Skip to main content
. 2023 Jun 19;13:9948. doi: 10.1038/s41598-023-36832-8

Table 2.

Classification metrics Precision, Recall, F1-score and Specificity for different classes.

Metric Algorithm KNN ANN SVM DT RF AB
Class
Precision 1 0.50 0.76 0.58 0.78 0.71 0.69
2 0.49 0.53 0.58 0.54 0.54 0.53
3 0.65 0.74 0.57 0.78 0.76 0.76
4 0.40 0.50 0.58 0.60 0.49 0.53
5 0.39 0.63 0.28 0.62 0.66 0.58
Recall 1 0.33 0.61 0.52 0.64 0.64 0.65
2 0.61 0.73 0.27 0.68 0.58 0.54
3 0.90 0.86 0.98 0.89 0.82 0.76
4 0.32 0.37 0.39 0.39 0.47 0.55
5 0.13 0.28 0.16 0.43 0.57 0.57
F1-score 1 0.40 0.68 0.55 0.70 0.67 0.67
2 0.54 0.61 0.37 0.61 0.56 0.53
3 0.76 0.80 0.72 0.83 0.79 0.76
4 0.35 0.42 0.47 0.48 0.48 0.53
5 0.20 0.39 0.21 0.50 0.61 0.58
Specificity 1 0.91 0.95 0.90 0.95 0.93 0.92
2 0.80 0.79 0.94 0.82 0.84 0.87
3 0.77 0.85 0.64 0.88 0.88 0.87
4 0.96 0.97 0.98 0.98 0.96 0.95
5 0.97 0.97 0.93 0.96 0.95 0.94

Classes are constituted as 1- Cobalt, 2- Caesium, 3- Iridium, 4- Uranium and 5- Thorium for the PGAA database used in this study.

Best metric values are indicated in bold.