimation in Storey
et al. (2004) from the two-group model to a four-group
model. We require p-values in each sequence to follow a stan-
dard uniform distribution under the null. This assumption is
needed for the BH procedure and Storey et al. (2004)’s
method of the proportion of null estimation. A step-up proce-
dure is developed to control FDR. By incorporating the com-
posite null feature of replicability analysis, we achieve a
substantial power gain. The computation is scalable with a
computational cost similar to that of BH.

As proof of concept, we apply JUMP to the replicability
analysis of spatial transcriptomic studies. Spatially resolved
transcriptomics (SRT) links the transcriptomes to their cellu-
lar locations, providing a comprehensive understanding of
gene expression profiles in the spatial context of biological
systems (Kleino et al. 2022). An important first step toward
characterizing the spatial transcriptomic landscape of com-
plex tissues is identifying replicable spatially variable genes
(SVGs), genes that have clustered signals in the two-
dimensional space for spatial transcriptomic data. For each
study, we can apply existing SVG detection methods to get p-
values (Edsgärd et al. 2018, Svensson et al. 2018, Sun et al.
2020, Hu et al. 2021, Zhu et al. 2021). The input to our
method is a paired p-value sequence collected from different
tissue sections: mouse olfactory bulb data measured with ST
technology (Ståhl et al. 2016) and 10� Visium technology;
mouse cerebellum data measured with Slide-seq technology
(Rodriques et al. 2019), and Slide-seqV2 technology (Stickels
et al. 2021). We show that at the same FDR level, JUMP iden-
tifies important replicable SVGs that would otherwise be
missed by using existing methods.

2 Materials and methods
2.1 Background and notations

Suppose we have m genes common to two studies. We are in-
terested in identifying genes that display replicable expression
patterns. The input of the replicability analysis is a pair of p-
values from two studies ðp1i;p2iÞ; i ¼ 1; . . . ;m: The null hy-
pothesis for ith gene states that it does not show any

replicable expression pattern. Let hji denote underlying state
of ith gene in study j (j ¼ 1;2), where hji ¼ 1 indicates ith
gene is significant in study j and hji ¼ 0 otherwise. A four-
group model is assumed for the paired p-value sequence, i.e.

p1i j h1i � ð1� h1iÞf0 þ h1if1;
p2i j h2i � ð1� h2iÞf0 þ h2if2; i ¼ 1; . . . ;m;

where f0 is the density function of p-values under the null,
and f1 and f2 denote the non-null density functions of p-values
from study 1 and study 2, respectively. Let si ¼ ðh1i; h2iÞ; i ¼
1; . . . ;m denote the joint hidden states across two studies.
Then si 2 fð0; 0Þ; ð0; 1Þ; ð1;0Þ; ð1;1Þg with Pðsi ¼ ðk; lÞÞ ¼ nkl

for k; l 2 f0;1g, and
P

k;lnkl ¼ 1. Here n00, n01, n10, and n11

denote the probabilities of hidden states ð0; 0Þ; ð0;1Þ; ð1;0Þ
and ð1;1Þ; respectively. Based on this four-group model, the
replicability null hypothesis for ith gene can be defined as

Hi0 : si 2 fð0; 0Þ; ð0; 1Þ; ð1;0Þg; i ¼ 1; . . . ;m;

where the ith gene is replicable if it shows expression patterns
in both study 1 and study 2. For simplicity, we denote the hid-
den state of Hi0 as hi, where hi ¼ 0 indicates Hi0 is true and
hi ¼ 1 otherwise. Hence Pðhi ¼ 0Þ ¼ n00 þ n01 þ n10 and
Pðhi ¼ 1Þ ¼ n11.

2.2 JUMP for replicability analysis

The schematic of JUMP for identifying replicable SVGs from
two SRT studies is shown in Fig. 1. After obtaining paired p-
values from two studies, we define the maximum p-values as

qi ¼ maxfp1i;p2ig; i ¼ 1; . . . ;m:

Under the assumption that f0 follows the standard uniform
distribution, we have

Pðqi � tjsi ¼ ð0;0ÞÞ ¼ t2;
Pðqi � tjsi ¼ ð0;1ÞÞ � t;
Pðqi � tjsi ¼ ð1;0ÞÞ � t; i ¼ 1; . . . ;m;

where we use the assumption that conditional on the joint
hidden states, two p-value sequences are independent.

Under the replicable null, qi follows a two-group mixture
model

Figure 1 Schematic of JUMP for identifying replicable SVGs from two

SRT studies.
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qi j hi � ð1� hiÞg0 þ hig1;

where g0 and g1 denote the density function of qi under repli-
cable null and non-null, respectively. For any t 2 ð0;1Þ, we
compute the cumulative distribution function of qi under rep-
licable null as follows.

Pðqi � t j hi ¼ 0Þ
¼ Pðqi � t;hi ¼ 0Þ

Pðhi ¼ 0Þ

¼
n00P

�
qi � tjsi ¼ ð0;0Þ

�
n00 þ n01 þ n10

þ
n01P

�
qi � tjsi ¼ ð0;1Þ

�
n00 þ n01 þ n10

þ
n10P

�
qi � tjsi ¼ ð1;0Þ

�
n00 þ n01 þ n10

� n00t2 þ ðn01 þ n10Þt
n00 þ n01 þ n10

Denote

GðtÞ ¼ n00t2 þ ðn01 þ n10Þt
n00 þ n01 þ n10

; (1)

we have

GðtÞ � t ¼ n00

n00 þ n01 þ n10

tðt � 1Þ � 0:

Hence Pðqi � t j hi ¼ 0Þ � t, which means that qi follows a
super-uniform distribution under the replicability null. This verifies
that the vanilla maximum p-value method has valid FDR control.

For t 2 ð0;1Þ, the number of rejections is
RðtÞ ¼

Pm
i¼1 Ifqi � tg, and the number of false rejections is

bounded by mðn00 þ n01 þ n10ÞGðtÞ: At threshold t, we have
a conservative estimate of FDR by

FDR�ðtÞ ¼ mðn00 þ n01 þ n10ÞGðtÞ
RðtÞ _ 1

:

In the oracle case that we know n00; n01 and n10, at FDR level
a; let

tm ¼ supft 2 ð0; 1Þ : FDR�ðtÞ � ag: (2)

Reject Hi if qi � tm.

2.3 Estimation of unknowns

As n00; n01; and n10 are unknown in practice, we provide their
estimates in this section. Following Storey (2002) and Storey
et al. (2004), in study j, the proportion of null hypotheses, pðjÞ0 ,
can be estimated by

bpðjÞ0 ðkjÞ ¼
Pm

i¼1 Ifpji � kjg
mð1� kjÞ

; j ¼ 1;2:

Similarly, we estimate n00 as

bn00ðk3Þ ¼
Pm

i¼1 Ifp1i � k3;p2i � k3g
mð1� k3Þ2

;

where k1; k2, and k3 are tuning parameters. We use the

smoothing method provided in Storey and Tibshirani (2003)
to select tuning parameters. Please see Supplementary Note A
for more details. We have

bn01 ¼ bpð1Þ0 � bn00; bn10 ¼ bpð2Þ0 � bn00:

We estimate FDR�ðtÞ by

dFDR
�
ðtÞ ¼ mðbn00t2 þ bn01t þ bn10tÞ

RðtÞ _ 1
:

The data-adaptive thresholding is

btm ¼ supft 2 ð0;1Þ : dFDR
�
ðtÞ � ag: (3)

We claim the replicability of ith gene if qi � btm:
This is equivalent to the following step-up procedure. First,

order the maximum p-values qð1Þ � . . . � qðmÞ. Second, find

bk :¼ maxf1 � i � m : dFDR
�
ðqðiÞÞ � ag: (4)

Reject HðiÞ for i ¼ 1; . . . ;bk; where HðiÞ corresponds to qðiÞ:
The key to the power gain is to incorporate different states

in the composite null. This is similar in spirit to plugging in
the proportion of the null hypothesis with a single p-value se-
quence in Storey (2002).

3 Results

In this section, we evaluate the FDR control and power of
JUMP via simulations and conduct data analysis to identify
replicable SVGs from two pairs of SRT datasets measured
with different technologies.

3.1 Simulation studies

We conducted extensive simulation studies to evaluate the
performance of different methods. Power is defined as the ex-
pectation of true replicable discoveries over the total number
of non-null hypotheses. We compare JUMP with ad hoc BH,
MaxP, radjust (Bogomolov and Heller 2018), MaRR
(Philtron et al. 2018), and IDR (Li et al. 2011) for replicability
analysis. In addition, we used two meta-analysis methods,
�Sidák’s method (�Sidák 1967) and Lancaster’s method
(Lancaster 1961), that combine p-values across two studies.
We applied the BH procedure (Benjamini and Hochberg
1995) on the aggregated p-values to show they are not suit-
able for replicability analysis. Detailed description of different
methods can be found in Supplementary Note B.

In each simulation, states of genes in two studies, h1i and
h2i, were generated from a multinomial distribution with
probabilities, Pðh1i ¼ k; h2i ¼ lÞ ¼ nkl; k; l 2 f0; 1g, for pre-
specified n00; n01; n10, and n11. Denote Nðl;r2Þ as a normal
distribution with mean l and standard deviation r. In simula-
tion study 1, we independently generated summary statistic
Xji � Nðlj; r

2
j Þ for ith gene in study j (j ¼ 1; 2), where lj ¼ 0

if hji ¼ 0, and lj > 0 if hji ¼ 1. One-sided p-values for study j
were obtained by pji ¼ 1� UðZjiÞ; i ¼ 1; . . . ;m, where Zji ¼
Xji=rj denotes the Z-statistic for the ith gene in study j and
Uð�Þ denotes the cumulative distribution function of Nð0;1Þ.
Figure 2 presents the FDR control and power comparison of
different methods under the setting of m ¼ 10; 000; n11 ¼
0:05 and n01 ¼ n10 over different values of n00; lj and rj,
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j ¼ 1; 2. For a given value of n00, corresponding n01 and n10

can be obtained by n01 ¼ n10 ¼ ð1� n00 � n11Þ=2. At a target
FDR level of 0.05, we observe that the �Sidák, the Lancaster,
the IDR, and the ad hoc BH do not have valid FDR control.
The MaxP, radjust, MaRR, and JUMP controlled the FDR at
0.05 across all settings. MaxP is overly conservative, radjust
and MaRR have decent power, and JUMP has the highest
power across all settings.

We also performed realistic simulations based on Replicate
9 and Replicate 12 of ST datasets measured in mouse olfac-
tory bulb (Ståhl et al. 2016). Details of the data generation
process and simulation results can be found in Supplementary
Note C, Figs S1–S3.

3.2 Analysis of mouse olfactory bulb data

We first analyzed the SRT data from mouse olfactory bulb
measured with ST technology (Ståhl et al. 2016) and 10�
Visium technology. Ståhl et al. (2016) published 12 replicates
of the mouse olfactory bulb ST datasets on the Spatial
Research website (https://www.spatialresearch.org/). We used
Replicate 9 for our analysis, which includes 15 284 genes on
237 spots. The 10� Visium dataset was downloaded from the
10� Visium spatial gene expression repository (https://www.
10xgenomics.com/resources/datasets) and contains 32 285
genes on 1185 spots. We filtered out genes that are expressed
in less than 10% spatial spots and selected spots with at least
ten total read counts, resulting in 9547 genes on 236 spots for
the ST dataset and 10 680 genes on 1185 spots for the 10�
Visium dataset, respectively. We separately analyzed the two
datasets using SPARK (Sun et al. 2020) to produce p-values.
Paired p-values of 8547 genes common to both studies is the

input to the replicability analysis. As can be seen in Fig. 3a,
JUMP has higher power than the other two methods. At the
FDR level of 0.05, MaxP identified 618 replicable SVGs,
which were all detected by BH and JUMP. JUMP identified
807 replicable SVGs, including 637 of the 638 SVGs detected
by BH. This is consistent with the simulation results that
MaxP is overly conservative and JUMP has higher power.

We clustered the 807 replicable SVGs identified by JUMP
into three groups using the hierarchical agglomerative cluster-
ing algorithm implemented in the R package amap (v0.8-18)
and summarized the spatial expression patterns based on the
expression level of the genes in corresponding groups. In both
studies, the summarized patterns were consistent with three
main cell layers in mouse olfactory bulb. In Fig. 3b and
Supplementary Fig. S4a, Pattern I corresponds to the glomeru-
lar layer, Pattern II corresponds to the mitral layer, and
Pattern III corresponds to the granular layer. Spatial expres-
sion patterns of three representative SVGs (Kctd12, Plcxd2,
Ctxn1) identified by JUMP are presented in Fig. 3c, which
correspond to Patterns I–III, respectively and are consistent
with the in situ hybridization images obtained from the Allen
Brain Atlas. For comparison, we also randomly selected 30
genes from the 189 additional findings of JUMP compared to
the overlaps of three methods and showed their spatial ex-
pression patterns in Supplementary Fig. S5a and b. Moreover,
we calculated Moran’s I statistic (Moran 1950) of the 189
replicable SVGs additionally identified by JUMP and com-
pared it with that using all 8547 genes to show the autocorre-
lations of the additional findings by JUMP (Fig. 3d).

To further compare and validate the replicable SVGs identi-
fied by different methods, we downloaded two published

Figure 2 FDR control and power comparison of different methods in simulation studies. m ¼ 10 000; n11 ¼ 0:05 and n01 ¼ n10. Each row corresponds to

different n00. Each column corresponds to different standard deviations. In each panel, the empirical FDR for different methods was calculated over 100

replications at a target FDR level of 0.05 (horizontal dashed line in the plots) for different non-null settings (left: l1 ¼ 2:5; l2 ¼ 3; middle: l1 ¼ l2 ¼ 2:5;
right: l1 ¼ l2 ¼ 3).
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gene sets from the Harmonizome database (Rouillard et al.
2016) consisting of genes related to mouse olfactory bulb as a
reference (Fig. 3e). The first gene set was summarized based
on three layers (glomerular, mitral, and granular) of the main
olfactory bulb from the Allen Brain Atlas adult mouse brain
tissue gene expression profiles dataset (Sunkin et al. 2013), in-
cluding 3485 genes with high or low expression in main olfac-
tory bulb relative to other tissues. 33% of the 618 replicable
SVGs that were identified by all three methods were validated.
Among the 189 replicable SVGs additionally identified by
JUMP, 26% were validated in the reference list, whereas only
4 of the 20 SVGs additionally identified by BH were in the

same list. The second reference gene set includes 2031 genes
differentially expressed in mouse olfactory bulb relative to
other cell types and tissues from the BioGPS mouse cell type
and tissue gene expression profiles dataset (Wu et al. 2013).
In addition to the replicable SVGs identified by all three meth-
ods (34% validated), 38 of the 189 replicable SVGs only
detected by JUMP were in the list, whereas 4 of the 20 replica-
ble SVGs only detected by BH were validated in the same list.
These results provide additional biological evidence for the
improved power of JUMP.

Additionally, we performed Gene Ontology (GO) enrich-
ment analysis on replicable SVGs identified by JUMP and BH

Figure 3 Analysis and validation results of the mouse olfactory bulb data measured with ST technology and 10� Visium technology. (a) Venn diagram

shows the number of replicable SVGs identified by different methods at FDR level 0.05 and the intersection of discoveries. (b) Three distinct spatial

expression patterns based on the 807 replicable SVGs identified by JUMP in the ST study (top) and 10� Visium study (bottom). Each pattern summarizes

the relative expression levels across spatial spots. The corresponding hematoxylin and eosin staining images for the two studies are shown in the right

panel. (c) Spatial expression patterns of three representative genes identified by JUMP, corresponding to Patterns I–III, respectively. In situ hybridization

images of corresponding genes obtained from the Allen Brain Atlas (atlas.brain-map.org) are shown in the top panel. (d) The box plot shows Moran’s I

statistic of the 189 replicable SVGs additionally identified by JUMP and that of all genes based on the ST study (left) and the 10� Visium study (right). (e)

The bar chart displays the number of replicable SVGs additionally identified by JUMP and BH compared to that identified by all three methods. They were

validated in two reference gene lists from the Harmonizome database: one from the Allen Brain Atlas dataset and the other from the BioGPS dataset. (f)

The bubble plot shows the GO enrichment analysis result of JUMP, including different GO term categories: BP, CC and MF. The horizontal dashed line

represents the FDR level 0.01. The size of a bubble represents the counts of corresponding gene sets.
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(Fig. 3f). At the FDR level of 0.01, JUMP enriched 846 GO
terms and BH enriched 764 GO terms (708 overlaps). Many
of the 138 GO terms only identified by JUMP are related to
nervous system development and olfactory bulb organization.
For instance, transmission of nerve impulse (GO:0019226),
neuronal action potential (GO:0019228), and forebrain neu-
ron differentiation (GO:0021879) are closely related to the es-
tablishment of axodendritic and dendrodendritic synaptic
contacts within the olfactory bulb (Belluzzi et al. 2003);
GABA-ergic synapse (GO:0098982) plays a key role in the or-
ganization of olfactory bulb (Hanson et al. 2020); GO terms
GO:0045744 and GO:0002029 are related to G protein-
coupled receptor, which can be encoded by odorant receptor
genes differentially expressed at conserved positions in the
olfactory bulb (Katidou et al. 2018).

3.3 Analysis of mouse cerebellum data

We next analyzed the SRT data from mouse cerebellum mea-
sured with Slide-seq technology (Rodriques et al. 2019) and
Slide-seqV2 technology (Stickels et al. 2021). The two data-
sets were obtained from Broad Institute’s single-cell repository
(https://singlecell.broadinstitute.org/single_cell) with IDs

SCP354 and SCP948, respectively. The Slide-seq dataset (file
‘Puck_180430_6’) contains 18 671 genes on 25 551 beads.
We filtered out beads with total counts less than 50. The
Slide-seqV2 dataset contains 23 096 genes on 39 496 beads.
We cropped regions of interest by filtering out beads with to-
tal counts less than 100. Mitochondrial genes and genes that
are not expressed in any locations were filtered out from the
two datasets, resulting in 17 481 genes on 14 667 beads for
the Slide-seq data and 20 117 genes on 11 626 beads for the
Slide-seqV2 data. After applying the SPARK-X method (Zhu
et al. 2021) on the two datasets separately, we obtained two
sequences of p-values and matched them by gene. We used
the paired p-values for 16 519 genes common to both studies
as input for the replicability analysis of SVGs. At FDR level
0.05, MaxP identified 279 replicable SVGs, which were all
identified by BH and JUMP. JUMP detected all BH findings
(394) and identified 54 additional replicable SVGs.

We first examined the spatial expression patterns of the
448 replicable SVGs identified by JUMP by clustering them
into three groups showing distinct spatial expression patterns
(Fig. 4a). In both Slide-seq (left) and Slide-seqV2 (right) data-
sets, the 448 SVGs showed consistent patterns: Pattern I and

Figure 4 Analysis and validation results of the mouse cerebellum data measured with Slide-seq technology and Slide-seqV2 technology. (a) Three distinct

spatial expression patterns based on the 448 replicable SVGs identified by JUMP in the Slide-seq study (left) and Slide-seqV2 study (right). Each pattern

summarizes the relative expression levels across spatial spots. (b) Spatial expression patterns of three representative genes identified by JUMP,

corresponding to Patterns I–III, respectively. In situ hybridization images of corresponding genes obtained from the Allen Brain Atlas (atlas.brain-map.org)

are shown in the top panel. (c) The bar chart displays the number of replicable SVGs additionally identified by JUMP and BH compared to that identified by

all three methods. They were validated in two reference gene lists: one from Kozareva et al. (2021) and the other from the Allen Brain Atlas dataset

summarized in the Harmonizome database. (d) The box plot shows Moran’s I statistic of the 169 replicable SVGs additionally identified by JUMP and that

of all genes based on the Slide-seq study (left) and the Slide-seqV2 study (right). (e) The bubble plot shows the GO enrichment analysis result of JUMP,

including different GO term categories: BP, CC and MF. The horizontal dashed line represents the FDR level 0.01. The size of a bubble represents the

counts of corresponding gene sets.
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Pattern III correspond to the purkinje cell layer and granular
cell layer, respectively; and Pattern II corresponds to other cell
layers. Three representative genes identified by JUMP (Pcp2,
Mbp, and Snap25) exhibited corresponding spatial expression
patterns, which were validated by in situ hybridization in the
Allen Brain Atlas (Fig. 4b). Supplementary Figure S6a and b
displays spatial expression patterns of 24 genes randomly se-
lected from the 169 replicable SVGs identified by JUMP in ad-
dition to genes identified by all three methods. As shown in
Fig. 4d, the additional spatial autocorrelations revealed by
JUMP were further confirmed by Moran’s I (Moran 1950).

We provided two gene sets obtained from published litera-
ture to validate the results of different methods. First, we
obtained a list of genes that are highly differentially expressed
across all clusters in mouse cerebellar cortex from Kozareva
et al. (2021). We further filtered out genes with absolute log
fold change smaller than 0.05 and obtained 3976 genes for
the validation. In addition to genes identified by all three
methods (77% validated), 107 of the 169 replicable SVGs ad-
ditionally identified by JUMP were in the list, whereas 73 of
the 115 findings by BH were validated. Second, we down-
loaded three gene sets related to mouse cerebellum in the
Allen Brain Atlas datasets (Sunkin et al. 2013) from the
Harmonizome database (Rouillard et al. 2016) and summa-
rized them to a list of 3000 genes that are differentially
expressed in mouse cerebellum, cerebellar cortex, and cerebel-
lar hemisphere. Among the 279 SVGs identified by all three
methods, 30% were in this gene list. Thirty-nine of the 169
replicable SVGs additionally identified by JUMP were vali-
dated, whereas 28 of the 115 SVGs additionally identified by
BH were in the same list.

Finally, we performed GO enrichment analysis on the replica-
ble SVGs identified by different methods to evaluate the biologi-
cal significance additionally identified by JUMP. At the FDR
level of 0.01, JUMP enriched 452 GO terms and BH identified
418 GO terms (394 overlaps). Among the 58 GO terms only
enriched by JUMP, many are closely related to the structural
constitution and functional development of mouse cerebellum,
such as GO terms of cerebellar cortex development
(GO:0021695), cerebellum development (GO:0021549), central
nervous system neuron development (GO:0021954), dendritic
transport (GO:0098935), and photoreceptor ribbon synapse
(GO:0098684), among others.

4 Discussion

We present a new method, JUMP, for identifying replicable
features from two high-throughput experiments. Analysis of
different SRT studies identifies important replicable SVGs
that might otherwise be missed by existing methods. JUMP is
simple to implement and computationally scalable to tens of
thousands of genes (Supplementary Tables S1 and S2).
Moreover, JUMP does not require two SRT studies to have
the same spatial alignment or the same tissue thickness. In ad-
dition, JUMP is flexible and can accommodate data from
other modalities, such as scRNA-seq, ATAC-seq, and CITE-
seq, among others.

One limitation of JUMP is that it only identifies replicable
features from two high-throughput experiments. If we want
to extend it to more than two studies, say n studies, we re-
quire a 2n-group model for the data, and the composite null is
composed of ð2n � 1Þ hidden joint states whose proportions
need to be estimated. We leave this for future research.
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